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(a) Surface Splatting (b) Low quality points removed (c) One-Layer Transparency (d) Soft Transparency (Ours)

Figure 1: Surface splatting of point data may introduce unwanted or non-realistic occlusion (a). Removal of unwanted points resolves the
occlusion, but it also removes data from the scene (b). Rendering the tree with only the first layer transparent results in shallow appearance
(c). Our method preserves a notion of thickness with a soft transition from transparent points to regular surface splatting (d).

Abstract
We propose a novel rendering framework for visualizing point data with complex structures and/or different quality of data.
The point cloud can be characterized by setting a per-point scalar field associated to the aspect that differentiates the parts
of the dataset (i.e. uncertainty given by local normal variation). Our rendering method uses the scalar field to render points
as solid splats or semi-transparent spheres with non-uniform density to produce the final image. To that end, we derive a base
model for integrating density in (intersecting) spheres for both the uniform and non-uniform setting and introduce a simple
and fast approximation which yields interactive rendering speeds for millions of points. Because our method only relies on the
basic OpenGL rasterization pipeline, rendering properties can be adjusted in real-time by user. The method has been tested on
several datasets with different characteristics, and user studies show that a clearer understanding of the scene is possible in
comparison with point splatting techniques and basic transparency rendering.

CCS Concepts
•Computing methodologies → Rendering; Point-based models; •Human-centered computing → Visualization techniques;

1. Introduction

Effective rendering and exploration of raw captured point data, e.g.
real-world scenes acquired by a time-of-flight scanner, is still a
challenging problem. This is not only due to data size, but also
due to other aspects, such as non-uniform sampling and quality of
points, or complicated structures to be analyzed. Current point ren-
dering methods tend to treat all data in a point cloud in the same

way. Differences in density and quality, as well as complex inner-
outer structures, may be represented in an unclear way.

In this paper, we introduce a framework for efficient rendering of
mixed-quality point clouds by combining traditional surface splat-
ting with a rendering of semi-transparent spheres of non-uniform
density for selected points. The selection of points associated with
higher transparency heavily depends on the application. It can be
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estimated automatically, based on a quality value derived from the
normal variation and distance to the nearest neighbors, or assigned
manually, based on semantics, for example by setting the external
walls of a completely acquired building transparent.

In our rendering method, we visualize selected points using a
combination of transparency and “softness”: this creates a see-
through effect without losing context information of what the
points represented originally. Traditional one-layer transparency,
i.e., rendering just the foremost surface transparent, has the down-
side of losing the notion of internal structures and their thickness.
Our method keeps all transparent layers and blends them without
introducing hard transitions in the opacity or color, thus creating
transparency that feels “soft”. Furthermore, by using a rasteriza-
tion approach throughout our pipeline, rendering parameters such
as point size, transparency or point segmentation can be easily ad-
justed by the user without needing to recompute any intermediate
representations, as would be the case when using a real-time vol-
ume rendering approach which requires computation of accelera-
tion structures in a pre-process.

We motivate our final rendering method by first introducing a
“Base-Model” (Section 3.1) for computing color and opacity in-
side intersecting spheres of non-uniform density. While being phys-
ically motivated with regards to light absorption inside volumes
with non-uniform density, this exact method is computationally ex-
pensive as it relies on the traditional Order-Independent Render-
ing pipeline using a dynamic A-Buffer and fragment list sorting
as proposed by [MCTB12]. Then, we introduce a first approxima-
tion with the “Concentric-Model” that substitutes a sphere of non-
uniform density with multiple concentric spheres of uniform den-
sity. We use a normalization factor to obtain a smooth opacity tran-
sition within concentric spheres. Finally, we develop the simplified
“Express-Model” as an evolution of the “Concentric-Model” with
only one sphere as described in Section 3.3. It relies on pre-sorting
the point cloud and uses only one geometry pass to render transpar-
ent points which makes it suitable for rendering millions of points
interactively.

The method has been tested on a number of point cloud datasets,
including laser-scanned environments and multi-view stereo recon-
structions, presenting different issues related to the visualization,
like presence of vegetation, high variations in data density or hard-
to-inspect internal structures. Visual results and a user study (see
Section 5.3) show that our contribution provides a more compre-
hensible rendering.

To summarize, the proposed method is:

• Simple: the non-uniform transparency associated to each sphere
only depends on the distance from its center, without the need of
complex computation.
• Fast and tunable: The simplicity of the Express-Model allows

to obtain better performance w.r.t. a more accurate underlying
density model, without noticeable loss in visual quality. Addi-
tionally, the amount of transparency can be changed in real time
in order to adapt the visualization to the users’ needs.
• Flexible: the model visualizes transparency regardless of the type

of information it encodes. Hence, it may be used in a number of
different applications, from uncertainty visualization to selective
rendering.

2. Related Work

Our algorithm is based on the integration of two different visual-
ization techniques: point splatting and transparency.

