
STAG: Smart Tools and Apps in computer Graphics (2016)
Giovanni Pintore and Filippo Stanco (Editors)

Selective rasterized ray-traced reflections on the GPU

Mattias Frid Kastrati † Prashant Goswami ‡

Blekinge Institute of Technology, Sweden

Abstract

Ray-tracing achieves impressive effects such as realistic reflections on complex surfaces but is also more computationally
expensive than classic rasterization. Rasterized ray-tracing methods can accelerate ray-tracing by taking advantage of the
massive parallelization available in the rasterization pipeline on the GPU. In this paper, we propose a selective rasterized ray-
tracing method that optimizes the rasterized ray-tracing by selectively allocating computational resources to reflective regions
in the image. Our experiments suggest that the method can speed-up the computation by up to 4 times and also reduce the
memory footprint by almost 66% without affecting the image quality. We demonstrate the effectiveness of our method using
complex scenes and animations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
Algorithms

1. Introduction

Ray-tracing is a method that can be used to convert vectorized
graphics into screen pixels [App68,Whi80]. This is done by tracing
the path of light through pixels on the image plane. The technique
is able to render highly detailed scenes and complex light inter-
actions with high fidelity. Although it can simulate a wide array
of illumination effects, such as transparency, detailed shadows and
reflections, ray-tracing is computationally expensive. Even though
ray-tracing can very easily be parallelized both on the GPU and
CPU, the main challenge is with the time-consuming ray-object in-
tersection tests, especially in highly complex scenes.

To circumvent the intersection cost, several acceleration struc-
tures have been proposed and implemented both on the CPU and
GPU. The most well-known ones include the BSP-tree and kd-
tree [CCI13, Hav00], octree and voxels [CG12, LR13, WIK∗06].
Recently Hu et al. [HHZ∗14] proposed a rasterized ray-tracing
method that achieves ray-tracing via built-in rasterization on the
GPU, thereby reducing the ray-scene intersection cost.

In this paper, the proposed rasterized ray-tracing method for the
GPU by Hu et al. [HHZ∗14] is improved and merged with sim-
ple deferred rendering to achieve selective ray-tracing. By taking
advantage of the fact that [HHZ∗14] is completely rasterized and
works inside the GPU’s rasterization pipeline, the rendering per-
formance can be significantly improved by using a simple selec-
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tive ray-tracing scheme. In our approach, while the entire image
is rendered with computationally inexpensive deferred rendering,
only the parts of the final image containing reflective details are
ray-traced. The results from both renderings are then blended to
create diffuse or clear reflections. The idea is to apply computa-
tional efforts on rasterized ray-tracing only on those parts of im-
age where there are possibilities for great fidelity gains from ray-
tracing. Our experiments demonstrate that the fidelity losses caused
by selective ray-tracing are insignificant when compared to the per-
formance gains when our method is compared to a full ray-tracing
one. We also introduce an optimization to [HHZ∗14] that makes the
detailed scene representation occupy significantly less memory. As
a proof of concept, we chose to implement mirror-like reflections
in our selective method, however all global illumination effects that
are supported in [HHZ∗14] could also be implemented.

2. Related Work

[App68] pioneered ray-tracing and [Whi80] later extended it. To-
day ray-tracing is able to render detailed shadows, ambient occlu-
sion, reflections, transparency with refractions and other illumina-
tion effects. Traditional research to improve performance of ray-
tracing mainly focuses on improving the performance of the inter-
section tests between rays and scene geometry. Lately the strong
growth of the processing power of the GPU has made it another
interesting research area for improving the performance of ray-
tracing [HHZ∗14]. However early methods used the same accel-
eration structures as on the CPU and treated the GPU only as a
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high-performance multiprocessor. This makes it nontrivial to inte-
grate these techniques into the traditional rasterization pipeline.

[HHZ∗14] propose a framework for ray-tracing that is meant
to be easier to integrate into the traditional rasterization pipeline.
Their method utilizes a two layer data structure to represent scene
geometry. The first layer is a low resolution voxel structure, which
is fast to build. The second layer has higher resolution and contains
more information about the actual geometry stored as a linked-
list A-buffer, based on the method proposed by [YHGT10]. Be-
cause of the layering less time is spent tracing rays in the highly
detailed scene representation. Their scene representation is com-
pletely rasterized. Ray-tracing models such as ray casting, Whit-
ted ray-tracing, ambient occlusion and path tracing can be imple-
mented in the framework.

