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Figure 1: The results from applying the techniques described in the paper on a 4D flow MRI scan of a heart to 3 different timesteps t. For
each timestep we see all pathlines from the seven most prominent clusters on the top left (except for t = 0.6 where only 3 clusters were
found) and on the top right we see the representatives for these clusters. On the bottom row we first see the coherence map followed by the
map with the located region marked by their representative color. The first and third pie chart show the size of the cluster in terms of pathline
count and the second and fourth show the size in terms of rate of flow through the slice at the initial timestep. The third and fourth pie chart
also include non-coherent flow into the visualization represented by the gray slice.

Abstract
Blood flow data from direct measurements (4D flow MRI) or numerical simulations opens new possibilities for the understanding
of the development of cardiac diseases. However, before this new data can be used in clinical studies or for diagnosis, it is
important to develop a notion of the characteristics of typical flow structures. To support this process we developed a novel blood
flow clustering and exploration method. The method builds on the concept of coherent flow structures. Coherence maps for cross-
sectional slices are defined to show the overall degree of coherence of the flow. In coherent regions the method summarizes the
dominant blood flow using a small number of pathline representatives. In contrast to other clustering approaches the clustering
is restricted to coherent regions and pathlines with low coherence values, which are not suitable for clustering and thus are
not forced into clusters. The coherence map is based on the Finite-time Lyapunov Exponent (FTLE). It is created on selected
planes in the inflow respective outflow area of a region of interest. The FTLE value measures the rate of separation of pathlines
originating from this plane. Different to previous work using FTLE we do not focus on separating extremal lines but on local
minima and regions of low FTLE intensities to extract coherent flow. The coherence map and the extracted clusters serve as
basis for the flow exploration. The extracted clusters can be selected and inspected individually. Their flow rate and coherence
provide a measure for their significance. Switching off clusters reduces the amount of occlusion and reveals the remaining part
of the flow. The non-coherent regions can also be explored by interactive manual pathline seeding in the coherence map.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Blood flow analysis plays an increasing role in medical applica-
tions. Magnetic resonance imaging (MRI) has developed to be an
important tool for diagnosis of cardiac diseases and besides pro-

viding morphological information it is now also possible to mea-
sure the blood flow directly. Also numerical simulations are used
to understand the link between the blood flow and the functionality
of the cardiovascular system or the severeness of aneurysms. With
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the development of these techniques the complexity of the result-
ing data sets is also increasing continuously. Appropriate analysis
and visualization tools specifically target to blood flow analysis are
required. Questions to be answered are related to the characteriza-
tion, quantification and automatic extraction of relevant blood flow
patterns from the data. When visualizing flow phenomena, often
particle-based representations are exploited which depict flow fea-
tures via integral curves. While such curves allow for an intuitive
representation of flow, they come at the downside that the num-
ber of curves to be shown is limited. Several techniques have been
developed with the goal to reduce the number of integral curves to
deal with clutter and occlusion. Within these techniques, clustering-
based techniques [OJCJP16, MJL∗13] play an important role, as
they summarize the flow behavior using a few cluster representa-
tives based on an underlying similarity metric. While the resulting
curve sets are useful in many cases, at least as many cases exist
where the resulting cluster representatives do not meet the expecta-
tions of the investigating domain experts. In some cases, e.g., flows
exhibiting turbulent behavior, clustering would also be in general
inadequate to capture the entire flow. Furthermore, clustering-based
approaches are mostly applied in a fully automatic pipeline and the
clustering process itself is hidden from the user. This makes imme-
diate verification of the clustering result and its quality very hard,
whereas a clear understanding of the relevance of the clusters is
essential for a proper flow analysis. Therefore, algorithms are re-
quired which allow for the generation of representative subsets that
can be altered in an intuitive manner, and at the same time highlight
regions where clustering is not possible.

