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Abstract
This paper aims to examine the potential of 3D shape analysis integrated to machine learning techniques in supporting medical
investigation. In particular, we introduce an approach specially designed for the characterisation of anatomical landmarks
on patient-specific 3D carpal bone models represented as triangular meshes. Furthermore, to identify functional articulation
regions, two novel district-based properties are defined. The performance of both state of the art and novel features has been
evaluated in a machine learning setting to identify a set of significant anatomical landmarks on patient data. Experiments have
been performed on a carpal dataset of 56 patient-specific 3D models that are segmented from T1 weighed magnetic resonance
(MR) scans of healthy male subjects. Despite the typical large inter-patient shape variation within the training samples, our
framework has achieved promising results.

CCS Concepts
• Computing methodologies → Shape modeling; Machine learning approaches;

1. Introduction

Patient-specific 3D anatomical models (3D-PSMs) are 3D com-
putational reconstructions of patient’s anatomy, which mirror the
accurate appearance of the patients’ organs in the 3D space. The
3D-PSMs are expected to be extremely useful in many applications
such as biomechanical simulation, computer-assisted diagnosis and
surgery, prosthesis fitting, and legal medicine. However, the use of
3D-PSMs is not wide-spread yet in clinical practice because experts
still prefer to rely on traditional 2D/3D medical images.

So far most of the 3D shape analysis methods developed in the
Computer Graphics field [ABM∗06] are designed to analyse geo-
metric and structural properties of the 3D models. The use of ge-
ometric descriptors to extract clinically relevant features from the
3D-PSMs is not straightforward: (i) often the anatomical features
belong to regions that do not have a strong geometric character-
isation; (ii) the medical definition of the features is intrinsically
vague, and thus, the features cannot be coded or identified by an
exact formulation; (iii) the anatomical shapes are highly variable
among individuals. Moreover, the shape alteration due to patholog-
ical condition makes the anatomical shape characterisation more
challenging, e.g. bone erosion induces irregular shape modification
and the osteonecrosis disorder causes random collapses in the bone
architecture. Finally, the interaction between different bones (like
in articulations) depends on feature points that are relevant for the
functional analysis of the district, but might not be geometrically

relevant on the single bone. These facts suggest that the shape anal-
ysis of the single bones should be coupled with the co-analysis of
all the elements of a district with the aim of identifying interoper-
ability properties that model the articulation functionality. In this
paper, we show how a tighter integration between geometric anal-
ysis and machine-learning techniques can support the characterisa-
tion of the 3D-PSMs in terms of anatomical features. The experi-
ments are shown on a case-study of carpal bones that has been vali-
dated by clinical experts (anatomists, radiologists, rheumatologists,
surgeons). Based on the groundwork, our case-study aims to recog-
nise a targeted set of anatomical landmarks on the 3D-PSMs of car-
pus, which can bring informative content to substantiate the inves-
tigation of musculoskeletal diseases (MSD), particularly Rheuma-
toid Arthritis (RA). The carpus is the anatomical assembly of 8
carpal bones, which constitutes one of the most complex joints of
the human body. A large group of experts confirms the idea that the
MSD diagnostic analyses can gain more richness if the individual
carpal bone models and the district as a whole can be examined by
analysing the characteristics of relevant anatomical and patholog-
ical landmarks. Moreover, the anatomical feature-based modelling
can provide an enhanced understanding of patient’s anatomy which
can be worthwhile in several other clinical applications, e.g. bio-
mechanical simulation, prosthesis fitting.

The contribution of the paper is twofold. First, we propose
two novel and specialised characterisations of the carpal bones
(Sec. 3.2): Shadow map and Adjacency map, which act at the level
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of the anatomical district rather than on each single bone. The new
characterisations will support the analysis of the carpal bones ac-
cording to their functional regions (articulation and adjacency of
the bones). Second, we experimented with a specific machine learn-
ing method (Sec. 4) that exploits a rich set of morphological feature
vectors (state of the art purely geometric descriptors and the two
new characterisations we introduced) to recognise automatically
the anatomical landmarks through a machine learning approach.
We have evaluated the performance of the proposed method by
comparing the outcome with a fixed ground truth, i.e. a set of land-
marks defined on the 3D-PSMs by an anatomist (Sec. 5.2). In the
context of carpal case-study, the individual relevance of the mor-
phological features has been evaluated by the feature ranking re-
sults derived from the proposed method, Section 5.3. Final remarks
conclude the paper.