Some of the earliest examples of using voxels to improve the
performance of ray-tracing are [FI85] and [FTI86]. They describe
voxels as an extension of a classic raster grid, with each pixel be-
coming many voxels. A voxel is in other words the 3D represen-
tation of a pixel. Typically geometric data is stored in each of the
voxels that contain geometry.

A-buffers were invented by [Car84] who suggested and imple-
mented this new data structure for usage in the REYES engine (and
later in Pixar’s Photorealistic Renderman engine). The idea is that a
fragment generated by a triangle may not cover an entire pixel and
because of that it should be blended with other fragments behind
it for a more realistic result, something which could not be done
with the classic Z-buffer rendering [Cat74]. To solve this all frag-
ments generated are saved in per pixel bins. A-buffers also make it
possible to render order-independent transparency.

[YHGT10] introduced the first real implementation of linked-
list A-buffers on the GPU. It differs from previous methods in that
the A-buffers are generated in a single pass and that the per-pixel
lists are of arbitrary sizes. This was doable because of recent ad-
vancements in GPU APIs and hardware features which allowed
for atomic memory operations and arbitrary array sizes. The article
also discusses and summarizes previous multi-pass and fixed-size
methods.

[Cra10a] and [Cra10b] also propose two different versions of
a single-pass A-buffer generation on the GPU. The first version
[Cra10a] did not have support for dynamic depth, however, the
second version [Cra10b] allowed this in a similar manner as the
previously mentioned method by [YHGT10]. The main difference
between [Cra10b] and [YHGT10] implementations is the paging
system introduced by [Cra10b] to increase cache coherence. The
paging also allows for decreased storage cost for links and the con-
current accesses to the shared memory pool also benefit from it.

[ZHS08] also use layered data structures to ray-trace reflections.
Their method use precomputed layered depth textures. They store
six different layered depth textures, two for each coordinate axis.
Among those two, one is used for front-face triangles and one is
used for back-face triangles. Their method is very similar to the
relief mapping method presented by [POC05] and the search algo-
rithms presented in both papers can be used to search in layered
data structures (e.g. A-buffers).

Deferred rendering was first introduced by [DWS∗88]. They in-

troduced the key concept of only shading each pixel once depend-
ing on depth. It was later expanded by [ST90] who introduced the
G-buffers. G-buffers are essentially geometrical data stored in mul-
tiple render targets for later use in the lighting pass. After the in-
troduction of G-buffers modern deferred rendering began taking
shape. In 2008 the usage of this method started to become main-
stream in real-time rendering applications [SAGC∗12].

The idea to merge ray-tracing and deferred rendering is not new.
In fact it is possible to do it in Nvidia’s OptiX engine. [PBD∗10]
go through the functionalities of OptiX in detail. [SAGC∗12] use
OptiX to implement a selective ray-tracing approach to almost dou-
ble the performance compared to full ray-tracing in their scenarios.
Deferred rendering is used to compute primary rays and then it is
heuristically decided what parts of the picture that give the most fi-
delity gains to ray-trace. Three different ray-traced effects are sup-
ported: reflections, refractions and shadows. All of their results are
based on static scenes.

[GAMR12] propose a ray-tracer using DirectCompute. Their
method is not bounded by the same restrictions as a method im-
plemented in the standard rasterization pipeline, and, it is as stated
by [HHZ∗14] hard to integrate into an engine that relies on said
pipeline. However, they present some ideas that are useful in both
cases. Particularly the way they split the computation into three
steps, primary rays, intersection and color stages.

Inspired by [HHZ∗14] and [SAGC∗12], we present a selec-
tive rasterized ray-tracing method that integrates a rasterized ray-
tracing method with a simple selective ray-tracing scheme. By
rendering only reflective areas with ray-tracing computational re-
sources can be spent where they most efficiently increase the fi-
delity of the final images. The reflections are then blended into
an image rendered with a computationally cheaper rendering tech-
nique. Since [HHZ∗14] is completely rasterized and integrated into
the rasterization pipeline, it is well suited for selective rasterized
ray-tracing. We utilize this fact and use deferred rendering to ren-
der the non-reflective areas.

