Temporal interpolation of 4D PC-MRI blood-flow measurements using bidirectional physics-based fluid simulation

Additional materials

Algorithm 1: Find valid simulation cells.
Algorithm 1. Find vand simulation cens.
1 Input: <i>user_selected_planes</i> – the planes selected by the user
2 Output: Valid simulation cells
3 Initialize all cells, that are known to be of type SOLID, SOURCE or SINK;
4 Mark all other cells to be of type $UNDEF$;
5 queue $\leftarrow \emptyset$;
6 foreach $x \in user_selected_planes$ do
7 $T \leftarrow x.type; //the type of the selected plane is stored in T$
8 queue $\leftarrow \emptyset$;
9 for each cell c covered by x do
10 foreach neighbour cell n of c do
11 updateCell $(n,queue,T);$
12 end
13 end
14 while $queue \neq \emptyset$ do
15 $c \leftarrow queue.popfirst;$
16 foreach neighbour cell n of c do
17 updateCell $(n,queue,T);$
18 end
19 end
20 //all cells are now sweeped
21 end
22 Make all source and sink cell neighbouring at least one VALID cell also
VALID

Algorithm 2: Update cell

1 Input: A cell c, the current *queue*, the type of the selected plane T2 Output: Updated queue **3** if $c.type \in \{VALID, SOLID, SOURCE, SINK\}$ then return;//we do not need to update this cell 4 5 end 6 if c.type is UNDEF then if T is SOURCE then $\mathbf{7}$ Mark c to be of type $SOURCE_REACHABLE$; 8 9 end 10 if T is SINK then 11 Mark c to be of type $SINK_REACHABLE$; $\mathbf{12}$ end queue \leftarrow queue \cup {c}; //enqueue this cell 13 14 end 15 if c.type is SOURCE_REACHABLE and T is SINK then Mark c to be of type VALID; 16 $queue \leftarrow queue \cup \{c\}; \, // \text{enqueue this cell}$ $\mathbf{17}$ 18 end **19 if** c.type is $SINK_REACHABLE$ and T is SOURCE then Mark c to be of type VALID; $\mathbf{20}$ queue \leftarrow queue \cup {c}; //enqueue this cell $\mathbf{21}$ 22 end