In this paper, we present a novel algorithm, which generates
easily adaptable representative curve subsets for blood flow data.
The algorithm exploits the fact that blood flow has clearly de-
fined inflow and outflow areas which are used to generate a two-
dimensional summary plot of the flow behavior in terms of flow co-
herency [Hus83, SLM05]. We refer to these 2D planes as as coher-
ence maps, which guide the automatic respective semi-automatic
clustering and seeding process. Our basic assumption is that within
coherent regions the flow can be well represented by one individual
line while regions exhibiting a low degree of coherence have to be
treated differently. Flow coherence provides an intuitive similarity
measure that can be interpreted by both a computer, generating an
initial clustering, and a human, who might want to adapt and un-
derstand the computed results. Technically we use the Finite-time
Lyapunov Exponent (FTLE) [Hal01] which measures separation in
the flow and thus is a valuable measure to distill coherent regions,
which are characterized by low FTLE values. Compared to other
frequently used similarity measures, this is a simplified but direct
measure of entire curve coherence. While we will show how to use
the coherence map to automatically generate clusters and extract
representatives, we will also show how the computed coherence
maps can be utilized as an intuitive user interface for adapting the
set of coherent curves. By visually inspecting coherence maps it be-
comes easy to spot features in the flow, relate them to overlaid seed
points, and adapt those seed points to generate an alternative curve
subset. At the same time the coherence map conveys information
about the size and coherence of the clustered regions and about the
regions that cannot be well represented by clusters. Those regions
can then be interactively explored by manual seeding. The contri-
bution of the flow to the individual coherent regions is also dis-

played in pie charts which can be used to turn on and off the cluster
visualization. They also give an impression of change of the flow
coherence over a cardiac cycle. Our proposed FTLE-based algo-
rithm can be used for both, to automatically generate a meaningful
subset of integral curves, and second to adapt this subset intuitively
to match the expectations of the user. Thus, the method provides a
valuable tool for researchers in blood flow analysis to explore flow
data with the goal to build an intuition and hypothesis about typi-
cal or atypical blood flow structures, which can build the basis for
quantitative analysis in the clinical context in the future.

The remainder of this paper is structured as follows. We will first
discuss work related to our approach in Section 2. Section 3 will
then introduce the technical background considered when realiz-
ing the proposed algorithm. In Section 4 we introduce two FTLE
analysis techniques, which are used to automatically compute seed
points for a given vector field. The results achieved when applying
the presented technique to real world data, are discussed in Sec-
tion 5. Finally, the paper concludes in Section 6.

2. Related Work

Within this section, we will discuss the previous work and how it is
related to our approach. We will first discuss concepts for integral
curve filtering, before we describe relevant blood flow visualization
techniques.

Integral curve filtering. Path and streamline visualizations are
among the most intuitive and popular visualization techniques for
3D flow, and they are frequently applied in different areas, as for
instance blood flow visualization. As the major challenge thereby
is to deal with occlusion, various streamline placement algorithms
have been developed to achieve a uniform coverage of the domain
that is sparse but still captures the most important features of the
field. While this works pretty well for 2D fields [MAD05,RPH∗09],
it is much more challenging for 3D flows. Here, importance con-
trolled destiny fields or streamline measures are introduced to
guide the seeding, which are in some cases combined with view-
dependent criteria [MCHM10, GBWT11]. Popular importance cri-
teria are based on entropy [LMSC11, CYY∗11], or geometric de-
scriptors of flow features. Günther et al. [GRT13] have applied
view-dependent transparency to improve the perceptibility of large
sets of streamlines. Another way to deal with the large amount
of lines are filtering methods, which can be subsumed under the
concept of predicates for path- or streamlines [SGSM08, BPM∗13,
KGP∗13]. Clustering methods enable grouped regions of similar
lines, which also results in a clearer image. Many methods use
a pairwise comparison of the lines applying different similarity
measures and streamline descriptors [MJL∗13,YWSC12,LCL∗13].
While in many cases the results of clustering algorithms are hard
to predict, in the context of fiber visualization line clustering tech-
niques have been evaluated by Moberts et al. [MVvW05]. Further-
more, an evaluation of different streamline clustering techniques
for blood flow data has been published by Oeltze et. al. [OLTP12].

The approach proposed in this paper is most directly related to
the concept of topological field segmentation, an idea that builds
on the theory of dynamical systems. Such methods reduce the flow
to a structural skeleton consisting of critical points and separating
lines and surfaces. Vector field topology leads to a natural seg-
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(a) The coherency map (b) All minima (c) The five largest
clusters

(d) Cluster representa-
tive locations

(e) Cluster sizes, gray
indicates non-coherent
flow

(f) Unfiltered streamlines (g) Clustered streamlines (h) Cluster representatives
shown as tubes