3. Method

3.1. Rasterized Ray-Tracing

Our method is largely inspired by the rasterized ray-tracing method
presented in Hu et al. [HHZ∗14]. In their method they achieve
rasterized ray-tracing inside the GPU-pipeline by representing the
scene in rasterized data structures with two layers: a coarse voxel
structure on top and sparse A-buffers in the second layer. These
data structures are generated simultaneously at the beginning of
every frame. The purpose is to avoid expensive tracing in the
sparse A-buffers and instead save computations by making edu-
cated guesses by first tracing the coarse voxel structure. [HHZ∗14]
also introduce a ray-scene intersection method to go with this two-
level scene representation.

3.1.1. Data Structures

For the coarse voxel map in [HHZ∗14], the voxelization method
suggested by [CG12] is used. The method was suggested before
the recent additions of API supported conservative rasterization and
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voxelization, which are available in both DirectX and OpenGL on
the latest GPUs. As a result the proposed method still uses the edge
shifting technique from [HAMO05].

The resolution of coarse voxels affects the performance and
memory usage [HHZ∗14]. A high resolution requires more mem-
ory and gives more sparsely populated areas which takes more time
to trace. A low resolution on the other hand will give a less accurate
guess in preparation of tracing the finer representation, giving more
false positives and requiring more steps in the finer data structure.
The actual trade-off depends on the distribution of the geometry in
the scene and should be measured in order to determine a proper
resolution of the voxel map.

For the A-buffers [HHZ∗14] use the previously discussed
method suggested by [YHGT10]. [HHZ∗14] project the geometry
along all three axes to produce a voxel-like result. The A-buffers re-
move the empty spaces between the geometry and therefore waste
less memory and are faster to traverse than a voxel structure with
the same resolution. However, for simplicity, an A-buffer structure
with the resolution 10242 can be viewed as having the same preci-
sion as a 10243 resolution voxel structure.

3.1.2. Ray/Scene Intersection

[HHZ∗14] use the geometry step from deferred rendering to skip
the primary rays in the ray-tracing. This effectively removes a
whole iteration of the intersection tests and with the exact same re-
sult as the primary rays would have in a pure ray-tracer. The results
in the G-buffers can then be used to bounce the rays into the vox-
els and A-buffers to render ray-traced global illumination effects.
To gain the advantage of the two-level data structure, the coarse
data structure is searched first. Only when a voxel is marked as
containing geometry will the more fine-grained data structure be
accessed [HHZ∗14].

The search method used to detect voxels containing geometry is
based on the method presented in [AW87], a 3D-DDA (3D Digital
Differential Analyzer) method. An intersection is considered a hit
if the voxel that is intersected by the ray contains a normal. This
normal is sent to the A-buffer search and if that search step returns
a miss, the algorithm moves to the next voxel. The A-buffer search
is performed with a 2D-DDA linear search inspired by [ZHS08].
It is initiated to search for actual geometry in the A-buffers. The
number of search steps is kept low, two or three, and it is assumed
that only one surface is contained in each of the voxels. To further
pin-point any detected geometry hits in the A-buffers, a binary 2D-
DDA search based on the method presented by [POC05] is also
performed.

3.2. Selective Rasterized Ray-Tracing

The approach presented in this paper merges deferred rendering to-
gether with selective rasterized ray-tracing for dynamic scenes. An
overview of the framework is shown in Figure 1. The geometry in
the first row in the image is sent to three geometry shaders. The re-
sults from these three shaders can be seen in the second row, the ge-
ometry stage in the framework. The left branch in the figure shows
the result from a shader that is the same as the geometry step in
regular deferred rendering. The right branch shows the result from

Mesh data

G-bu�ers

Deferred shading Ray-tracing

A-bu�ers Voxels

Final image

Figure 1: An overview of the proposed pipeline. After the data
structures in layer two have been generated, all of the geometry
is 100% rasterized and represented as texels of various kinds.

a shader that performs a low resolution voxelization and the branch
in the middle results from a shader that generates three high res-
olution A-buffers. With the results from this geometry stage, time
effective ray-tracing can be performed and used during the lighting
step on the third row together with deferred rendering. The final
result can be viewed on the fourth row.