2. Related works

Characterising a shape means building a computational description
able to preserve the most representative elements of the shape, usu-
ally a few basic types, along with their relationships and their in-
variants [FS98]. In this context, mathematics plays a key role to
handle the complexity of digital shapes, in particular differential
topology provides a setting able to formalise several problems re-
lated to shape analysis and description. In this scenario, methods
have been derived to analyse the shape of an object according to the
properties of real functions defined on it. The added value of these
approaches is that different functions can be used according to the
properties and invariants that one aims to capture, thus providing
a flexible shape description framework. Examples of popular func-
tions used in object analysis and matching are distance functions,
curvature-based and geodesic-based functions, Laplace eigenfunc-
tions and distribution maps [BDF∗08, BFF∗07]. Then, the geomet-
ric/topological information related to the shape is compactly stored
into descriptors [BCA∗16], for instance, adopting feature vectors
[BKS∗05], graph-based descriptions (e.g. Reeb graphs [BGSF08]),
or maps [HWG14].

Unfortunately, given a collection of 3D models, a single prop-
erty is not likely to provide a good organisation of the data, or at
least it could be not informative enough [HZG∗12]. To address this
limitation, a recent path of research aims to derive high-level in-
formation by analysing single objects in the context of larger col-
lections of models: the idea is to derive information not only from
the object itself, but also from its relation with the other ones in
the collection [HWG14]. This is the case, for example, of the co-
segmentation of a set of 3D objects [WAvK∗12, HFL12, KHS10],
i.e. the segmentation of the objects as a whole into consistent se-
mantic parts with part correspondences. These 3D shape analysis
techniques are meant to derive semantic (high-level) information
from low-level properties exploring their relation with the other
objects in the collection [OLGM11, HZG∗12, KLM∗12, ROA∗13].
The goal is to facilitate exploration and content search as well as
to understand their overall categorisation and summarise their con-
tent [LMS13]. Here semantics refers to the meaning, or functional-
ity, of an object in a given context. The key challenge is that shapes
can vary in different ways, and users may be interested in different
types of variations [KLM∗12,KLM∗13]. Examples of applications

Figure 1: Examples of anatomical landmarks on Carpal bones :(a)
articulation facets between hamate (yellow) and capitate (pink);
(b) hook of hamate, prominent bony feature (orange)

are: semantic annotation, which is the automatic or semi-automatic
labelling of objects (or parts of objects) [BAC∗16]; attribute trans-
fer techniques, which study how to automatically transfer labels
from a single object (o part of an object) to sets of unknown objects
[KBB∗13]; the structuring of 3D large datasets to enable navigation
and retrieval, which is often achieved by exploiting also the pair-
wise similarities between the rest of the dataset models [HSS∗13].

In all these approaches, a major issue is how to interpret such
implicit knowledge. In general, the use of prior knowledge might
be inevitable; anyway, the recent advances in learning techniques
have achieved state-of-the-art performance in computer vision ap-
plications [CMS12]. These techniques represent a possible solution
to determine automatically the weights of the different shape fea-
tures on the basis of context (e.g., the shape classes of a database)
[BB13, TDVC13], design class- or application-specific shape de-
scriptors [BMM∗15] or extend deep learning techniques to geome-
try [MRB∗16, BBL∗17].

3. Morphological properties

By discussing with the domain experts, we derived that the most
relevant anatomical landmarks of carpal bones in the context of
MSD diagnosis and treatment are: articulation facet - zone of
the bone that participates in articulation, contact area - zone of
the bone that is adjacent with the neighbouring bones within the
district, and prominent bony feature - zone of the bone that ex-
hibits typical morphological characteristics (e.g. protrusions, con-
cavities). Among these anatomical landmarks, frequently the ar-
ticulation facets and contact areas of the carpal bones belong to a
relatively flat region, while prominent bony features have peculiar
morphological characteristics that are geometrically well charac-
terised. We present the example of hamate and capitate bones in
Fig. 1, where the articulation facets belong to geometric featureless
regions and therefore are not well characterised via morphologi-
cal properties, while the protruded bony feature - hook of hamate,
can be easily described by geometric functions (e.g. distance from
centre of mass).

