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Figure 1: Texture-space methods like TAM (left) must fade or clip strokes at object boundaries and for density control. TAMISS (right)
restores stylistic coherence by fitting new strokes in image space.

Abstract
This paper presents a hybrid hatching solution that uses robust and fast texture space hatching to gather stroke fragments, but
fits stylized brush strokes over those fragments in image space. Thus we obtain a real-time solution that avoids the challenges
associated with hidden stroke removal in image space approaches, but allows for the artistic stylization of strokes exceeding the
limitations of texture space methods. This includes strokes running over outlines or behind occluders, uniquely random strokes,
and adherence to image space brush properties.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Line and Curve Generation—

1. Introduction

Image synthesis methods mimicking artistic expression and illus-
tration styles [Hae90, PHWF01, SS02] are usually vaguely clas-
sified as non photo-realistic rendering (NPR). Hatching is one of
the basic artistic techniques that is often emulated in stylistic ani-
mation. Hatching strokes should appear hand-drawn, with roughly
similar image-space width, dictated by pencil or brush size, but they
should also stick to surfaces to provide proper object space shape
and motion cues. Both properties must be maintained in an anima-
tion, without introducing temporal artifacts [JEGPO02, AWI∗09].
In particular, when surface distance or viewing angle is changing,
object-space density of strokes should adapt without the strokes
flickering or drifting on the surface, while presenting natural ran-
domness inherent in manual work. When zooming in or zooming
out, this means adding and removing strokes gradually. Strokes

should be uniform as drawn by the same brush or pencil, but also
unique. Overdrawn lines crossing object contours often occur.

In this paper, we introduce a hybrid hatching approach built
on texturing-based hatching, where we fit image-space strokes on
hatching lines to provide style options not available just with sur-
face shading.

2. Previous work

In pencil drawings artists convey the shape and illumination of ob-
jects with the density and orientation of thin hatch lines [WS94,
HZ00]. To mimic this, we should define a density and a direc-
tion field in the image plane that is as close as possible to what
an artist would use. Artists may apply more than one layer of par-
allel hatch lines, aligned at different angles to the direction field.
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This technique is called cross-hatching. The density should be in-
fluenced by the current illumination, while the direction field is de-
termined either by the principal curvature directions [GIHL00] or
the tone [LMLH07]. The principal curvature directions are those
where the normal curvature of the surface has its maximum and
minimum.

Several works proposed the application of seeds attached to
objects [Mei96, USSK11]. Seeds are extruded to textured trian-
gle strips representing hatching strokes in image space. Strokes
are obtained by integrating the direction vector field, starting at
seed points or particles [ZISS04, PBPS09]. The key problem in
these methods is the generation of the world-space seed distribu-
tion corresponding to the desired image-space hatching density.
This either means seed killing and fissioning [WH94]—even us-
ing mesh subdivision and simplification [CRL01]—, or rejection
sampling [USSK11]. These techniques are mostly real-time, but
require multiple passes and considerable resources. Compositing
these with three-dimensional geometry is challenging: as extruded
hatching curves do not strictly adhere to surfaces, depth testing
them against triangle mesh objects must be using heavy bias and
smooth rejection to avoid flickering.

In texturing-based approaches, hatches are generated into tex-
tures and mapped onto animated objects [LKL06] using an appro-
priate UV surface parametrization. This assures that strokes remain
fixed to 3D surfaces, and the visibility problem is also solved ro-
bustly by conventional z-buffer depth testing of the textured sur-
faces. The most characteristic limitation of texturing-based hatch-
ing approaches is limited level-of-detail support. Simple static tex-
tures perform extremely poorly, as the width of hatching strokes is
fixed in UV space, and—through the UV mapping—also in object
space.

Thus, simple texturing does not allow for hatching that is uni-
form in screen space. A level-of-detail mechanism called Tonal Art
Maps has been proposed to alleviate this problem [PHWF01]. Us-
ing this technique, several texture images are pre-drawn, represent-
ing different tones and hatching scales. Figure 2, taken from the
referred paper, shows such a set of maps. When rendering surfaces,
the appropriate texture in every pixel can be selected based on the
desired tone and on-screen hatching stroke width. In order to avoid
sharply clipped hatching strokes at boundaries of different-detail
zones, the patterns fade into each other using interpolation.