To the previously discussed method [HHZ∗14], we add the extra
step of deferred shading on row three in Figure 1. [HHZ∗14] also
use parts of deferred rendering but only to perform the geometry
step for the primary rays, the leftmost branch on the second row in
Figure 1. We also introduce an optimization of the high resolution
A-buffers that necessitate the splitting of the voxel and A-buffer
generation, the rightmost and middle branches on the second row
in Figure 1. In the following sections we discuss these additions
and other smaller differences in detail.

3.2.1. Data Structures

Similar to [HHZ∗14] the moving average method presented by
[CG12] is used to store a state in the voxels. However, the spin-
locks discussed in [VF14] are used instead of the method with im-
ageAtomicCompSwap used by [CG12]. This was done to im-
prove precision and avoid flickering. The normals are later used to
decide in what A-buffer to store the geometry in the next step and
also what A-buffer to look for geometry in during the rendering.
However, this moving average method is not perfect. As pointed
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out by [CG12], all triangles are weighted the same. If a voxel con-
tains a large triangle that is dominant in the z-axis and two very
small triangles that are x-axis dominant, the voxel will be marked
as dominant in the x-axis. This might later lead to that the ray/scene
intersection misses the larger, perhaps more important triangle en-
tirely since it is only visible as a line from the x-axis. Most of the
errors that result from this flaw in the moving average method are
mitigated by [HHZ∗14] since they generate the A-buffer and voxel
structures in the same pass. This can be seen as a way of anti-
aliasing the voxel structure, as it truly is a lower resolution version
of the A-buffers. Since both data structures are necessary for the
rasterized ray-tracing, it is also a computationally cheap way to im-
plement coverage based normal averaging in the voxels, since the
contribution of smaller triangles will be coming from less A-buffer
entries than that of bigger triangles. However since the method pro-
posed here splits the generation of the scene representation into two
passes, it does not benefit from this.

The method proposed by [Cra10b] is used for the A-buffer gen-
eration. The method is inspired by [YHGT10], with the addition of
paging. To avoid congesting the global head pointer and to increase
memory coalescing, a number of A-buffer fragments are allocated
at a time. This global head pointer is guarded with an atomic add,
while the local head pointers are guarded with the same spin-lock
mechanism used for the voxels [VF14]. In the current implemen-
tation four entries are allocated each time an A-buffer bin requests
more space. The global memory pool can also be grown. If neces-
sary this is done between rendering loops, based on the number of
excess fragments in the previous frame.

Like [HHZ∗14] the geometry is projected in all three axes to pro-
duce a voxel-like end result. However, unlike [HHZ∗14], the geom-
etry is only stored in the A-buffer which it is decided to be dominant
in based on the averaged normal stored in the coarse voxel struc-
ture. In theory this cuts off about two-thirds of the memory usage
compared to their method. In [HHZ∗14], in the intersection stage,
only the A-buffers that are decided to be dominant through look-
ing at the normal stored in the voxels are ever accessed. This does
not interfere with the accuracy of the algorithm since the other A-
buffer fragments were unused. Generating all the structures at the
same time effectively removes the option to cull unused fragments
from the A-buffers. It cannot be known during the voxel generation
which axis the voxel will be dominant in when finished. However,
as previously discussed it also removes some problems with con-
servative voxelization and coverage based normal averaging.

