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Abstract
We apply zero-variance theory to the Volterra integral formulation of volumetric transmittance. We solve for the guided sampling
decisions in this framework that produce zero-variance ratio tracking and next-flight ratio tracking estimators. In both cases, a
zero-variance estimate arises by colliding only with the null particles along the interval. For ratio tracking, this is equivalent
to residual ratio tracking with a perfect control. The next-flight zero-variance estimator is of the collision type and can only
produce zero-variance estimates if the random walk never terminates. In drawing these new connections, we enrich the theory
of Monte Carlo transmittance estimation and provide a new rigorous path-stretching interpretation of residual ratio tracking.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Evaluating visibility between points in a scene is a fundamental
task performed by light transport simulators. If the scene contains
opaque surfaces only, visibility is a binary function. If a partici-
pating medium is present, however, visibility becomes a fractional
quantity that corresponds to the probability of traversing between
the points without interacting with the medium. If the medium is
random and the size of its particles negligible, the radiative transfer
theory [Cha60] can be used to statistically model interactions with
absorbing and scattering particles. The number of particles along
a given ray is then a random variable, and the probability of fly-
ing along the ray from a to b without hitting particle is commonly
referred to as transmittance [Pre65]:

T (a,b) = exp
(
−

∫ b

a
µ(x)dx

)
, (1)

where the extinction coefficient µ quantifies the probability density
of interacting with a particle per unit-length flight. The coefficient
is deterministic, non-negative and generally varies as a function of
position.

Accurately estimating transmittance is essential for efficient ren-
dering of scenes with haze, smoke, or clouds. The integral of µ(x) in
Equation (1) is known in closed form only for a few, rather simple
extinction functions (e.g. homogeneous or exponentially decreas-
ing). The general-purpose approach, therefore, is to point-sample
µ(x) at a number of positions x along the ray. It is non-trivial to
form unbiased estimators from these point samples due to the non-
linearity of the exponential.

There are a number of different unbiased Monte Carlo esti-
mators for transmittance, and each can be derived in a number
of ways [GMH∗19, JKU∗20, KdPN21]. Of particular interest is

the recent Volterra-integral-equation formulation [GMH∗19] that
draws a close connection to the random-walk solutions of Fred-
holm integral equations. This formulation is interesting because
it views the estimation problem as a random walk over the one-
dimensional ray/interval, with strong analogies to path-tracing and
related Monte Carlo solutions of general transport problems. These
analogies have inspired a number of new estimators and interpreta-
tions of previous estimators [GMH∗19].

It is known that most random-walk solutions of Fredholm in-
tegral equations can be guided using modified sampling strategies
such that every sampled random walk gives the exact answer with
zero variance. The purpose of this paper is to combine this zero-
variance theory with the Volterra formulation for transmittance to
answer the question: what are the zero-variance estimators for vol-
umetric transmittance? We derive two such estimators in the fol-
lowing sections and explore their properties and relationships to
prior work. By expanding upon the theory of Monte Carlo trans-
mittance estimation in this way we open the door to possible new
strategies for computing low-variance visibility when rendering
scenes with rich atmospheric effects, and we discuss some of these
ideas at the end of the paper.

Scope. We do not present any new practical algorithms or empiri-
cal results in this article. The sole purpose of this work is to provide
a novel derivation of variance-optimal estimators and to show that
a certain existing estimator can be viewed as an approximation of
one of these optimal estimators.
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2. Background

In this section, we review the Volterra integral equation of trans-
mittance and the zero-variance theory, which we combine in later
sections to derive zero-variance last-event and collision estimators.

2.1. Volterra formulation of volumetric transmittance

The Volterra formulation of transmittance follows from the ob-
servation that Equation (1) satisfies the Volterra integral equation
[GMH∗19, Eq.(9)]

T (a,b) = 1−
∫ b

a
µ(x)T (x,b)dx , (2)

which expresses transmittance using a recursive rule; T now ap-
pears also on the right-hand side. A Monte Carlo estimator derived
from Equation (2) randomly decides whether or not to evaluate the
source term (the “1”) with some probability, and (independently)
whether or not to recurse to a subinterval by sampling a point
X ∈ (a,b) and then estimating T (X ,b) with the same procedure.
Corresponding weight factors are then introduced to make the esti-
mates unbiased. Thus, the estimator effectively performs a random
walk along the interval (a,b), querying the extinction µ(x) at N lo-
cations along the interval (where N is typically Poisson-distributed)
and computing an unbiased estimate from those N queries.