Point splatting has been thoroughly discussed in [PZVBG00,
ZPVBG01, ZRB∗04]. Our implementation is based on the three
pass splatting as described in [BSK04] and [BHZK05]. The first
pass, also called Visibility Pass, renders all points by shifting them
by an ε away from the camera to determine which splats will be vis-
ible. The Attribute Pass then re-renders the geometry with additive
blending, effectively accumulating color and alpha. Lastly, the Nor-
malization Pass normalizes each pixel’s color by the accumulated
alpha value.

Transparency is a powerful technique used both for visualizing
complex scenes and for rendering complex physical effects. To ob-
tain a correct rendering using transparency, a fundamental issue is
blending the colors from different layer of geometry in the correct
order. To this end, several solutions of Order-Independent Trans-
parency (OIT) were proposed to solve in a correct or in an approx-
imate way the blending of different layers with transparency for
real-time or interactive applications. The A-Buffer, introduced by
Carpenter [Car84], is a fundamental data structe useful for OIT and
has been adapted in different ways ( [YHGT10], [VF12]). How-
ever, Maule et al. [MCTB12] were the first to propose a method for
exact OIT based on constructing a dynamic A-Buffer. It stores for
each pixel of the viewport ordered lists of fragments rasterized to
that pixel. It is based on three passes: the count of the length of the
list for each pixel; the storing of the all the rasterized fragments;
the depth sorting of the elements in the list and the blending. We
extend this approach for the implementation of two of the mod-
els presented in Section 3. In particular, in the first two steps, we
store the intersection data of the view ray with the sphere used to
approximate the transparent point of the cloud. Then, during the
blending, we compute the transparency accumulated along the ray
using a physical model of density. The main bottleneck of this ap-
proach is the sorting of the per-pixel list, especially when the depth-
complexity is large. By modeling explicitly the transmittance along
a ray in a volume, Jansen et al. [JB10] removes the sorting of the
fragments. In particular, to compute shadowing terms in volume
rendering, they traverse the fragment list and estimate the coeffi-
cients of a Fourier series that approximates the transmittance along
the ray. During blending, they evaluate the approximate function
at the depth of the fragment to get its opacity value. Enderton et
al. [ESSL11] estimate the transmittance with a stochastic approach
without sorting step, using the multi-sample anti-aliasing features
on modern GPUs. Salvi et at. [SML11] go one step further se-
lecting a fixed number of fragments most important to the estima-
tion of transmittance. This approach is extended in [MCTB13] by
taking the first K fragments and combining the other ones with a
simple weighted average. An integration of the point splatting and
transparency is presented in [GBP06], where transparency is ap-
proximated using a depth peeling approach. Dobrev et al. [DRL10]
also use depth peeling, but in an image-space method for render-
ing points with transparency and shadows. To separate depth lay-
ers, they use a per dataset minimum depth parameter, which seems
problematic when the point sampling is non-uniform and noisy. For
scenes with a high depth complexity a depth peeling approach is
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impractical due to the long rendering time to compute all peel-
ing steps. Zhang et al. [ZP06] propose a simple single step algo-
rithm for point splatting and transparent shading. It is based on
a precomputed decomposition of the input points into subsets of
non-overlapping splats that are rendered independently to different
textures and finally blended. While this approach works well for
scenes with moderate depth-complexity as presented in their work,
it becomes impractical when many transparency layers need to be
rendered because one cannot bind enough textures on current hard-
ware. A similar approach is used in [TUH∗14], where the point
cloud is split in several statistically independent subsets, each ren-
dered using a stochastic approach and then blended together.

Transparency is used in [DWE02] to present a view-dependent
model for automatically creating technical illustrations with semi-
transparent parts. To do this, a set of rules is extracted from man-
ually created illustrations. Regarding the opacity, one rule states
that a points opacity falls off proportionally with the distance to
the closest silhouette edge. We use a similar fall-off for rendering
spheres with non-uniform opacity guided by the fragments distance
to the sphere center. In the context of the integral surface and flow
visualization, Hummel et al. [HGH∗10] propose angle-based and
normal-variation-based methods that differ in the way surface cur-
vature is conveyed through transparency. Both decrease the trans-
parency towards the silhouette of the surface, improving the vi-
sualization insight of integral surfaces. Carnecky et al. [CFM∗13]
present a novel data structure that combines A and G-buffers. This
structure allows applying a set of local and nonlocal operators for
transparency enhancement improving understanding of complex
transparent surfaces.