Two texels are used to represent the values of each A-buffer en-
try. As in [Cra10b] they are stored in texture buffer memory, which
is very limited spacewise on most modern graphics cards. As a re-
sult, they are more optimized than the G-buffers shown in Figure 3.
The layout of the A-buffers is shown in Figure 2. As in [Cra10b]
the diffuse color and the z-depth in local A-buffer space is saved in
the first A-buffer. The other two coordinates are indirectly saved as
the texture coordinates for the fragment that is written. In the sec-
ond A-buffer, a reflectivity constant is stored in the first fragment
channel and after that the normal’s y- and z-values followed by a
triangle ID which is used to avoid self-reflection in the ray-tracing.
The normal’s x-value is stored by exploiting the fact that the sign
bit in the first channel of the second A-buffer is unused, since the

Diffuse.r
Diffuse.g
Diffuse.b

Position.z

A-Buffer 1

Reflectivity
Normal.y
Normal.z

TriangleID

A-Buffer 2

Figure 2: The layout of the A-buffers used in our method.

Position.x
Position.y
Position.z

TriangleID

Rendertarget 1

Diffuse.r
Diffuse.g
Diffuse.b

Reflectivity

Rendertarget 3

RayOrigin.x
RayOrigin.y
RayOrigin.z

RayPower

Rendertarget 4

Normal.x
Normal.y
Normal.z

Rendertarget 2

Unused

Figure 3: The layout of the G-buffers used in our method.

reflectivity constant itself is unsigned. In the end the x-value is cal-
culated with Equation 1.

normalx = sgn(re f lectivity)∗
√

1−normaly2 −normalz2 (1)

3.2.2. Intersection

The presented method uses the geometry step from deferred ren-
dering to avoid ray-tracing the initial rays. For the deferred render-
ing used in the presented method, the minimal method presented
by [Wol13] was used, with some additions to the geometry step. To
keep the integrity of the lighting intact, various information about
the surface closest to the eye is stored in G-buffers [SAGC∗12]. For
both the ray-tracing and the deferred rendering presented to work,
diffuse color, surface reflectivity, surface normal, surface position
and eye position are saved in G-buffers as shown in Figure 3. The
eye position is later used to represent the old surface position in the
recursive ray-tracing. The data generated from this step is used both
as the primary rays in the ray-tracing for reflective pixels and in the
deferred lighting step. The intersection stage of the ray-tracing is
performed in the same way as in [HHZ∗14].

3.2.3. Lighting

In the lighting stage, all the pixels are split into two categories:
pixels that should be ray-traced and pixels that should only be
shaded with standard deferred rendering. All the pixels with reflec-
tivity values greater than zero in the G-buffers are selected for ray-
tracing. To enable diffuse reflections, the pixels that are ray-traced
are also deferred shaded and the result is blended. The deferred
shading is done as described by [Wol13]. To further increase real-
ism of the non-ray-traced pixels, standard methods such as shadow
maps could be applied to simulate further global illumination ef-
fects.

If a pixel is marked as reflective by the initial deferred geom-
etry step, it is ray-traced using the intersection scheme presented
by [HHZ∗14]. Inspired by [GAMR12], the initial intersection stage
and the lighting stage are separated. This is to improve perfor-
mance when tracing shadows, as the code flow gets more uniform
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in length. However, currently, no shadows are traced in the reflec-
tions as this would create a realism gap between the reflections and
the purely deferred rendered pixels. Instead an illumination model
that is conceptually close to the illumination described in [Wol13]
is used. The result is alpha blended with the result from the deferred
shading to create diffuse reflections.

4. Results

4.1. Experiment Setup

We implemented our method in C++ and OpenGL 4.3 which pro-
vides API methods that enable atomic operations in rasterization
shaders on the GPU. All the tests in the engine were done on a
PC equipped with an Intel Xeon E5-1650 3.20GHz and an Nvidia
Quadro K4000 GPU. In the experiments three scenes were used:
the sphere and the teapot scenes in Figure 4 and the Crytek Sponza
scene in Figure 8. For all the rendering results with the teapot and
sphere models, a voxel resolution of 643 and an A-buffer resolu-
tion of 10242 was used. For the Sponza scene the same A-buffer
resolution was used, but because of the complexity of the scene ge-
ometry, 2563 voxel resolution was used to maintain the assumption
that only one surface is contained in each voxel true. The size of
the screen buffer in all experiments was kept at 1920×1080.