Figure 2: A Tonal Art Map with the nesting property. Strokes in one
image appear in all the images to the right and down from it. From
Praun et. al [PHWF01].

In an animation, as the required hatching density is changing,
it is important that strokes stay at their on-surface positions. It is
allowed for new hatching strokes to appear when the density in-

creases, and for existing strokes to vanish, should the density de-
crease. However, strokes should not be appearing and vanishing in
the same vicinity at the same time. Therefore, denser hatching tex-
tures should always contain the strokes of sparser textures as a sub-
set. This is called the nesting property, also observable in figure 2.
In the Tonal Art Maps method, direction of hatching on surfaces is
defined by the UV mapping. Thus, the mapping needs to respect
shape curvature characteristics. As this is challenging to achieve by
a single mapping, lapped textures can be used.

Recursive Procedural Tonal Art Maps (RPTAM) [SS14] differ
from TAM in that it does not use a static set of pre-drawn textures,
Instead, it computes nearby stroke locations in texture space pro-
cedurally when shading a surface point. The stroke locations are
generated so that they are nested in the same pattern repeated at
half scale on a 2× 2 grid. This allows for indefinite zooming onto
surfaces.

Figure 3 shows stylistic artifacts that arise with both TAM and
RPTAM as a result of their texture-space approach. In both meth-
ods, density control is performed on the pixel level. This means
that the decision weather a stroke should appear can be differ-
ent for different parts of a stroke. In we take a binary decision,
some strokes are clipped before entering an area that should be less
densely hatched. If the decision is smooth, e.g. implemented by
blending between textures with different line densities, then strokes
will fade out. Neither case is consistent with the requirement that
the image is constructed using strokes matching and artists pencil
or brush, in consistent style. Similarly, as strokes are applied to ob-
ject surfaces in texture space, they are clipped at object silhouettes
(or UV-parametrization discontinuities) in image space. This is not
possible in hand-drawn art, and makes the renders appear artificial.

a) sharp contours

b) clipped strokes

c) UV distortion

Figure 3: TAM and RPTAM suffer from stylistic inconsistencies in-
cluding: a) strokes clipped at object silhouettes, b) strokes clipped
or faded for density control, and c) strokes distorted by anisotropic
UV mapping.

Fitting curves on outlines is a straightforward idea employed
both for silhouettes [NM00] and in sketching [LFX∗05]. Model-
ing hatching strokes as curves [KMM∗02] was also used. We are
not aware of any work where en masse curve fitting for hatching
strokes was proposed.
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Figure 4: TAMISS allows overdraw and eliminates clipping.

3. Proposed method

In this paper we propose Tonal Art Maps with Image Space Strokes
(TAMISS), a hybrid technique that combines the robust visibility
testing and density control of TAM or RPTAM with the stylistic
freedom of image space stroke extrusion (figure 4). The idea is to
assign unique IDs to all TAM strokes, perform rasterization of sur-
faces with TAM, producing fragments marked with stroke IDs, and
fit a curve on each set of fragments sharing the same ID. The curves
can be extruded to image space strokes in proper style, while visi-
bility and density control has already been taken care of by TAM.

3.1. Method outline
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Figure 5: Pipeline for the proposed method.

Figure 5 depicts the algorithm workflow. We need TAM textures
storing stroke IDs instead of colors. As multiple strokes may over-
lap, TAM texels need to contain short lists of stroke IDs. The RP-
TAM approach already makes use of such textures, called stroke
coverage textures there. In the first, fragment gathering phase, sur-
faces are rasterized with TAM (see figure 6).

As a prerequisite, we need to identify all strokes with globally
unique stroke IDs. This ID can be composed of an object index, a
texture tile index, and the stroke’s ID within the tile. The straight-
forward way to ensure that the IDs are unique is to use a non-
overlapping UV mapping, i.e. an UV atlas. In case of overlapping
mapping like lapped textures, the ID has to identify the layer the
stroke appears on.