For this reason, we decided to support the analysis of the single
bones with standard geometric properties, while we drive the anal-
ysis of articulation district with the two novel properties that we in-
troduce in Sec. 3.2. All the descriptors presented in this study have
been tested on a carpal bone dataset where we have more than 100
healthy and pathological cases (affected by RA) segmented from
T1 weighted Magnetic Resonance (MR) scans.
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3.1. Bone-based properties

We have developed a 3D shape characterisation java library by im-
plementing state-of-the-art methods for shape analysis, which we
deem as relevant to the context. In the context of carpal case-study,
we renamed this group of properties bone-based, since they are
computed by considering only the shape of an individual 3D bone
model. First, we consider a set of shape properties able to deal both
with local and global features and can capture both intrinsic and
extrinsic characteristics such as curvatures, distance functions, ra-
tio between area and volume. Then, we selected a subset of them
that can complement each other in terms of their sensitivity to fea-
ture types, and as a result, can derive high-level information useful
for our application. Table 1 lists the state of the art properties that
have been considered in our study, and we cite the literature where
necessary. We have implemented each property as a function and
we describe each model as a couple (X ,d) where X is the vertex
set and d is a vector that represents the value of the scalar function
over X .

Our experiments with the training dataset confirmed our hypoth-
esis that the purely geometric properties are relevant for charac-
terising prominent bone features that are morphologically well-
characterised. However, these geometric characterisation tech-
niques are not fully suitable to identify the functional features of
carpal bones that often belong to the geometric featureless and/or
the flat regions.

3.2. District-based properties

To characterise the functional parts (articulation and contact ar-
eas) of the patient-specific 3D models, we propose two novel and
specialised district-based properties. These measures integrate the
whole district perspective with the individual shapes of the bones.
The semantics behind the articulation and adjacency relations be-
tween the carpal bones has been modelled in the Carpus ontol-
ogy [BAC∗16] which is specifically designed to support com-
putational analysis of patient specific 3D carpal bones. We de-
fined an ad hoc Carpal bone Ontology (CO) to conceptualise the
anatomy of the carpus district at the granularity we needed for our
application, reusing the Foundational Model of Anatomy (FMA)
as much as possible [FMA]. The FMA:Carpal_bone and its
subclasses model the 8 individual carpal bones, and the relations
CO:hasAriculationFacet and CO:Articulates With
model the anatomical relations between bones. In Fig. 2 the articu-
lation relations between FMA:Hamate and FMA:Capitate are
shown together with the 3D model of the entire carpal district. This
formalism represents the anatomical information in a form that able
to support reasoning, inference and assertion. Particularly, when
such knowledge is associated directly with the patient 3D data, it
allows for a dynamic navigation of the 3D geometry, with the pos-
sibility to extend the reasoning to the geometric aspects.

Shadow map: we introduce a novel scalar function to characterise
the articulation areas of the carpal bones following the intuition that
the articulation regions are the areas of the bones which face to each
other, and these areas can be defined as the shadow cast by each
bone onto the adjacent ones (see Fig.3). The shadow map represents
this information, and this function captures not only information

on the shape of the individual bones but also about their spatial
arrangement in the whole district.

The input is the eight 3D carpal bone models in the same co-
ordinate system Bone[8] = {B1,B2, ....B8} and the articulation ma-
trix R[8][8], which is defined by the Carpus Ontology as R[i][ j] = 1
when Bone[i] articulatesWith Bone[ j] (Fig.2), and R[i][ j] =
0 otherwise. We adopt the concept of orthographic projection where
the shadow is projected by a point light source and the directional
light source directed opposite to the normal of the surface on which
the shadow is drawn. The main idea is the following: we take
the Bone[i], and then project its approximate shadow Si, j on an-
other bone surface Bone[ j] which is defined by a generalised cone
Ci, j ⊂ R3 that marks the maximum region of space compatible with
Bone[ j] and Bone[i] (see Fig. 3). Note that the shadow of Bone[i] is
projected onto Bone[ j] only if R[i][ j] = 1.

Following this approach, we compute the ShadowMap[8] vec-
tor was output, which describes the shadows projected onto all the
eight carpal bones. Algorithm 1 presents the pseudo-code to com-
pute the Shadow Map from the carpal bones.