(i) Cluster representatives
shown as ribbons

(j) Non-coherent flow not in
any cluster

Figure 2: Visualization of blood flow simulated in an aneurysm. The top row shows the clustering pipeline, starting with the constructed
coherence map (a), annotated with all the local minima (b) followed by the areas five most prominent clusters (c) and finally the location
of the representatives(d). The size of the cluster is depicted charts in (e) with the pie where the size of the slices on the top row represent
amount of streamlines in each cluster while on the bottom row the size represent the flow-rate. In the bottom row we show all sampled
streamline (f) used for the calculation of the coherence map. (g) shows all streamlines of the five most prominent clusters. (h) and (i) display
the representative of these clusters rendered as tubes and as ribbons respectively. (j) shows the pathlines that is located in non-coherent
regions.

mentation of the domain in regions of similar streamline behav-
ior. Recent work deals with efficient ways for simplification and
tracking of topological structures [TSH01, GTS∗04]. However, the
use of topology in practical applications is still very limited due
to the complexity of the results, especially for 3D data. A sec-
ond limitations is its restriction to stationary fields. Among the
several attempts to introduce variants appropriate for the topolog-
ical investigation of time-dependent flows [Hal01, KRaHCH∗16],
the most popular concepts rely on the notion of coherent struc-
tures [Hus83, SLM05, KHH12], which is often associated with
the Finite Time Lyapunov exponent (FTLE). After its introduc-
tion to the visualization community by Haller [Hal01], several
variants have been developed [KPH∗09, PPSS14] and much ef-
fort has been put into the development of efficient computation
methods [GGTH07, SP07, BGT12] and the robust extraction of
the separating ridges and surfaces [POS∗11, LM10, FSP12]. Un-
til now FTLE has been applied mostly to flow analysis in the
context with mixing [Cha10, SCTC12]. Recently there have also
been first attempts to extract separation structures for blood flow
data [ST08,SAG10,KGG∗12]. Similar, as for vector field topology,
the most severe limitation is the complexity of the ridges that sep-
arate coherent regions from each other. For 3D data sets these are
complex surfaces, for which not only the extraction is a challenging
task but also the visualization of the results. This motivated us to
focus on the coherent regions themselves instead of the separating

structures and use distinguished 2D cross sections for the flow anal-
ysis which can be specified in a natural way for blood flow. Garth et
al. [GGTH07] also computed FTLE on 2D cross sections to char-
acterize the coherence of particles. In contrast to our approach they
focus on high FTLE values within the slices. However, they also
suggest that these images could be used for manual line seeding.

Blood flow visualization. Along with the development and im-
provement of imaging modalities to measure blood flow (4D
flow MRI [MKE11]) and the availability of respective simulation
data [Lan13] there is an increasing interest in flow visualization
methods specifically tailored to blood flow analysis for medical di-
agnosis. Typical visualization methods used in the medical field are
pathline visualizations in combination with different color codings
and statistical measures [ECE∗10,SPK∗12]. However, the develop-
ment of more advanced methods is an active field of research in
visualization. A survey of such methods can be found in the report
by Köhler et al. [KBvP∗15]. Directly relevant to our approach is
the work by Born et. al., who use predicates for semantic filtering
of the pathlines [BPM∗13], but also the application of illustrative
visualization methods to provide a comprehensible context visual-
ization [BMGS13], as well as the explicit extraction of flow fea-
tures like vortices [CBB∗14]. Gasteiger et al. [GNKP10, GNBP11]
developed rendering methods to efficiently support the flow within
the surrounding vessel morphology by combining illustrative ren-
dering styles. In their follow-up work they developed automatic

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

81



R. Englund, T. Ropinski & I. Hotz / Coherent Blood Flow Extraction

methods to detect hemodynamic characteristics in aneurysms re-
lated to the inflow jet and its impingement zone [GLvP∗12]. An
novel approach to make flows comparable has been presented by
Angelelli et al. [AH11]. They proposed to straighten the tubu-
lar flow in the aorta for a side-by-side visualization. Van Pelt et
al. presented a technique for exploring blood flow by probing,
whereby they combine illustrative rendering and vector cluster-
ing [vPBB∗11, vPJtHRV12].

Since vortices are considered being a critical feature for blood
flow they are also in the focus of some blood flow analysis methods.
Köhler et al. [KGP∗13] developed a semi-automatic vortex extrac-
tion method using line predicates for different vortex identifiers.
Byrne et al. [BC13] used vector field topological methods for the
extraction of vortices. Their ideas have been used and further im-
proved by Oeltze et al. [OJCJP16] for an illustrative rendering of
vortex structures in aneurysms. Further, van Pelt et al. [vPFCV14]
use pattern matching methods to detect helical and vortical patterns,
whereby the extracted patterns are used for a comprehensive visu-
alization of the cardiovascular anatomy. In recent work Meuschke
et al. proposed a semi-automatic vortex flow classification in the
aorta [MKP∗16].