In the first phase of out proposed method, we render the scene ge-
ometry. In the fragment shader, as many stroke fragments are gener-
ated as there are strokes overlapping with the shaded surface point.
All fragments, storing the globally unique stroke ID, are pushed
into an appendable buffer. In the next, summation step, the frag-
ments are aggregated by ID into descriptors. This is achieved by

Figure 6: A model rendered with TAM, outputting strokes IDs. Note
that this image is never actually rendered in TAMISS, as we set no
render target, when attempting to draw it. Instead, stroke fragments
are gathered in a buffer.

routing fragments by ID via double hashing into render targets with
blending enabled. Finally, curves are fit on these descriptors, ex-
truded to textured triangle strips, and rendered to the frame buffer.

3.2. Regression

We rasterize the surfaces with appropriate TAM or RPTAM shaders
to gather stroke fragments. Fragments are stored with their xi, yi
screen space coordinates, and ti values. Parameter ti specifies where
the fragment appears on the stroke. In RPTAM, it is available as the
stroke space coordinate, for TAM, it must be stored in the coverage
texture.

Given n fragments of a stroke, we need to find coefficients of the
curve equation. We use cubic curves, so the parametric curve equa-

tion has the form r(t) =
(

cT
x · t,cT

y · t
)
, with t =

(
1, t, t2, t3

)T
,

where cx and cy are column vectors of coefficients.

Finding cx and cy are linear regression problems, that we can
solve using the Ordinary Least Squares method. Using the explicit
formula by Hayashi [Hay00], we obtain the linear system

b = A · c, with A =
n−1

∑
i=0

ti · tT
i , ti =

(
1, ti, t

2
i , t

3
i

)T
, (1)

with either b=∑n−1
i=0 ti ·xi and c= cx, or b=∑n−1

i=0 ti ·yi and c= cy.
Terms in sums correspond to stroke fragments. Thus, the terms to
be summed for each fragment are t0

i , . . . , t
6
i , t0

i · xi, . . . , t3
i · xi, and

t0
i · yi, . . . , t3

i · yi.

Solving the system for c by directly inverting A is feasible, but
it is not the most efficient or stable option, as A may be singular or
close to singular. As A is positive definite, the iterative conjugate
gradient method [NW06] (CGM) can be applied, which delivers
the pseudo-inverse solution even for singular matrices. In our ex-
perience, using 32-bit floating point numbers, performing the theo-
retically required four iterations is sufficient. Using solutions from
previous frames as iteration starting points is therefore not worth
the storage lookup time. Note that, in theory, any other method of
solving the linear system is applicable, including singular value
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decomposition (SVD). However, CGM translates using only four
multiplications of 4×4 matrices and a few four-element vector op-
erations, making it efficient and easy to implement on the GPU.

The stroke may be only partially visible. We find the useful pa-
rameter range of the curve as

[tmin, tmax] =

[
min

i
ti,max

i
ti

]
.

However, parts of strokes may be hidden, resulting in discontin-
uous fragment blocks. We assume that stroke visibility does not
change more than two times within [tmin, tmax]. This gives us a
third variable to perform regression on: visibility. In equation 1,
b = ∑n−1

i=0 t · vi and c = cv, where visibility vi is one at every frag-
ment, and we have no data points for regression where vi would be
zero. Such data points, however, can easily be added by assuming
they are evenly distributed in [tmin, tmax]. Given that vi is zero at
these points, b does not change, but A must include their contribu-
tion. For n new points, this can be computed analytically as

D = n
tmax∫

tmin

t · tTdt, yielding di, j = n
t i+ j−1
max − t i+ j−1

min
i+ j−1

.

Solving the system b = (A+D) · cv, we obtain visibility function
v(t) = cT

v · t, which can be thresholded to obtain visible stroke seg-
ments. A cubic fit on the visibility works as long as there are no
more than two visible segments. More complex cases are rare, and
easily pass as artistic inaccuracies. Extending the regression prob-
lem to a higher order fit is trivial, but a shader implementation
would be much less elegant.