Algorithm 1 Shadow map computation
1: procedure SHADOW MAP COMPUTATION (BONES[8])
2: Input: Bones[8]← 8 carpal bone triangulations (.off)
3: R[8][8]← Articulation Matrix
4: Output:ShadowMap[8]← array of scalar values
5: for <i = 1 to 8> do
6: for < j = 1 to 8> do
7: if (i! = j and R[i][ j] = 1) then
8: Shadow[i]← PROJECTION(Bone[i], Bone[j])
9: DrawContour(Shadow[i]) . contour based on the

pre-defined range
10: procedure COMPUTESHADOW(Model1, Model2)
11: KDTree← BuildKDTree(Model2)
12: for each vertexk of Model1 do
13: CloseP← FindClosestPoint(vertexk,KDTree)
14: SquareDis← EuclideanDistance(vertexk,CloseP)
15: if SquareDis < Shadow[i][k] then
16: Shadow[Model1][k]← SquareDis

We present results of the Shadow map computation in Fig. 4
(healthy and pathological dataset), where the bone surfaces are
coloured according to the triangle-wise scalar value of the Shad-
owMap function and the contours are drawn based on a predefined
scalar value range. In order to validate our approach we have also
performed experiments on the models segmented from different ac-
quisitions methods: computer tomography (CT) and magnetic res-
onance imaging (MRI), and in both cases the characterisation of
the articulation regions conform to their expected location (Fig. 4).
In the figure, we also represent the shadow map computation on a
pathological dataset (RA stage 3) where, regardless of the fact that
the bone surfaces are mostly eroded, the descriptor provides an ac-
ceptable characterisation by coupling the bone geometry with the
spatial arrangement.

However, the Shadow map fails to produce a reasonable char-
acterisation solely when the spatial arrangement of the district is
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Table 1: Bone-based properties - a list of state-of-the-art methods experimented in our study

Characterisation of a single bone
Distance-based

Distance from the centre-of-mass (CM) Spatial distribution of the object with respect to its centre of mass (barycentre).
Distance from a principal axis (LD) [BB13] Spatial distribution of the object with respect to its main axis.

Distance from a principal plane (PD) [BB13]
Surface symmetry with respect to the plane through the bary-centre and with the principal axis
as its normal vector.

Distance from the convex-hull (CV) Punctual distance between the shape vertices and the object convex-hull (crumpliness [CRC∗02]).
Geodesic distance from random surface samples (GD) [HSKK01] Average geodesic distance where the source points are randomly distributed.

Geodesic distance with the farthest point sampling (GD_FD) [MD03]
Average geodesic distance where the source points are distributed
sampling algorithm.

Curvature-based
Gaussian Curvature (GC) [PS06] Product of the principal curvatures.
Mean Curvature (MC) [PS06] Half the sum of the principal curvatures.
Shape Index (SI) [KvD92] Ratio between Gaussian and Mean curvatures.

Spectral-based
3rd, 4th, 6th and 7th Eigen vectors [PP93] 3rd,4th, 6th and 7th Eigen vectors computed from the Eigen decomposition of Laplace-Beltrami operator.

Figure 2: Conceptualisation of the articulatesWith relation in the Carpus Ontology on the left, Corresponding visualisation on the
3D model on the right

Figure 3: The shadow map descriptor represents the shadow pro-
jected from a bone on its adjacent one. The directional light source
is opposite to the normal of the surface on which the shadow is
drawn

significantly altered due to some typical pathological conditions,
e.g. advanced carpal collapse, missing bone, complex fracture.

Inter-bone Adjacency graph and Adjacency map: the Inter-
bone Adjacency graph is a 3D graph that represents the inter-
carpal adjacency. It has been defined by the following idea: if
in the Carpus ontology the FMA:Capitate bone has relation
CO:adjacentWith with the FMA:Hamate, there is an edge

connecting the centroid of the capitate and hamate models. There-
fore, in the Inter-bone Adjacency graph, the nodes are defined by
the bone centroids, and an arc exists between a pair of nodes if
the respective bones are adjacent to each other in the joint setting.
Based on this conceptual graph, we can represent the inter-bone
distance as the edge weight in the articulation graph. In Figs. 5.a,
we show the computation result of an Inter-bone Adjacency graph
where the edge weights are represented in mm.

In this study the Inter-bone Adjacency graph is utilised to com-
pute the second district-based descriptor: the Adjacency Map. The
Adjacency map characterises the adjacent surfaces of each bone on
the basis of the inter-carpal adjacency relations. The idea behind
this is to compute the minimum geodesic distance map for each
bone surface, where the sources are the intersection points between
the bone models and the inter-bone articulation graph.

Formally, the Ad jacencyValue of the ith vertex in a
bone model can be computed as: Ad jacencyValuei =
min[d(vi,s1),d(vi,s2), ..,d(vi,sn)], where vi is the ith vertex,
s j is the jth source, and d(v,s) is the geodesic distance between
the vertex v and source s. If a bone has adjacency with three other
bones, as in the case of hamate, then n = 3. In Fig. 5.b., the green
points represent the intersecting points, and the yellow colour
identifies the regions with the minimum geodesic distance, which
indicates the adjacent regions.