3. Coherent Structures and the Finite-time Lyapunov
Exponent

The central concept of the clustering and seeding methods devel-
oped in this work are coherent structures. Initially, these structures
have been introduced as a concept referring to some orderly struc-
tures in the flow. While the concept stayed very vague for a long
time a particular realization by Haller [Hal01] became popular over
the last decade. He proposed to consider distinguished lines or
surfaces in the flow field which can be considered to be material
boundaries. Furthermore, he introduced a measure to detect such
structures which is a finite variant of the Lyapunov exponent. In the
following we briefly describe this measure and how it is applied
within our context. The Lyapunov Exponent (LE) originates from
the theory of dynamical systems. It is a metric for the separation
rate of infinitesimally close trajectories as time approaches infinity.
For flow fields with a bounded time range we can limit the observa-
tion time to a finite time interval, this allows us to use the Lyapunov
Exponent as a measure of coherence in the flow field, the Finite-
time Lyapunov Exponent (FTLE) . A high FTLE value indicates
high separation (forward advection) or convergence (backward ad-
vection) of particles emitted at infinitesimal proximity. Haller states
that the extremal structures of the FTLE field are possible bound-
aries of of Lagrangian coherent structures. In contrast, a low FTLE
value indicates high coherence within a close neighborhood. This
is the property which we use to extract coherent clusters form the
flow.

The definition of FTLE uses the construct of a flow map φ T
t0 ,

which maps points at start positions x0 at time t0 to its advected
position x(T ; t0,x0) after time T

φ
T
t0 : x0 7→ x(T ; t0,x0) = φ

T
t0 (x).

FTLE is then defined as the logarithm of the maximum relative
stretching in direct analogy to the definition of the LE. Hereby,
maximum stretching is represented by the maximum eigenvalue of

Figure 3: The calculation of the FTLE for grid point (x,y) is per-
formed by using Vx and Vy to approximate the Jacobian matrix
J = [Vx Vy].

the Cauchy-Green strain tensor JT J, where J =∇φ T
t0 is the Jacobian

of the flow map.

FT LE =
1

t− t0
ln
∣∣∣λmax

(
JT J

)∣∣∣ , (1)

where λmax is the largest eigenvalue of JT J. It is common to calcu-
late the FTLE on a regular grid to approximate its real values. The
flow map is computed for each grid cell, emitting and advecting a
particle through the flow field and storing its final locations in the
cell. The Jacobian of the flow map is then approximated using a
finite differences method. A critical parameter for the FTLE com-
putation is the time interval T which has to be chosen carefully. In
general higher values of T result in more crisp structures. In the
case of periodic flows, e.g., blood flow over one heart cycle, a good
guiding value for T is the duration of one temporal period, which
we will use in our examples accordingly.

We are especially interested in the FTLE values on two dimen-
sional embedded planes. On the plane we emit particles in a regular
grid at time t0 and advect them through the flow field. The locations
of the particles after advection builds the flow map φ T

t0 . The calcu-
lation of the FTLE for grid point (x,y) is illustrated in Figure 3.
First we first compute the vectors Vx and Vy as

Vx =
1

2δx

(
φ

T
t0 (x+δx,y)−φ

T
t0 (x−δx,y)

)
(2)

Vy =
1

2δy

(
φ

T
t0

(
x,y+δy

)
−φ

T
t0

(
x,y−δy

))
, (3)

where φ(x,y) is the location stored in the flow map for point (x,y)
and δx and δy are the offset distance from grid point (x,y) to its
nearest neighbor. Then Vx and Vy are used to approximate the Ja-
cobian matrix J = [Vx Vy]. The FTLE is finally calculated using
Equation 1.

4. Coherent Flow Feature Extraction and Exploration

Our flow analysis method has been designed for flow data that has
a clearly defined inflow and outflow area without internal sources.
Such data typically results from blood flow simulations or mea-
surements in a vessel system. The basic assumption is that all flow
has to pass through the defined inflow and outflow areas and the
investigation of all pathlines passing through these areas provides
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a valuable summary of the flow structures in the entire volume.
Therefore, our method distills flow features based on a close in-
spection of these summaries. Since FTLE values provide a solid
measure for flow coherence we use FTLE as the basic underly-
ing metric for automatic clustering and feature extraction and for
manual exploration. The proposed feature extraction and analysis
pipeline comprises the following parts:

(i) Generation of a two-dimensional coherence map (Sec. 4.1),
(ii) Automatic extraction of coherent regions (Sec. 4.2)

(iii) Coherent flow feature representation (Sec. 4.3)
(iv) Flow feature exploration (Sec. 4.4).