Similarly, in Direct Volume Rendering (DVR) semi-transparency
is used to convey data complexity. Several methods are proposed
to improve the perception of internal structures. Volume Illustra-
tion [ER00] is a group of techniques that extend standard DVR by
enabling the integration of non-photorealistic rendering techniques
that modulate opacity and color of each sample based on local fea-
tures in order to enhance certain structures. Svakhine et al. [SEA09]
uses unsharp masking of the depth buffer to achieve an effect vi-
sually comparable to ambient occlusion, as it emphasizes cavities
through the darkening effect. Bruckner et al. [BG07] integrate halo
effects into GPU-based volume rendering to enhance and highlight
structures of interest inside the volume, by mapping the halo inten-
sity in color and opacity. Schott et al. [SGM∗11] present a tech-
nique which integrates a depth of field effect directly into volume
rendering, allowing to enhance the area in focus while maintain-
ing a global impression of the whole data set. Volumetric render-
ing is also used in [SGG15] for visualizing complex particle-based
systems using transparency and ambient occlusion. They propose
several models to render spheres with uniform and non-uniform
density. However, they do not consider the case of multiple inter-
secting spheres. Even though a Volumetric-Rendering approach can
be used to achieve a similar “Soft-Transparency” effect, we imple-
ment our method in a way that adapts well to the irregular nature
of point clouds. Volumetric-Rendering approaches do not handle
well dynamic changes of the rendering properties, such as tuning
on the fly the splat radius, the density and any threshold without
re-building intermediary volume structures. Our approach is more
flexible in this regard and our Express-Model can even be imple-

mented on the web using WebGL since it only relies on standard
alpha-blending.

3. Algorithm

Our rendering method takes as input a point cloud with the typical
attributes including normal, color and radius as computed by Equa-
tion 20. Additionally we precompute a visualization scalar field
F(p) in the range [0,1] defined for each point p (Equation 21).
This scalar field can encode different information which depends
on the type of input data. For example the encoded value may
be the reliability, confidence and certainty of a 3D scanned point
cloud, the semantic category of the objects in the scene, or a sim-
ple distance field. The value of this visualization scalar field is used
to segment the cloud into two rendering categories according to a
user-selected threshold t: the solid and the soft points. These two
clusters of points are rendered in a different way: the solid points
have a scalar value below the threshold F(p)≤ t and are rendered
using the standard three-pass surface splatting. The soft points have
a scalar value above the threshold F(p) > t and are rendered as
spheres with a non-uniform density that determines the final opac-
ity of each fragment of the sphere. The density is highest in the
center of the sphere and decreases towards the outside, creating the
effect of a “fluffy” ball. To compute the color contribution of each
sphere for a given pixel, the viewing ray through that pixel has to be
traversed and the density inside each intersected sphere and the rel-
ative transparency has to be computed as described in the following
sections. Knowing the color and transparency contribution of each
sphere along the ray, ordered with respect to the camera viewpoint,
the pixels’ color can be computed using traditional forward or back-
ward alpha blending. The resulting color of the soft points is then
blended with the rendering of the solid points to compose the final
image. We use Lambertian shading for all points.

In the next sections we present three different models for the
computation of the transparency of each sphere. The first one (Sec-
tion 3.1) is based on the exact integration of the density inside each
sphere while the other two models (Section 3.2 and Section 3.3)
propose two approximations which allow us to achieve a visually
similar result in a much faster and simpler way. In the rest of the
paper we use the following notation:

• C, the RGB-color of the sphere;
• r, the radius of the sphere;
• zin and zout , the depth of the enter and exit intersection points of

the view ray with the sphere;
• zm = (zin + zout)/2, the middle value along the ray inside the

sphere
• d, the distance from the center of sphere to the point zm which is

also the distance from the sphere center to the viewing ray

3.1. Base-Model

For computing the final color of a pixel, all spheres along the view-
ing ray V have to be traversed and the opacity of each section, as
illustrated in Figure 2, has to be computed to perform the correct
alpha-blending of the color. As proposed in [Max95] for the di-
rect volume rendering, we compute the transparency τ(z0,z1) when
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(a)

(b)

Figure 2: Examples of density integration along a viewing ray
which passes through several intersecting spheres. For each seg-
ment along the ray, the density has to be computed to accumulate
the opacity and the color using a method presented in Section 3.

travelling along a ray r(z) inside a sphere from z0 to z1 as:

τ(z0,z1) = e−λ
∫ z1

z0
ρ(z)dz (1)

where ρ(z) is the linear absorption along the viewing ray and λ is a
linear factor which can be used for transparency adjustments. ρ(z)
can be any density function that is integrable once. Let P(z) denote
the integral of ρ(z). The opacity function is then given by:

Φ(z0,z1) = 1− e−λ(P(z1)−P(z0)) (2)

For a constant density ρ(z) = 1, the opacity function is simply com-
puted as follow:

Φ(z0,z1) = 1− e−λ(z1−z0). (3)

The idea of the Base-Model is to compute a non-uniform density
by integration along the view ray of the reverse distance from the
center of the sphere. Considering a single sphere like in Figure 3a,
the integral of the density function in the segment [zin,zout ] can be
split in the sum of two integrals to accumulate the density from
the point zm to the intersection points zin and zout by changing the
integral limits:∫ zout

zin
ρ(z)dz =

∫ zm−zin

0
ρr,d(z)dz+

∫ zout−zm

0
ρr,d(z)dz (4)

where the density function for a point z ∈ [zin,zout ] is:

ρr,d(z) = r−
√

z2 +d2 (5)

This formulation of the integral simplifies its computation reducing
also the amount of memory needed to store all information. It re-
quires only the depth values along the view ray computed in camera
space and not the complete 3D position of the intersection points
of the ray with the sphere, as proposed in [SGG15]. The solution of
the integral used in Equation 4 is:∫ b

0
r−
√

z2 +d2dz (6)

=

[
rz− z

√
z2 +d2

2
− d2 log(

√
z2 +d2 + z)
2

]b

0

(7)

In the case of multiple spheres along the viewing ray, of which
some might intersect each other (Figure 2), we compute the den-
sity for each segment of the ray delimited by two consecutive or-
dered hit points with the spheres surface, here zin

i and zout
i with

i ∈ {0..2}. Depending on the position of the point zm with respect
to the current segment used for the density integration, the inte-
gral in Equation 4 can have a different form. In particular if zm is
outside the current segment [z0,z1], in the formula we have a sin-
gle integral. For example in Figure 2b, in the integration along the
segment [zin

3 ,z
in
4 ], since zm

3 > zin
4 the accumulated density is:∫ zm

3−zin
3

zm
3−zin

4

ρr3,d3(z)dz (8)

while in segment [zout
3 ,zout

4 ], since zm
4 < zout

3 the accumulated den-
sity is ∫ zout

4 −zm
4

zout
3 −zm

4

ρr4,d4(z)dz (9)

In the case of a intersection of multiple spheres, for example the
segments [zin

1 ,z
out
0 ] and [zin

2 ,z
out
1 ] in Figure 2a, we add the density of

each intersecting sphere. For segment [zin
1 ,z

out
0 ] this would therefore

yield the following integral:∫ zout
0

zin
1

ρ(z)dz =
∫ zout

0 −zm
0

zin
1 −zm

0

ρr0,d0(z)dz+
∫ zm

1−zin
1

zm
1−zout

0

ρr1,d1(z)dz. (10)

The color C is computed as the average color of the M intersecting
spheres weighted by the reverse distance from the center of the
corresponding sphere to guarantee a smooth color transition in the
intersection region:

C =
∑

M
i=1(1−di/ri)Ci

∑
M
i=1(1−di/ri)

(11)

Following the example in Figure 2a, the color of segment [zin
1 ,z

out
0 ]

is equal to:

C01 =
C0(1−d0/r0)+C1(1−d1/r1)

(1−d0/r0)+(1−d1/r1)
(12)

3.2. Concentric-Model

Instead of computing the exact integral as described in Section 3.1,
the density can be approximated by modeling each sphere as mul-
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(a) Base-Model (b) Concentric-Model

Figure 3: Scheme of the information used by the Base-Model and
the Concentric-Model to compute the density accumulate along the
ray V .

tiple concentric spheres of constant density. This simplifies the in-
tegration, as for the uniform case, the density only depends on the
distance traveled and can be computed using Equation 3. Suppose a
single sphere of radius r is now represented by N concentric spheres
Si with radii ri = r− i r

N , as shown in Figure 3b. Here, the number
N is adaptive to the screen space size of the sphere radius, in order
to increase the number when the sphere is closer to the camera and
needs more details. This means that during interactive navigation
the number of concentric elements inside a sphere could quickly
change. To avoid temporal inconsistency and artifacts in the ren-
dering, we must force the same accumulate density for every single
sphere independently from the number of concentric elements. For
this purpose we define a normalization factor µi for i-th concentric
sphere as follows:

µi =
r0

Nri
(13)

and slightly adapt Equation 3 for computing the opacity:

Φ(z0,z1)conc = 1− e−λµ(z1−z0) (14)

For N → ∞, we theoretically have a close approximation of a
sphere with non-uniform density. In practice, choosing N such that
the radii of the concentric spheres in screen space differ by one
pixel is sufficient to create images without visible ringing artifacts.
Depending on the sphere size on screen, this may lead to a large N
and thus many concentric spheres which results in a performance
problem (more in Section 4). It would be favorable to use just
a “few” concentric spheres while still making use of the simpler
density computation. However, drastically lowering the maximum
number N results in sharp color edges near the border of each con-
centric sphere because the jump in density is too large (Figure 4b).
This effect can be reduced by weighting the density by the distance
from the center. The normalization factor µi is therefore altered in
the following way:

µ′i = µi

(
1− d

ri

)
(15)

producing a similar effect to the rendering with an higher N (Fig-
ure 4c). In this model, in the case of an intersection of multiple
spheres, the method sums the density of the spheres and computes
the color in the intersection using Equation 11.