4.2. Memory Savings in the A-buffers

As previously mentioned, the proposed method uses a paging
scheme in the A-buffers to avoid congesting the global head-pointer
and to increase memory coalescing. The paging of the A-buffers al-
lows four entries to be allocated to each A-buffer bin each time it
requests more space, which causes some over-allocation. Both the
waste caused by this and the total buffer size can be viewed in Fig-
ure 5. For the smaller scenes the waste is larger than the actual
memory used to store information. This is because the A-buffer
pages contain less entries than the four that are allowed in each
page, i.e. very few or no parts of the scene have four in triangle
depth when viewed from the coordinate system axes.

To demonstrate the memory savings that result from splitting the
voxel A-buffer generations, two scenarios have been tracked. In the
first the method described by [HHZ∗14] was used and in the sec-
ond the method proposed in this paper was used. The amount of
memory used in each case and the ratio of saved memory with our
method is given in Table 1. As can be seen, our method uses only
about a third of the amount of A-buffer memory as compared to
the original method. If perfect A-buffer growth and no paging were
used, it would have been a perfect third, which was the expected re-
sult from doing the optimization. The paging causes a small amount
of over-allocation, which can be viewed in Figure 5.

Scene Hu et al. (MB) Ours (MB) Gain
Sponza 1079.55 380.74 64.73%
Teapot 210.18 71.85 65.82%
Sphere 182.37 65.46 64.11%

Table 1: Comparison between per A-buffer memory usage in Hu et
al. vs. our method.

(a)

(b)

Figure 4: Hybrid renderings of the (a) sphere, and (b) teapot
scenes. They were rendered in 1920×1080 but are cropped to

highlight the reflective areas.

4.3. Performance

4.3.1. Execution Time

The results from the three scenarios no reflections, full ray-tracing
and our selective ray-tracing for the sphere, teapot and Sponza
scenes can be viewed in Table 2. During the experiments the cam-
era was not moving and the A-buffers had been pre-grown to an
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Scene Scenario Constuction(ms) Deferred geometry step (ms) Ray-tracing (ms) Others(ms) Total(ms)
Sphere No refl. 1.26 0.56 0 0.22 2.04

Full RT 13.15 0.58 100.14 0.47 114.35
Figure 4(a) Selective 13.17 0.58 13.09 0.42 27.27
Teapot No refl. 1.37 0.55 0 0.22 2.16

Full RT 25.69 0.6 108.41 0.49 135.18
Figure 4(b) Selective 25.71 0.6 27.48 0.44 54.22
Sponza No refl. 7.02 1.09 0 0.6 8.7

Full RT 483.4 1.07 2129.61 3.65 2617.73
Figure 8 Selective 482.87 1.07 383.49 3.72 871.14

Table 2: Comparison of execution times for all scenes for the three scenarios no reflections, full ray-tracing and selective ray-tracing. The
construction phase contains G-buffer, voxel and A-buffer generation. In the no reflections scenario, no voxels or A-buffers where generated.
The angles for the renderings can be seen in the figures mentioned before the selective ray-tracing results.
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Figure 5: Memory usage of A-buffers per axis for the scenes used
in the experiments. Note how much memory is wasted on the less
complicated scenes compared to the total memory used.

efficient size to avoid biasing the results with some initial slower
frames.

From Table 3 shows that the selective method is between 2.49
and 4.19 times faster than the fully ray-traced method for the tested
scenes. The fully ray-traced results should be seen as an equiv-
alent to if they had been generated using the method proposed
by [HHZ∗14]. The no reflections scenario examined is between
13.37 and a 100.13 times faster than the implemented selective ray-
tracing method, as no computation is used to capture ray-tracing
effects or to build the scene representation data structures. All
the numbers presented here are measured with only a single ray
bounce, none in the deferred rendering case.

The results in Table 3 indicate that the method spends about the
same time constructing the scene representations as it spends ray-
tracing them for the selected angles. To be able to reach the real-
time frame rates for large scenes, both phases have to decrease their
computation times considerably. Also it is evident that a lot of per-
formance is gained in the ray-tracing stage (as expected). For the
selected angles the Sponza scene, which is the most complex scene
in the experiments, has the second largest performance gain in both
the ray-tracing stage and in the total summary. However more an-

gles would have to be studied before any conclusion can be drawn
regarding this.