The individual steps will be explained in the following subsection.

4.1. Two-dimensional Coherence Maps

Instead of computing the FTLE values for the entire flow, we com-
pute its values only on embedded planes. As planes we use a slice
through the volume covering the inflow or outflow region of the
flow, and thus capturing all pathlines entering or exiting the vol-
ume. The placement of the plane is done by the user in a 3D scene
in which the plane is displayed together with a 3D rendering of
the anatomy and additionally aided by displaying information de-
rived from available volumetric data, such as velocity magnitude
or anatomy, on 2D slices.. An example for the placement of such a
plane for an aneurysm blood flow simulation can bee seen in Fig-
ure 2 (bottom row). When the plane has been placed at the desired
location we construct the coherence map by calculating the FTLE
values for each pixel in the map. This is done in a two step pro-
cess. In the first step we trace a pathline for each pixel in the map,
this is parallelized using OpenMP where each thread traces a set of
pathlines. In the second step we calculate the FTLE value for each
pixel by using the end positions of the 4 neighboring pathlines as
described in section 3 and are parallelized in the manner as the
first step. The resulting map exhibits the typical structures of FTLE
showing ridges indicating a flow separation and enclosed connected
regions, see Figure 2 (a-e). Pathlines within theses regions exhibit
a very similar behavior within the flow volume and will build our
coherent features. However, the coherence map also contains areas
where the separating structures show a high spatial frequency and
are not very crisp. We refer to these regions as ’non-coherent’ re-
gions, which cannot be assigned to any dominant flow feature and
will be subject for an interactive exploration. These non-coherent
areas of the flow are typically ignored in clustering algorithms and
not represented by any cluster. Thus, the coherence map in itself
already contains much valuable information for the exploration of
flow. Garth et al. [GGTH07] also computed FTLE on manually de-
fined 2D cross sections capturing the coherence of particles with
application for general flow fields. However they focus on locations
with high FTLE values within the slices.

4.2. Automatic Coherent Region Extraction

Commonly FTLE is used to extract material separation lines and
surfaces from the flow, which correspond to the extremal structures
of the FTLE field. In general these structures have a high complex-
ity and their extraction is a challenge in itself and likewise is their
visualization. Instead of considering these separating features we

Figure 4: Illustration of the advantages of clustering with the
DBSCAN method which is the basis for the Minima Clustering we
present. DBSCAN can correctly identify and separate curved clus-
ters where the convex hull is overlapping, as seen with the blue and
pink cluster. It also correctly identifies and separate clusters within
clusters as seen with the green and light blue clusters.

focus on the enclosed regions which exhibit a coherent flow behav-
ior. To identify coherent regions we propose an algorithm that first
cluster the local minima in the FTLE map and then performs a re-
gion growing to expand regions around the minima. Since we want
to cluster regions of coherent flow we like to prevent inclusion re-
gions with high FTLE values, therefore we introduce a coherence
threshold that will be used in a few places through the algorithm.
A pixel is classified as a minima and used for clustering if it has
a lower FTLE value than its 8 nearest neighbors and if its FTLE
value is less than the coherence threshold.

4.2.1. Minima Clustering

To cluster the minima we use an approach based on Density-
Based Spatial Clustering of Applications with Noise (DBSCAN),
a density-based clustering method introduced by Ester et
al. [EKSX96]. DBSCAN utilizes a region growing technique, start-
ing at a single point it finds all points within a certain radius and
adds them to the cluster. The growing technique is iteratively ap-
plied to all new points in the cluster until it has found all points
to be included. Thanks to the growing scheme used by DBSCAN
it can accurately identify and separate clusters within clusters and
non-convex clusters with overlapping convex hull, as illustrated in
Figure 4. To cope with noisy data DBSCAN marks a point as noise
if it has less than N points within the given radius, points marked
as noise are not included in any cluster. The original version of
DBSCAN uses the Euclidean distance. In the case of the coherence
map that might result in clusters falsely joined across a ridge. An
example of regions where this can be a problem can be seen in the
zoomed region in Figure 5. To address this we use a modification of
the Euclidean distance metric, sampling the FTLE values between
the two minima. Then, two minima are only consider as part of the
same cluster if the maximum FTLE value in-between them falls
below the coherence threshold.