Similar to the Shadow map, the Adjacency map can successfully

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

44



I. Banerjee et al. / Feature-based Characterisation of 3D Models

Figure 4: The computation of the Shadow Map applied on: (a) models segmented from MRI images; (b) models segmented from CT images;
(c) a pathological case affected by rheumatoid arthritis stage 3 (pinker areas indicates higher values of the shadow map)

Figure 5: (a) An example of Inter-bone Adjacency graph, which
represents the relations of the articulations between the carpal
bones, and the weight of the arc is the inter-bone distance, and
(b) An example of Adjacency map computed on a carpal district:
the distance from the centre of mass increases from yellow to brown

Figure 6: A patient-specific hamate bone characterised by the (a)
Inter-bone Adjacency map with the pisiform, and (b) the Shadow
map of the hamate on the pisiform

be used as a tool to explore hidden structures and subtle kinemat-
ics of carpal joints. The main difference with the Shadow map is
that the Adjacency map is defined according to the inter-carpal ad-
jacency relations and aims to recognise the adjacent areas of the
carpal bones, while the Shadow map considers the articulation re-
lations, and is designed to characterise articulation facets. To distin-
guish better the two characterisation functions, we show an exam-
ple of a facet of hamate bone in Fig. 6 where the characterisations
of Adjacency map and Shadow map differ significantly, since the
hamate has adjacency relation with the pisiform bone, but does not
articulate with it in normal conditions.

4. Automatic detection of landmarks

We designed a method that automatically detects the anatomical
landmarks by exploiting the morphological features of the patient-
specific 3D data. To identify the landmarks, our method uses the
Logic Learning Machine model (see Sec. 4.2). This technique be-
longs to the family of machine learning, a class of algorithms de-
signed to extract information from the data without any a priori
assumptions. In this specific context, a classification problem is to
be solved: the objective consists in labelling each example, i.e. each
vector of input features, with an output class, namely the landmark
associated with each vertex.

To improve the quality and the readability of the model, a differ-
ent classification problem was considered for each of the 8 bones
involved in the district. Therefore, each classification problem can
be formulated as the computation of a function f : X → Im j , where
X j is the input space (i.e. the vertices of the 3D models for the j-
th bone) and Im j is the set of m j possible classes associated with
the j-th bone (m j− 1 is the number of anatomical landmark to be
identified and "no landmark" is an extra class).

4.1. Dataset

The dataset employed for the tests contains 56 patient-specific
carpal bone models segmented from T1 weighted MR images be-
longs to healthy male subjects†. Using the interactive tool Sem-
Anatomy3D [BAC∗16], the 56 3D models have been manually an-
notated, the number of landmarks for each model depends on the
type of bone. The number of landmarks per model is in the range
3 (Pisiform) - 8 (Capitate) with a total number of 45 landmarks
per district. The regions mostly represented are the prominent bony
features and articulation facets. The landmarks are represented as
areal features of the 3D mesh. We have computed all the 13 state of
the art properties (see Table 1) and the 2 novel ones for all the 56
bones in our dataset.

Finally, each bone consists of the following three components,
and each component is represented in a matrix form to be fetched
in the machine learning system:

1. Geometry - contains the vertex coordinates (x,y,z) that is ex-
tracted from the .OFF file of the 3D model. The dimension of

† http://visionair.ge.imati.cnr.it/medical/browse_
medical.zul
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the matrix is n×3, where n is the number of vertex in the bone
model. On average, each bone model contains 5000 - 7000 ver-
tices.

2. Annotation - contains annotation labels corresponding to each
vertex. Up to now, we assume that a vertex can only have a sin-
gle annotation. The dimension of the matrix is n×1, where n is
the number of vertex in the bone model, and a string represents
the annotation tag. If the vertex does not belong to any annotated
region, we associate the “no landmark" tag. On average, 10 - 12
anatomical landmarks are listed for each carpal bone, and in to-
tal 64 anatomical landmarks are catalogued for the whole carpal
district.

3. Feature vector - contains the scalar values of the feature vectors
computed for each vertex. The dimension of the matrix is n×d,
where n is the number of vertex, and d is the number of feature
vectors, 15 in our case.