Scene Selective/Full RT No reflections/Selective
Sphere 4.19x 13.37x
Teapot 2.49x 25.1x
Sponza 3.0x 100x

Table 3: Speed-ups between the different scenarios examined. The
execution time results can be found in Table 2.

4.3.2. Screen Coverage

The amount of pixels that are ray-traced affect the performance
gain obtained by using selective ray-tracing. If an excessive amount
of pixels are ray-traced it affects the performance negatively and
vice versa. Because of that experiments that study the execution
time as a function of screen coverage have been conducted. In this
section only execution times from the ray-tracing stage are pre-
sented, as the data structure generation etc. remain at a constant
execution time over the different scenarios, this can be seen in Ta-
ble 2.
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Figure 6: Screen coverage experiment results for the sphere and
teapot scenes. Only the execution time for the ray-tracing stage are
included.

As shown in Figure 6, the execution time for the simpler scenes
grow linearly with screen coverage percentage. The Sponza scene
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Figure 7: Screen coverage experiment results for the Sponza scene.
Only the execution time for the ray-tracing stage are included. The
jump in the between 34.375% and 37.5% is believed to be caused
by cache thrashing or that pixels with very expensive reflection
paths entered the image.

behaves slightly different, as viewed in Figure 7. A big jump hap-
pens in the execution time between the screen coverage of 34.375%
and 37.5%. This is believed to be caused by cache thrashing or that
pixels with very expensive reflection paths entered the image. If
the jump is disregarded the expected linear relationship can also be
seen for the Sponza scene.

4.4. Image Quality

To compare the image quality of the methods, the Sponza render-
ings have been chosen as it is the most complex scene used in the
experiments. As a reference point, the ground truth image has been
ray-traced offline in Autodesk Maya (Figure 8(a)). The method pro-
posed by [HHZ∗14] is believed to be able to generate images of the
same visual quality as in Figure 8(a). In the experiment the offline
rendered image was compared with the proposed selective raster-
ized ray-tracing method (Figure 8(b)). To the human eye, the im-
ages look very similar with only some minor visible differences.
A tool called PerceptualDiff [YMT] based on [YPG01] is used
to measure the perceptual difference. According to the tool only
0.55% pixels differ in a way that is perceivable by the human eye.

From the image comparison experiments it is apparent that the
selective ray-tracing method can compete with the original method
[HHZ∗14] in terms of image quality, add to this the fact that
our proposed method is about three times faster than the original
method for the studied scene and angle.

5. Conclusions and Future Work

In this paper we showed that the rasterized ray-tracing method pro-
posed by [HHZ∗14] can be improved by integrating it into a de-
ferred rendering pipeline and performing selective ray-tracing for
dynamic scenes at interactive frame rates. Real-time frame rates
could be more easily maintained for less complex scenes, while
for the studied complex scene too much time was spent building
and traversing the scene representations. The proposed selective
method showed promise in terms of performance gain when com-
pared to full ray-tracing if the screen coverage ratio was kept at a

(a) Offline ray-tracing

(b) Selective rasterized ray-tracing

Figure 8: Comparison: (a) is the ground truth rendering of the Cry-
tek Sponza rendered with Autodesk Maya’s software renderer, this
is thought to be of equal quality as the original rasterized ray-
tracing method [HHZ∗14], (b) was rendered with the proposed se-
lective rasterized ray-tracing method method.

reasonable level. It has also been shown that there is a linear rela-
tionship between the performance gained from the selective method
and screen coverage ratio. The proposed method also reduced the
memory footprint by at least 60% for each scene without affecting
the image quality. The selective method is able to compete with
offline ray-tracers with similar settings in terms of visual quality.

In the future it would be interesting to implement a smart se-
lection scheme for the ray-tracing that would allow renderings of
more complex illumination effects with similar performance gains
as the current method. Another interesting path of future research
would be selective refreshing of the data structures. As it is now, a
lot of time is spent computing voxels and A-buffer fragments that
are identical in every frame. Since the results point in the direc-
tion that the data structure construction is about as expensive as the
shading in the current method, this could possibly cut the rendering
times with almost 50% and thus getting the method even closer to
real-time frame rates for complex scenes.
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