4.2.2. Context Aware Minima Expansion

After clustering of the minima they are expanded to regions of co-
herent flow. The minima are used as seeds, starting with the small-
est minima. The regions are then grown to neighboring pixels using
their 8-neighborhood. The neighboring pixel is added if the differ-
ence in intensities compared to current pixel is less then a certain ∆I
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and if the intensity of the neighboring pixel is less than the coher-
ence threshold. This will grow the sparse regions from the minima
clustering into a dense cluster of both regular pixels and local min-
ima, only the local minima that is not yet in a cluster is used as seed
for new clusters. This is iteratively done until all minima are in a
cluster.

4.3. Coherent flow feature representation

For the visualization of the coherent flow regions, we provide a set
of methods to represent clusters visually, ranging from cluster rep-
resentatives to full cluster visualization. The user can easily toggle
between these modes by clicking on the cluster with the mouse. The
first method to represent a cluster is a single pathline representative.
Since in general the shapes of the clustered regions are not convex
and can be quite elongated or bent a simple average computation
can lead to positions outside the cluster. Instead we need a robust
strategy to pick a cluster member that is both inside the region and
represents the flow in a good way. We experimented with various
options for the representative definition which all lead to similar re-
sults as they represent the same coherent region. Among others we
considered the following options: Cluster member that is closest to
the average. This ensures that the selected point is inside the cur-
rent region. Though, in the case where the average point is outside
of the region it will most likely be on the boundary of the region.
Cluster member with the highest coherence value. This ensures that
the selected lines exhibits a high similarity to its neighbors. From
a perceptual point of view it is also an option to chose the longest
pathline of the cluster. Depending on the size of the cluster it might
also be desirable to inspect the internal structure of the entire cluster
which is not visible from one representative, e.g. a twisting behav-
ior. Therefore we also support to show the entire cluster with user
determined density by randomly sampling the cluster region. Since
one or more clusters may be hidden completely a visualization of
various combinations of full clusters and representatives is possible
as can be seen in Figures 6 and 10.

The regions extracted with the proposed method can, per defini-
tion, only visualize the flow in coherent regions, therefore we add
the option to display all or a random sampled subset of the pathlines
that are not part of any cluster, two examples of this can been found
in Figure 6e and 2. By allowing to alternate between showing the
coherent flow and the non-coherent flow we support visualization
of all flow that originates from the slice.

Lastly, to support size comparison of the coherent regions we
display a pie chart in which each cluster is present and the area of
each slice can either represent the size of each cluster in terms of
cluster area or the volume of fluid that passes through the plane at
the given point in time by integrating the velocities. On demand the
pie chart also takes the non-coherent regions into consideration.

4.4. Interactive exploration

While the automatic clustering approach and its representation de-
scribed above is very useful to locate and represent coherent flow
it is also important to provide possibilities to interact with the data,
analyzing individual clusters as well as the non coherent regions.
The basic interface for interaction consists of three parts which are

(a) (b)

Figure 5: The coherence map generated from placing the a 2D slice
through the beginning of the aorta. (a) shows the coherence map
and (b) shows the map together with the local minima. In the mag-
nified area we can clearly there are plenty of minima along apparent
valleys and ridges that need to be separated during clustering.

linked together: the coherence map, the cluster pie chart and the
three dimensional rendering. The user can add, move and remove
representatives of various colors directly on the coherence map and
see the resulting visualization in real-time in a linked view. We also
support live preview of not yet added points by seeding new path-
lines under the mouse cursor when hovering the coherence map.
These tools allow the user to explore the flow in less coherent re-
gions with high FTLE values and see of how marginal movements
of the seeding position will affect the trajectories. This leads not
only to a better representation and understanding of the flow, but
also a better understanding of concepts of the coherence map and
a greater trust in the automatic approaches presented. The cluster
pie chart can also be used to select or deselect individual clusters.
For the tree dimensional rendering various options are provided be-
tween the user can switch, see Section 4.3.