4. Implementation

The solid geometry depth is laid down first, so that only visible sur-
faces are rendered. The TAM or RPTAM implementation needs to
be modified slightly to stream fragments into a buffer. This can be
accomplished in a fragment shader without render target output, but
writing to an appendable random access GPU buffer. This buffer of
fragments can be rendered as a vertex buffer of point primitives.
The vertex shader positions the point primitives by ID, sending
them into a target buffer with blending. However, as IDs are global
on all surfaces and detail levels, much more IDs are possible than
the size of the target buffer. Double hashing can be used to map IDs
to texels. To allow full parallelism, the hash table is read-only dur-
ing a frame, but a new one is built by writing routed fragment IDs
to an additional render target. When routing a fragment, the double
hashing lookup is performed on the read-only table until either the
fragment’s stroke ID or an empty slot is found. In any case, the ID is
written to the write-only hash table. For the next frame, the buffers
are swapped. It is possible—if rare—that multiple newly appearing
strokes try to claim the same empty slot, but that only means that
some strokes are delayed by a frame.

After rasterization, blending is used to add ti · tT
i , t ·xi, and t ·yi to

the texels. Values tmin and tmax are found with maximum blending.

Alternatively, without using the intermediate fragment buffer,
the values can be aggregated using atomic operations. We found
this adequate for lower order fitting, but as atomics only work

△ ∼ OLS CGM E&R
27k 1k 3.06 0.04 0.11
27k 4k 2.96 0.19 0.32
90k 4k 2.86 0.31 2.01
193k 4k 2.78 0.23 0.51
193k 16k 2.88 0.91 2.04

Table 1: Performance on different scenes (with the number of tri-
angles and hatching strokes specified) at 1920× 1200. Rendering
times are given in ms for regressor aggregation (OLS), cubic curve
fitting (CGM), and final stroke extrusion and rendering (E&R).

with fixed-point representation, the floating point range provided
by blending is indispensable for summing higher powers of ti.

In the final pass, dataless point primitives are rendered for ev-
ery texel of the aggregate texture. A geometry shader solves the
regression equations using CGM, and extrudes the curve to a trian-
gle strip in screen space. Any additional stylization like per-stroke
randomization can be performed here.

4.1. Results and conclusions

We measured performance on an NVIDIA GeForce GTX 780, at
1920×1200 full-screen resolution (Table 4.1) using the knight and
knot models (figure 7 and 8 ). Compared to single pass texturing
with RPTAM, TAMISS takes about five times as long, but per-
forms still well over 100 FPS in full screen. The most expensive
operations are fragment aggregation, and final stroke rasterization.
The solution of the regression equations with CGM is negligible.
For more complex scenes, the overhead remains constant. Perfor-
mance depends heavily on the number of strokes, but 32k strokes
in a frame are always more than sufficient.

As fitting is performed independently in every frame, any rasteri-
zation or numerical inaccuracies may manifest as jittering in stroke
positions. This can be alleviated by using a higher resolution for
fragment gathering, resulting in more fragments to process. This
cost could be amortized by averaging aggregate fragment data over
several frames instead.

While higher order fitting is certainly possible, even a quartic so-
lution would need approximately doubled computation and storage
requirements. We think this would be for no practical gain, as the
underlying shape is adequately represented by cubics. This does not
mean that strokes could not have additional stylization like waves
or zigzags, even on a stroke-by-stroke basis. Thus, our method does
not limit visual style compared to TAM, but allows for more stylis-
tic freedom by decoupling stroke positioning and stroke style.

The main limitation of our method is that it needs an overlap-
free UV mapping, oriented on object features. Such an UV map-
ping is never readily available, and we have yet to propose an auto-
mated solution, or show that an existing one like lapped textures as
in [PHWF01] can be adapted.
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Figure 7: Knight model rendered with RPTAM (left) and TAMISS
(right).
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