4.2. Formulation of the model

The final data matrix containing the geometry, the feature vector
and the annotation for each vertex of the training set is used to
build a model able to give the correct output (annotation) in cor-
respondence of a given input vector (geometry and features). Sev-
eral approaches have been proposed for classification: some of the
most known are Multilayer Peceptrons, Support Vector Machines,
and k-Nearest Neighbor. The literature on the machine learning is
very vast and we cannot be discussed extensively here; for recent
surveys on this topic the reader can refer to [BG16,PSY∗18]. How-
ever, most of the techniques for classification are not able to provide
useful insight of the data: in other words, they are able to forecast
an output value given an input vector, but they are not able to ex-
plain the reasons of this prediction. On the contrary, in this context
it is essential not only to have a good prediction but also to improve
the level of knowledge on the studied system. For this reason, we
have preferred an approach based on rules, namely the Logic Learn-
ing Machine (LLM), an efficient implementation of the Switching
Neural Network model [Mus05]. LLM presents some advantages
with respect to Decision Tree (DT) [Utg89], the other well known
method for rule generation. One of the most important advantages
is the possibility of generating sets of rules that reveal different
points of view on the data, which allow the identification of the
most important features. Moreover, the performances of LLM with
respect to DT are usually higher. LLM is included in Rulex Ana-
lytics, a software suite developed and commercialised by Rulex Inc
(http://www.rulex.ai/). Briefly, the classifier generated by LLM is
described by a set of intelligible rules of the type:

if premise then consequence

where premise is a logical product (AND) of conditions on the
components of the input vector x, and consequence provides a
class assignment for the output. LLM is trained through an opti-
mised version of the Shadow Clustering (SC) [MF11] algorithm,
a rule generation technique based on Boolean function synthesis.
SC adopts an aggregating policy: at any iteration some patterns be-
longing to the same output class are grouped to produce an intel-
ligible rule. A suitable heuristic approach is employed to generate
rules exhibiting the highest covering (i.e. the percentage of cases a
rule is able to describe) and the lowest error; a trade-off between

Table 2: The properties of the rules generated for each bone

Bone # rules Average #
conditions

Average
covering

Average
error

Capitate 91 5.26 12.0 0.89
Hamate 70 5.10 18.6 0.91
Lunate 86 5.24 13.7 0.93
Pisiform 44 4.86 13.9 0.90
Scaphoid 79 5.47 15.0 0.94
Trapezium 61 5.08 15.1 0.88
Trapezoid 68 5.35 15.1 0.91
Triquetrum 52 4.81 17.0 0.91

these two different objectives generally leads to final models with
a good accuracy. In these tests error for each rule was forced to be
lower than 1%. Clustering examples of the same landmark permits
to extract knowledge regarding similarities about the members of a
given class rather than information about their differences.

Moreover, another interesting property of the approach is the
possibility of deriving a ranking of the features according to their
relevance in discriminating the landmarks. This feature ranking is
not a measure of the bi-variate correlation between the input and
the output, but rather a measure of the contribution of the features
inside the set of rules. The relevance of a feature in a set of rules is
evaluated according to these criteria:

• the covering of the rules in which the feature is present;
• the importance of the condition associated with the feature inside

the rule, evaluated by considering the increase of error that the
elimination of this condition would lead to.

By considering all the rules, the global relevance of the feature in
the set of rules can be computed; moreover, also relevances related
to each landmark can be obtained in the same way.

5. Experimental results

To assess the effectiveness of the learning model described in
Section 4.2 we adopted a leave-one-out cross-validation strategy,
which is expected to mitigate over-fitting and gives a reasonable
score even in case the number of elements is quite limited, as in our
use case (see Section 4.1). In practice, the model obtained using all
the patients but one (the training set corresponds to the carpal dis-
trict of 6 patients), was tested on the data of the remaining patient
(the test set correspond to a single patient). The role of the test and
the training set is assigned in rotation and then, the performance
scores are averaged.

5.1. Generation of the set of rules

The data given in input to the LLM include spatial coordinates,
standard descriptors and novel features. Then, the LLM was run to
get a set of rules for each of the 8 bones of the district. The training
of LLM takes few minutes (from 30 to 180 seconds on a standard
PC with i7 2.4GHz processor and 8 GB of RAM): it leads to 8 sets
of rules that are described in the Table 2, where all the features are
considered.
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To understand better the results let us consider a rule regarding
Capitate.

if 4.262 < Centre of Mass ≤ 7.067
AND X position ≤ 0.51
AND Distribution Map ≤ 7.624
then Landmark = Hamate facet of Capitate

This rule characterises some points of the landmark “Hamate
facet of Capitate”. Its covering is 50.3%: it means that the 50.3% of
the “Hamate facet of Capitate” points are described by this rule. On
the contrary, its error is 0.98%: this means that the rule is satisfied
also by 0.98% of the cases of other landmarks. Allowing a (small)
amount of error is a good practice to avoid overfitting: this happens
when the classifier performs very well on the data of the training
set (in case affected by noise) but it is not able to generalise on the
test set.