(a) N=25 (b) N=3 (c) N=3 normalization

Figure 4: Example of rendering using the Concentric-Model with
different number N of spheres (25 and 3) and without (a and b) and
with the normalization (c) proposed in Equation 15

For example in Figure 3b the opacity of each segment along the
ray V is:

Φ(zin
0 ,z

in
1 ) = 1− e−λ

1
2 (1−

d
r0
)(zin

1 −zin
0 ) (16)

Φ(zin
1 ,z

out
1 ) = 1− e−λ

r0
2r1

(1− d
r1
)(zout

1 −zin
1 ) (17)

Φ(zout
1 ,zout

0 ) = 1− e−λ
1
2 (1−

d
r0
)(zout

0 −zout
1 ) (18)

3.3. Express-Model

Using our Concentric-Model with the normalization of Equation 15
enables us to render visually similar images compared to our Base-
Model. Reducing N to one and setting the opacity of each fragment
directly using the distance d from the sphere center, yields our final
approximation. Instead of computing the intersections of the view
ray with the sphere we fall back to just rendering view-oriented
splats that are considered as a disk. In this case, we do not have to
manage the density and the color in the intersection between more
splats. We experimented with different direct mapping functions of
the value d to the opacity of the fragment and we found the follow-
ing cosine function as the best in regards to the visual similarity to
our Base-Model:

Φcos(d) = λ
(cos(dπ/r)+1)

2
(19)

4. Implementation

Given the input point cloud, the proposed algorithm renders it
with two different techniques: standard three-pass surface splat-
ting [BSK04] for solid points and a rendering of spheres using the
non-uniform density models presented in Section 3 for soft points.
For the Base- and Concentric-Model we use several render passes
per frame like the method proposed in [MCTB12] for memory-
efficient order-independent transparency, where for each pixel a list
of fragments has to be constructed, sorted and blended. During this
process, we discard any soft points that are behind fragments of
solid points using standard depth buffer testing.
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We compute the radius of each point based on the distance to its
K nearest neighbors:

ri = 2

√
maxpj∈Ni |pi−pj|

|Ni|
(20)

where pi is the i-th point and Ni is the set of its K nearest neigh-
bors. The uncertainty scalar field used to separate the point cloud
into solid and soft points, e.g., as applied to the RANDERSACKER

dataset, is computed based on the geometric uncertainty of each
point:

F(pi) = ri
∑pj∈Ni

(2−ninj)
2

|Ni|
. (21)

where ni and nj is the normal of the point and current neighbor,
respectively. The term 2−ninj maps the scalar product of the nor-
mals into the range [1,3] where a value of 1 means the normals
point into the same direction. In this case, the points’ uncertainty
only depends on the sampling density in the neighborhood.

In the first pass, “Fragment Counting”, we compute the depth-
complexity, that is the number of fragments related to a soft point
that are projected over each pixel. This is done by rendering the
points with their corresponding radius and increasing a per-pixel
atomic counter by the number of intersection samples that will be
generated in the next step. For the Base-Model, each point gener-
ates two samples (each viewing ray intersects a sphere twice) while
for the Concentric-Model this number is 2N, with N equal to the
number of concentric spheres that the point can contain in function
of its screen-space radius and the minimum distance among two
concentric spheres, as explained in Section 3.2. Knowing the to-
tal number of fragments, we create a fragment-buffer, a 4-channel
floating-point texture to store the sample lists for all pixels. Since
the depth-complexity is view-port dependent, we resize it accord-
ingly for every frame. By computing the prefix sum of the depth-
complexity texture, we further get for each pixel an offset into the
fragments-buffer that indicates the starting position where to store
the array of samples in the next pass. The prefix sum is computed
as described in [HSO07] using OpenGL’s compute shaders.

The next step, “Fragment Storing”, renders soft points and stores
the generated samples into the fragments-buffer. We use an addi-
tional viewport-sized texture with the index of the next free location
in the fragment array of the pixel where we store a new incoming
fragment. These indexes are updated atomically at every writing in
the per-pixel array. The fragment data is computed by intersecting
the pixels’ view ray with the sphere represented by the 3D position
and the radius of a soft point. The data of each sample is stored
in the fragment-buffer using a vector of four 32-bit floating-point
numbers. For the Base-Model we store the color (24-bit RGB) of
the sample and the distance from the sphere center d (quantized in
8-bit) packed into one float (named RGBd ), the depth of the inter-
section, zin or zout , the radius r of the sphere and the midpoint zm.
For the Concentric-Model the data consists of RGBd, zin or zout and
the normalization factor µ′. We distinguish the enter point from the
exit point of the ray by storing the depth as a negative value −zout .

The last pass sorts the sample list for each pixel according

to their depth and then blends the samples. If the list is smaller
than 256 elements, we use merge-sort with two local arrays in
the shader. For longer lists, we fall back to an in-place merge-sort
which directly operates on the fragments-buffer. The final blending
is obtained by the classical forward alpha-blending equation to the
sorted list.