5. Results

The concepts presented in this paper has been implemented into
Inviwo, a data-flow development environment for scientific visual-
ization [SSK∗15]. The examples shown in this paper was produced
using a computer with a 3.5 GHz Intel i7-4770K processor, 32 GB
RAM and a NVIDIA GeForce GTX 660 graphics card. We have
applied the algorithm to two blood flow datasets. The first dataset
is a 4D flow MRI scan of a heart with the chambers and vessels of
the heart segmented [BPE∗15] and the second one is a blood flow
simulation of a brain aneurysm. While both the heart dataset and
the aneurysm dataset represent blood flow, the heart dataset is ac-
quired by measurements and therefore has a lower signal to noise
ratio then the aneurysm dataset which is generated from computa-
tional fluid simulations. In the following sections we describe the
data in more detail and show that our techniques works well on data
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with more or less noise in it. For all examples in the paper we use
4th order Runge-Kutta for pathline and streamline integration.

5.1. Cardiac Blood Flow from 4D flow MRI

The first dataset is a measurement using a 4D flow MRI sequence
containing the flow of a full heart cycle of a healthy patient.
The sequence consists of 40 timesteps, each stored as a volume
with 112× 112× 48 voxels. The dataset has been segmented into
masks defining each of the four chambers and major vessels of the
heart [BPE∗15]. The slice for the FTLE calculation is placed in the
ascending aorta as a cross section oriented normal to the mean flow.
The pathlines for the flow map are seeded on a 200×200 grid. For
all examples with the 4D flow MRI dataset it takes about 8.5 sec-
onds to create the coherence map and the radius parameter for the
DBSCAN was set to 9 pixels and the coherence threshold were set
to 4.5. The first timestep selected is t = 0 and the pathlines are in-
tegrated for a duration of 0.4 seconds. This corresponds roughly to
the start and duration of the ventricular systole, the phase of the
heart cycle where the ventricle contracts and blood is pushed out of
the left ventricle resulting in high velocities in the aorta.

The coherence map (Figure 7a) has values ranging from 0.001 to
18.692 and contains 1680 local minima. The Automatic Coherent
Region Extraction (Sec 4.2) locates 18 prominent clusters (N > 10,
where N is the number of pathlines in the cluster). There is one
large region, spanning from the center of the map to the bottom
right corner, representing the main flow through the aortic arc and
into the descending aorta. Around the large cluster we have a set of
smaller clusters representing blood flow either towards the arteries
or the descending aorta. Figure 1a displays the results showing the
seven most prominent cluster (N > 100).

To explore the changes of the flow patterns over the heart cycle
we use three timesteps for the FTLE calculation, shown in Figure 1.
A first observation is that throughout the heart cycle the amount of
inflow in the aorta varies strongly. The integration time for all start
times is the same, but the pathlines for t = 0.6 are much shorter
than for t = 0 and t = 0.3, Figure 1c. Timestep t = 0.6 captures
the behavior of the heart cycle during the diastole, a phase of the
heart cycle where the flow in the aorta is at a minimum, which is
clearly visible when comparing it to the other timesteps. A more
interesting timestep is t = 0.3, Figure 1b, which captures the end
of the ventricular systole and the beginning of ventricular diastole.
This includes the closing of the valve between the left ventricle and
the aorta which decrease the flow through the aorta to a minimum
and introducing some backflow. The flow of this timestep is further
explored in Figure 6 in which we have selected various clusters
such that we show the underlaying pathlines for each of the clusters
instead of the representatives.

5.2. Aneurysm Blood Flow from CFD Simulation

The second dataset is a simulation of blood flowing through an
cerebral saccular aneurysm [GSS∗14]. The data is the result of a
computational fluid dynamics (CFD) simulation on a unstructured
grid. The data set provides the accurate geometry of the simulation
and velocity values associated to the tetrahedra. For the compu-
tation of the coherence map the data has been resampled onto a

structured grid of size 330x280x280. This size was selected since
it aligns with the shortest edge of all tetrahedra in the tetrahedral
mesh. The data contains only is not time-resolved, so streamlines
are used instead of pathlines.

The slice for the FTLE calculation is placed such, that it inter-
sects the vessel that supplies the aneurysm with blood. Streamlines
are seeded on the slice with a resolution of 150×150 and traced for
a total of 500 steps, each with a step length of 0.01. For all examples
with the aneurysm dataset the radius parameter for the DBSCAN
was set to 22 pixels and the coherence threshold were set to 1.2.
The resulting coherence map (Figure 2a) was constructed in 4.8
seconds and consists of 966 minima (Figure 2b) and has a value
range between 0.015 and 2.576. Automatic Coherent Region Ex-
traction locates 18 prominent clusters (N > 10). Figures 2(g-i,c-d)
display the 5 most prominent of these. In Figure 10(f-j) the clus-
ters are further explored by showing only the streamlines within
selected cluster.