The quality of the rules depends on the characterisation of the
landmark: if a landmark is well defined, then few rules are enough
to describe it; otherwise, more low quality rules are needed. For ex-
ample, the “No landmark” points are very scattered in every bone
and indeed many rules with rather low covering are needed to de-
scribe them.

5.2. Accuracy of the anatomical landmark detection

First, we assessed the performance of the proposed method con-
cerning the capability of recognising the targeted set of anatomical
landmarks on the 3D-PSMs. This is done by verifying the truthful-
ness of the outcomes of our method by comparing with the ground
truth created by the medical doctors. The ground truth was created
by an anatomist who was asked to annotate a specific set of anatom-
ical landmarks (42 areal patches) on the patient-specific 3D carpal
models (8 carpal bones) by using SemAnatomy3D. The expert was
assisted also by the visualisation of the original MRI image stack
(256×256×52) side-by-side, which originated the 3D-PSMs. Af-
terwards, we identified the targeted set of anatomical landmarks on
the same dataset.

According to the experts, the correctness of the location of
anatomical landmarks is more relevant than detecting smooth
boundaries of the segments. This implies that the number of land-
marks identified may be considered a measure of success. Thus,
we decided to follow a region-based approach and evaluate the dif-
ference between the ground truth and the automatic outcome by
computing the following measures: Correct area: the area that is
marked with the same annotation as in the ground truth; False-
negative area: the area which is marked as landmark region in the
ground truth, but detected as no landmark region by the automatic
method; False-positive area: the area which is marked as no land-
mark in the ground truth, detected as landmark by the automatic
method. Indeed, a low number of false negative and false positive
is an indicator of the accuracy of the algorithm. Due to inter-patient
shape variability, experiencing error in automatic landmark detec-
tion process is quite probable, and we must choose which side to
err towards. Most of the experts involved in our study remarked
that having a higher false positive rate is better than higher false
negative rate.

Given this hypothesis, Fig. 7 presents the outcomes of our

method on four distinct carpal bones of patient X (unknown test
case), displayed along with the ground truth. The last row of
Fig. 7 presents the results where the automatic annotation has been
matched with the ground truth, and the surface has been coloured
according to: (a) correct landmark prediction - green, (b) correct
no landmark prediction - pink, (c) false-positive - yellow, (d) false-
negative - red. Finally, we measured the areas to evaluate quan-
titatively the performance: the method has achieved 78% overall
accuracy.

The experimental observation points to the fact that the proposed
method considers only certain morphological rules which depends
on bone-based properties, and therefore it is sensitive to inter-
patient shape variations and noise. However, this method could be
helpful to highlight certain pathological anomalies related to the
bone morphology (e.g. erosion, bone growth).

5.3. Ranking the feature properties

We present a statistical summary of the feature ranking derived
from the LLM training setting, and discuss a set of interesting ex-
amples of carpal landmarks.

In Fig. 8, we represent the overall LLM feature ranking for each
individual descriptor. According to the results, among 42 anatom-
ical landmarks of carpal bones, the 2 distinct district-based prop-
erties (Shadow map and Adjacency map) are discriminative for 26
landmarks, while 16 landmarks are detected by the 14 standard ge-
ometric properties (Table 1). According to the overall numerical
relevance in the carpal anatomical landmark detection task, Shadow
map and Adjacency map are accessed individually as more discrim-
inative than the descriptors listed in Table 1.

This result supports the fact that the two novel district-based
properties are not only efficient in characterising the carpal dis-
trict in terms of functional regions, but also performs robustly
against the inter-patient shape variations. As seen from the chart,
curvature-based descriptors have not been considered as significant
for the anatomical landmark detection task. The result shows that
the distance-based descriptors (e.g. distance from centre of mass,
distance from convex hull, geodesic distance) offer a more stable
characterisation of patient-specific carpal bones than the curvature-
based descriptors, which highlight only the local features.