In particular, we need to compute for each segment in which the
view ray is split by the spheres its opacity and color contribution
(for example the segments [zin

0 ,z
in
1 ], [z

in
1 ,z

out
0 ], [zout

0 ,zin
2 ], [z

in
2 ,z

out
1 ],

[zout
1 ,zout

2 ] in Figure 2). For computing the opacity of a segment
according to the Base-Model where multiple spheres intersect, we
need to add the density of all spheres that contain the segment. For
this reason, we allocate a local array inside the shader to store all
open spheres from which the view ray has not yet exited. When
entering a sphere, we add it to the array and when leaving it, it is
removed. These operations make the Base-Model costly and de-
grade performance. Furthermore, we need to know the maximum
number of intersecting spheres prior to compiling the shader in or-
der to allocate a large enough array. For the Base-Model, sorting
and blending have a time complexity of O(n logn+nk) with n be-
ing the number of samples in the list and k the average number of
intersecting spheres.

The Concentric-Model, on the other hand, assumes a constant
density and therefore no local array is needed during blending. Af-
ter the sorting step, the sample list is simply traversed while keep-
ing a running average of the current color and a density-sum. Be-
cause each fragment carries information about being an enter or
exit point, the average color and density-sum can be updated ac-
cordingly while going through the list. However, the Concentric-
Model requires more space to store the information of the con-
centric spheres. The time complexity of sorting and blending is
O(nm log(nm) + nm) where m is the number of average concen-
tric spheres in the scene.

For both Base- and Concentric-Model, the fragment sorting re-
mains the main bottleneck in the end, especially for scenes with
large (i.e. >256) depth complexity.

On the contrary, the Express-Model resolves the performance is-
sues of the other two models by performing the ordering of points
only once as a pre-process. Soft points are rendered in a single ge-
ometry pass with OpenGL’s alpha-blending and depth test enabled
(writing is disabled) using the depth map from the previous surface
splatting of the solid points. Since we are rendering view-oriented
splats (disks) we can pre-sort the points with regards to the six di-
rections of the Cartesian axes and chose the correct sorting for each
frame using the axis direction closest to the view direction. This re-
moves the need for the fragment counting, storing and sorting, ef-
fectively reducing the time complexity to O(n) while considerably
simplifying the implementation as well.

In the implementation of all three models, the user can change
parameters and see in real-time the effects on the rendering. The
most important ones are:

• the parameter λ, defined in Equation 1, that can be used to adjust
the maximum level of transparency;
• the threshold t to segment the point cloud between solid and

transparent regions;
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Figure 5: By modulating the transparency with Equation 22,
spheres are rendered with higher density when close to the thresh-
old removing the sharp transition between solid and transparent
elements. In both the case the modulation threshold lm = 0.2. (Left)
Without transparency modulation. (Right) With transparency mod-
ulation. (Top) CASTLE. (Bottom) TOWER.

• the parameter lm to set in which range of the scalar fieldF the al-
gorithm modulates the transparency in order to avoid sharp color
edges between a solid region and a close transparent area. This
modulation is described in more details in Section 4.1.

4.1. Transparency Modulation

Even if the input scalar field F of the cloud can have a continuous
range in the interval [0,1], the algorithm uses it only for the binary
segmentation of the cloud between the solid and the transparent
points. Since the amount of transparency of a sphere depends on
only its own data, it is possible that in the final rendering we can
see a very sharp boundary between the solid and the transparent
regions (Figure 5). To solve this problem, the continuous values
of F can be used to modulate the transparency of each segment
along the view ray. In particular, given a second threshold lm > t,
the new transparency Φ f (x) is estimated as a linear interpolation
between the actual transparency Φ computed by the model and the
value λ(1− d), using the scalar field value of the point F for the
computation of the interpolation weight:{

λ(1−d)(1−W (F(x)))+Φ(x)W (F(x)) if t < F(x)< lm
Φ(x) if F(x)> lm

(22)
where W (F(x)) = F(x)−t

lm−t .

Figure 5 shows the results with and without modulation.

5. Results

In order to test the performance of the proposed method, we se-
lected a number of point cloud datasets that provide an overview of
features where soft transparency helps in visualization and scene
understanding (Section 5.1). Section 5.2 discusses the comparison
and performance analysis of the three different models presented
in Section 3. Finally, Section 5.3 shows the result obtained with a
subjective user-study that evaluates the perceived effectiveness of
the method in the understanding of the elements in the scene and
their arrangement.

5.1. Datasets

The datasets (shown in Figure 11 and 12) can be divided in two
broad groups. The first one includes portions of the point cloud
where part of the data is not representing a clear surface, and points
in the same volume are characterized by strong variance in normal
value or abrupt change of resolution.
The first group is represented seven examples, acquired with terres-
trial laser scanner or with photos:

• POMPEII-CAECILIO: this dataset represents a portion of an In-
sula in Pompeii. The point cloud is characterized by the presence
of vegetation inside the courtyard of the house.