In the histograms of the FTLE values in Figure 8 we can see that
the coherency map of this dataset contains a higher ratio of large
FTLE values compared the 4D flow MRI dataset. This is expected
due to the fact that blood entering the aneurysm has a high velocity
and travels fairly straight until it hits the wall, since the flow hits the
wall at a rather large angle the flow is diverted out in all directions
resulting in a high present of non-coherent flow behavior. This can
clearly be seen in Figure 10f and 10g where the two most promi-
nent cluster are first traveling on similar trajectories and when they
reach the wall they divert in two different directions. This results in
large regions which is not covered by any cluster and it is not pos-
sible to find good representatives here. The interactive exploration
described in section 4.4 serves as a good tool to explore the flow in
these areas. This is demonstrated in Figure 9 in which we have man-
ually seeded 4 stream ribbons in close proximity of each other in a
region where the coherence map is indicating low coherence. The
resulting stream ribbons initially follow the same flow, but as soon
they reach the wall of the aneurysm they diverge and end up hav-
ing very different trajectories. This example clearly demonstrates
the advantage or method of displaying the coherence map together
with the coherent features in comparison to other streamlines clus-
tering methods. Our method provides an impression of the domi-
nant features in the flow however also communicates which parts
of the flow cannot be capture by any clustering and can be further
explored by interactively placing seeds in the coherence map.

6. Conclusion

We have presented a semi-automatic method to explore time-
dependent flow data with a clearly defined inflow and outflow area.
It uses the concept of coherent structures and FTLE as a similar-
ity measure for pathlines. The central element of our approach is a
2D FTLE coherence map summarizing the flow volume by explor-
ing the pathlines entering the volume. The coherence map guides
the automatic coherent feature generation capturing the dominant
trends in the flow. These trends can be visualized as dominant flow
cluster or as representative pathlines. However, most importantly it
also provides a means to understand the relevance of the automat-
ically extracted features and detect regions that are not well repre-
sented by the clusters. In this way the coherent feature extraction
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(a) (b) (c) (d) (e)

Figure 6: Results from the 4D flow MRI dataset where pathlines are seeded in the ascending aorta at t = 0.3. (a) shows all pathlines in the
seven most prominent regions, (b) shows their representatives. In (c) we show all pathlines of the red cluster while only the representatives
of the other clusters are selected. In (d) we show the reversed selection, the representative for the red cluster and the pathlines of the other
clusters. In (e) we see the pathlines originating from the remaining regions which are not part of one of the dominant clusters. A closer
inspection of the coherence map and the size of the located clusters can be found in Figure 7.

(a) (b) (c)

(d) (e) (f) (g)

Figure 7: Coherence map of the 4D flow MRI dataset at t = 0.3
(a) the map, (b) the seven most prominent clusters (c) the seeding
position of their representatives. The respective flow clusters are
displayed in Figure 6. (d-e) show the relative size of the clusters,
(d, f) by area measured by the number of included pathlines and (e,
g) by the volume passing through the slice at the starting timestep.
The gray regions in (f) and (g) represent the portion of the pathlines
that originates from regions not included in the selected clusters.

process becomes transparent to the user and is not just a black box
generating pretty images. The coherence map can also be used as
intuitive interface for a further interactive exploration of the flow.
The few parameters involved in the extraction process can be inter-
actively adapted and will mainly influence the number of displayed
clusters and their level of detail. Our results demonstrate clearly
that it is often not possible to capture the entire dynamics of the
flow fields using some clusters and there are always regions which
need a closer inspection and provides a good alternative to tradi-
tional clustering methods. The tool provides a good combination of
automatic feature extraction and possibilities to investigate the flow
manually. This can serve as a valuable basis for the understanding
of typical blood flow characteristics and the development hypothe-
sis that can be used in future clinical studies.

(a) 4D flow MRI heart dataset at t=0 (b) CFD Aneurysm dataset

Figure 8: Histogram of the the coherency maps. Values to the left
represent high coherency (low FTLE values) and values to the right
represent low coherency. The axis are scaled to fit the data of the
given dataset.
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Figure 10: Depiction of the underlaying flow structures of the five most prominent cluster found in the aneurysm dataset. On the top row we
see each cluster selected together with the representatives for the other clusters and on the bottom row, we have selected the same clusters,
but showing only the selected cluster.
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