Afterwards, we analysed the feature ranking for individual
anatomical landmarks, which confirm the fact that the district-
based properties can efficiently characterise the functional facets
of carpal bones, often belonging to geometric featureless and/or
flat regions. We observed another interesting characteristic of the
district-based properties: they frequently recognise not only one but
a set of functional facets which are isolated area in the 3D model.
For instance, the Shadow map appears to be the most discriminative
descriptor for detecting the articulation facets of the hamate bone
(with capitate and triquetral), although such articulation facets are
mostly flat and located almost in the opposite facets of the hamate
bone (Fig. 9). Similarly, the Shadow map is discriminative for the
lunar facet of the scaphoid bone (Fig. 10, where also the confusion
matrix is represented).

Oppositely, most of the prominent bony features were charac-
terised by the standard geometric properties. The latter work well
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Figure 7: Comparison between annotations related to 4 bones: in the top row the groundtruth (annotations performed by experts), in the
middle the outcome of our method, and in the bottom the corresponding annotations overlapped on the same bone

Figure 8: Feature ranking: each histogram bar represents how
many times each descriptor was discriminative for the landmark
recognition. The descriptor acronyms are derived from Table 1

also for some relatively small sized peculiar shaped bone (e.g. lu-
nate) where the articulation facets are located close to each other,
and therefore are difficult to be detected via the district-based prop-
erties. In that case, standard geometric properties become more
relevant for detecting the articulation facets, particularly when the
landmarks exhibit some specific geometric characteristics. For in-
stance, the facet of the lunate bone which articulates with the capi-
tate is located in the distal surface, which has a deep concavity for
the specific conformation of the lunate (see Fig. 11). In the LLM
feature ranking for this facet, distance from convex hull feature vec-
tor (CD) is ranked as top relevant among the others which is well-
aligned with our expectations.

In contrast to the capitate facet, the hamate, scaphoid and tri-

quetrum facet of the lunate do not have any specific geometric char-
acteristics that are consistent across the training samples (Fig. 12).
Therefore, the standard geometric properties fail. Moreover, these
facets are positioned relatively far to each other: this fact suggests
that the district-based characterisation is more suitable for this case
capturing better the structure of the carpal region. As expected, the
Adjacency map rates as most relevant for these facets by the LLM
algorithm.

Another interesting example is the hook of the hamate which is
not an articulation facet but a prominent feature, where the Shadow
map is prominent and stable enough to be rated over the standard
geometric characterisations (Fig. 9). We explain this by observing
that the hook of the hamate is a region which is not adjacent to any
other carpal bones and the Shadow map describes that region as an
area where no shadow appears.

6. Concluding remarks

We proposed a hybrid approach based on geometric analysis and
machine-learning that can support the characterisation of the 3D-
PSMs of carpal bones in terms of significant anatomical features.
We approached the problem by capitalising the existing shape anal-
ysis methods and devising novel district-based descriptors specific
for the considered case-study. Nevertheless, a similar approach
can be adopted for other anatomical districts, targeting different
pathologies.

Further analysis and statistics could be computed in the future
considering various patients’ datasets and engaging a group of ex-
perts for creating a richer ground truth. A statistically relevant anal-
ysis with a bigger training set could bring more interesting and le-
gitimate insights about the performance of the whole framework.

The presented research has been primarily conducted to demon-
strate the potential of using specialised morphological descriptors
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(a) (b) (c) (d)

Figure 9: An example of annotated hamate bone: (a) annotated capitate facet (white), hook of hamate (violet) and triquetral facet (blue);
(b) the corresponding shadow map; (c) the feature ranking in the identification of the capitate facet of hamate area: the shadow map is the
most discriminative in that it does not generally intervene in the identification of that facet; (d) feature ranking in the identification of the
triquetral facet of hamate: the shadow map is the most discriminative but in the opposite sense, since it is the descriptor that intervene the
most.

(a) (b) (c)

Figure 10: (a) An example of the lunar facet of the scaphoid bone (brown); (b) the feature ranking derived by the LLM algorithm; (c) the
confusion matrix of the results compared to the ground truth.

(a) (b) (c) (d)

Figure 11: (a) An example of the capitate facets of lunate; (b) the computation of the distance from convex hull; (c) the feature ranking
derived by LLM algorithm (d) the confusion matrix of the results compared to the ground truth

to interpret patient-specific 3D models which could be relevant for
clinical study. The promising results achieved by this study high-
lights the benefits of conducting more interdisciplinary research in
this direction.
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