• SONGO MNARA: the point cloud, depicting a small portion of
a heritage site in Tanzania, presents a big tree covering some
building remains.

• RANDERSACKER: this 3D scanning dataset depicts a church sur-
rounded by vegetation

• LAND BUILDING: in this acquisition of a city portion, not only
vegetation is present, but also several structures with small fea-
tures only partially acquired.

• KING MOUNTAIN CAIRN: this scene shows a small monument
immersed in a wood, with dense vegetation and grass.

• VINEYARDS: the point cloud represents a portion of a vineyards
reconstructed with Multi-View Stereo methods.

• CASTLE: a portion of a castle in Spain acquired by a mixture of
3D Scanning and MVS techniques. The dataset presents vegeta-
tion covering part of the external walls of the castle.

For RANDERSACKER and SONGO MNARA we used a per-vertex
grayscale color encoding the volumetric obscurance of the vertex
estimated with [SPCS16]. The other datasets carry a per-vertex
RGB color obtained directly from the acquisition device. Trans-
parency is related to the geometric uncertainty of data in a K-
neighborhood as described by Equation 21. For POMPEII - CAE-
CILIO, SONGO MNARA, KING MOUNTAIN CAIRN, CASTLE and
VINEYARDS we used K = 24 while for the LAND BUILDING and
RANDERSACKER we used K = 64.
The second group of datasets presents more complex structures,
where both internal and external elements of a building have been
acquired. In these cases, exploration of the datasets is difficult due
to occlusions and tight spaces, and it is not trivial to get a good view
of the overall structure of the building:

• MATTERPORT: this dataset represents an entire building (ex-
ternal+internal) acquired with RGBd cameras [CDF∗17]. This
complex environment is difficult to visualize since the exter-
nal structure hides the complex internal arrangement. The trans-
parency is associated to the structural elements of the house, like
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walls, windows, doors, roof, ceiling and pillars. We excluded
floors to have a better understating of the different levels of the
building. For computing the scalar field F(x), we used the se-
mantic segmentation available in the original dataset.
• TOWER: the tower is a sub part from the CASTLE dataset. It was

acquired from a mixture of 3D scanning and MVS techniques.
The peculiar cylindrical shape gave the possibility to link trans-
parency to the distance to the axis, so that internal structure can
be easily revealed without fully removing the rest of the struc-
ture.

5.2. Comparison and Performance Analysis

All tests were performed on a Windows 10 PC equipped with an i7-
3930K CPU and a Nvidia GTX 1080. Figure 6 shows a rendering of
three scenes: two synthetic scenes, one with a single sphere and one
with two intersecting spheres, as well as the VINEYARDS dataset.
The scenes are rendered with a classical point splatting method and
with our Soft Transparency algorithm using the models presented in
Section 3. For the Concentric-Model we use an adaptive number of
spheres by adding a new one every 4 pixels of the screen space ra-
dius of the original sphere. The images with the three transparency
models are very similar making difficult to distinguish them. This
is also confirmed by the difference maps from the Base-Model to
the Concentric- and Express-Model showed in Figure 7.

On the contrary, the performance analysis of the three mod-
els shows significant differences. Figure 8 shows the trend of the
frames-per-second and total number of generated fragments plot-
ted for a free navigation of 50 seconds inside the VINEYARDS

dataset. The Base- and Concentric-Model have a higher memory
occupancy. The reason is the additional space needed to store the
per-pixel lists with the ray-sphere intersection points. They require
a variable sized fragment buffer to store the lists and two additional
textures for storing per pixel global and relative offsets. The size
of the fragment buffer changes during the navigation in function of
the depth complexity due to the number of transparent points in the
current view. The Express-Model needs only the additional space
to store the six index arrays where the points are sorted along the
six directions of the three Cartesian axes, that is lower and constant
(six times the number of points in the clouds). The differences are
large also for the frames-per-second where the Express model is
at least 10x faster with respect to the other two models. The main
bottlenecks for the Base- and Concentric-Model are collecting and
sorting the per-pixel fragment lists. With respect to the classical
point splatting, the performance penalty of the Express-Models is
very small, making the technique suitable for rendering large point
clouds interactively, as reported in Table 1.

5.3. User Study

The proposed method aims at enhancing the understanding of a
scene, hence we setup a user study to compare our solution to cur-
rent possibilities.
The user study was organized as follows: each user was asked to
watch five groups of video sequences “to evaluate how well they
allow you to understand the elements of the scene and their ar-
rangement.” Showing three different rendering techniques, each

Dataset Points SP OLT ST
RANDERSACKER 27.2 M 5.3 2.9 3.6
LAND BUILDING 16.0 M 9.1 5.4 6.6
CAECILIO 10.8 M 14.8 8.0 9.6
MATTERPORT 7.5 M 19.1 12.3 15.5
CASTLE 7.4 M 20.1 11.4 14.5
SONGO MNARA 6.4 M 20.1 12.5 15.7
TOWER 5.5 M 23.8 14.7 18.2
CAIRN 3.9 M 46.4 26.7 31.9
VINEYARDS 1.2 M 196.8 150.1 154.4

Table 1: Overview of datasets and their rendering-time in frames
per second for the Splatting (SP), One-Layer-Transparency (OLT),
and our proposed Soft-Transparency (ST) (using the Express-
Model). The run-time corresponds to the viewpoints shown in Fig-
ure 11 and Figure 12.

video group presented a navigation inside one of the following five
datasets: RANDERSACKER, MATTERPORT, CAECILIO, TOWER

and SONGO MNARA. For each dataset, we show the video se-
quences simultaneously on the screen. The point clouds are ren-
dered with the classical point splatting (Point Splatting); render-
ing the first layer of uncertain points transparently and the remain-
ing ones opaque (One-Layer Transparency) and our proposed algo-
rithm (Soft Transparency) using the Express-Model. The user re-
ceived no previous information about the rendering methods, and
he had the possibility to freely stop the video, watch it again or seek
to a specific position.
At the end of each video sequence, the user was asked to answer
this question: “Please rate each video according to how well it al-
lows you to understand the elements of the scene and their arrange-
ment.”, by assigning a rating (from 1=worst to 5=best) to each of
the versions of the video.
A total number of 66 users, including people with and without ex-
pertise in computer graphics, took part in the test. The results for
each of the scenes are shown in Figure 10 with the average score
and the 95% confidence interval. Soft Transparency proved to be
the best method in all the cases. Regarding the other two meth-
ods, there’s no clear winner between the two solutions: One-Layer
Transparency seems more useful when internal structures have to
be visualized, while in the case of vegetation or thin structures, ev-
erything seems to depend on the disposition of the elements in the
scene.
The aggregate chart in Figure 9 shows that the average rating for
our method was above 4, with a clear improvement with respect
to the other methods. Using the Kolmogorov-Smirnov test, we
also reject the null hypotheses that the score values for the three
tested methods are from the same distribution (p-value = 0.0362
between Point Splatting and One-Layer Transparency, p-value =
2.14×10−21 between Point Splatting and Soft Transparency and
p-value= 1.50×10−19 between One-Layer Transparency and Soft
Transparency).

6. Conclusion

We presented a method for visualizing complex point clouds where
a different quality value is assigned to each sample. The points with
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(i) Splatting (j) Base (k) Concentric (l) Express

Figure 6: Comparison of our non-uniform density sphere models.
The top row shows a rendering of a single sphere, the middle row
shows a rendering of two colored intersecting spheres, while the
bottom row shows a crop of the Vineyards dataset rendered with
the corresponding sphere model.

(a) Difference Base-Concentric (b) Color-mapped version of (a)

0
45

(d) Difference Base-Express (e) Color-mapped version of (d)

0
48

Figure 7: Euclidean image differences of the renderings of Fig-
ure 6. The top row shows in (a) the difference between the Base-
Model and Concentric-Model. (b) shows a color-mapped version
to better highlight the differences. The bottom row shows the same
difference images for the Express-Model.
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Figure 9: User study results. For each tested algorithm the chart
shows the average score with the relative 95% confidence interval.

quality data above a certain threshold are visualized using semi-
transparent spheres with non-uniform density.
The method offers better visualization of complex scenes, particu-
larly when data of different quality (i.e. complete objects and veg-
etation) are mixed.
The main advantage of the proposed method is its simplicity and
flexibility, that allows for high performance even with very com-
plex datasets. We showed that from the visual point of view, our
method is indistinguishable from more complex rendering models,
where physical accuracy leads to poorer performances. Addition-
ally, the degree of transparency of the elements in the scene can be
changed in real-time, so that users can adapt the visualization to the
goal of the point cloud inspection.
A user study, based on videos where quality encoded different char-
acteristics of a point cloud (i.e. data uncertainty, or external and in-
ternal structures) shows that our method outperforms the currently
available ones in the understanding the global structure and the el-
ements of a scene.
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Figure 10: User study results aggregate for each scene. For each tested algorithm the chart shows the average score with the relative 95%
confidence interval.

Regarding future work a few research directions could be explored
to exploit this approach in an even more fruitful way:

• Extension to multi-resolution frameworks: once we have a tech-
nique to associate the quality values of intermediate resolution
in a consistent way, the method can be extended so that datasets
of any size may be streamed and rendered.
• Further simplification of tunable parameters: some of them (i.e.

transparency modulation) may be made adaptive so that the ren-
dering method could fit to different scenes and points of view.
• Handling uncertainty in data, by working on specific estimation

associated with the way data were acquired (i.e. 3D scanning or
MVS) in order to leverage the characteristics of different types
of devices or techniques.
• Different types of encoding of quality information. For example,

transparency may be useful to visualize temporal data, where
part of the scene geometry changed over time.
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