Georgiev et al. [GMH∗19] showed that previous Monte Carlo
transmittance estimators such as ratio tracking [Cra78, NSJ14] can
be reinterpreted under this new integral formulation. Most estima-
tors, like ratio tracking, are based on the concept of null collisions,
where ficticious particles are introduced along the interval in such
a way that they make collision sampling simpler while not chang-
ing the light transport in any way [NGHJ18]. This is achieved by
specifying a majorant µ̄(x) satisfying µ(x) ≤ µ̄(x) for a ≤ x ≤ b.
The extinction coefficient for the newly-introduced null particles is
then µn(x) = µ̄(x)− µ(x). The majorant can be used as a control
variate to transform Equation (2) into [GMH∗19, Eq.(13)]:

T (a,b) = Tµ̄(a,b)+
∫ b

a
Tµ̄(a,x)µn(x)T (x,b)dx . (3)

Here we use the notation

Tµ̄(a,b) = exp
(
−

∫ b

a
µ̄(z)dz

)
, (4)

which is known analytically for any (a,b) by construction. The gen-
eral form of a Volterra transmittance estimator is then

〈T (a,b)〉= Tµ̄(a,b)
Psrc︸ ︷︷ ︸

with prob. Psrc

+
µn(X)Tµ̄(a,X)

Prec pab(X)
〈T (X ,b)〉,︸ ︷︷ ︸

with prob. Prec

(5)

where

• Psrc is the probability of evaluating the source term,
• Prec is the probability of estimating the integral and recursing,
• Prec pab(X) is the probability density for sampling a single ran-

dom sample X ∈ (a,b) drawn from some distribution with pdf
pab(X) defined on the interval (a,b).

A number of estimators follow from this formulation, which differ
in the choice of free parameters Psrc, Prec, and pab. After recalling

zero-variance theory in the next section, we review two of these es-
timators and derive their corresponding zero-variance forms. The
key difference of our work to the prior analysis of the Volterra for-
mulation [GMH∗19] is in derivation of pab that achieves low or
zero-variance estimates.

2.2. Zero-variance theory

Our core contribution is inspired by the zero-variance estimation
of solutions of Fredholm integral equations [Alb53]. We briefly re-
view this theory for the Fredholm case in order to recall the simi-
larities with Equation (2) and also to clarify some key differences.

A Fredholm integral equation of the second kind is an equation

f (x) = q(x)+
∫ b

a
K(x,y) f (y)dy (6)

for unknown f (x) given source term q(x) and kernel K(x,y). From
the beginning of the development of the Monte Carlo method it was
recognized that random walks can be used to estimate solutions to
Equation (6) [SGS51, SG69]. The walks are terminated with some
procedure, such as Russian roulette, and there are various different
estimators that can be formed from the same walk, such as the last-
event estimator that only contributes to the estimate on the final
step of the walk, or the collision estimator that contributes to the
estimate at each vertex.

It was later shown that there exists a theoretical importance-
sampling of the random walk for Equation (6) such that the last-
event [Kah56] or collision [CCY67] estimators give the exact an-
swer with zero-variance [Hoo08]. In practice this requires knowl-
edge of an importance function for the problem that follows from
a solution to an adjoint transport problem (where particles flow
from the detector to the source), which is harder to solve than the
original problem. However, by merely approximating the impor-
tance function and using that to guide the construction of the walk,
variance can be greatly reduced in practice. The rendering equa-
tion [Kaj86] and other equations of linear transport theory are of
the Fredholm type and it is this integral form that Monte Carlo
methods, such as path tracing, derive from [PJH16]. Adjoint im-
portance and guiding have been used as variance reduction tools in
these contexts [Chr03, VK16, HZE∗19, dK20].

Our present investigation is inspired by the similarity between
Equation (2) and Equation (6). We are not the first to exploit this
similarity: the analogies between the two have been used to in-
spire derivation of new transmittance estimators [GMH∗19]. How-
ever, we are the first (to the best of our knowledge) to apply zero-
variance theory to Monte Carlo estimation of a Volterra integral
equation. One key difference is that the Volterra random walks are
unidirectional, in that the recursion reduces the problem to strictly
smaller domains at each step. Invariant imbedding can yield inte-
gral formulations for transport problems with a similar property
[PH00], but in general Monte Carlo estimators and zero variance
theory are considered in the context of Equation (6). We found that
this difference makes the derivation of the Volterra zero-variance
guiding simpler and more direct.
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3. The last-event estimator

We first focus on last-event estimators that alter the Monte Carlo
score only at the last simulated event (i.e. during the last step of the
recursion).

3.1. Standard ratio tracking

Consider the transmittance estimator that follows from Equation (3)
where the sampled locations X follow from a particle flying from
point a to point b and colliding with the sum of real and null parti-
cles µ(X)+µn(X) = µ̄(X), i.e. p(X) = µ̄(X)Tµ̄(a,X) (these estima-
tors follow the track of a particle as it traverses the interval and are
also known as tracking estimators). Consider further that the esti-
mator evaluates the source term in Equation (3) only when the par-
ticle exceeds point b, i.e. Psrc =P{X > b}= Tµ̄(a,b), and otherwise
the second term is estimated at the sampled location X ; the proba-
bility density of sampling X is Prec pab(X) = p(X) = µ̄(X)Tµ̄(a,X).
Georgiev et al. [GMH∗19] noted that this leads to an estimator
known as weighted tracking on a line [Cra78], in graphics often
referred to as ratio tracking [NSJ14]. The estimator steps along the
line computing the product of local weights (ratios of null to total
particle densities) µn(X)

µ̄(X)
. When X > b, we evaluate the first term,

which simplifies to 1 with the aforementioned PDF p(X), termi-
nate the walk, and score the product of ratios.

The variance of this estimator will generally depend on the vari-
ance of the ratios and the variance of the number of random steps
that the estimator performs.

3.2. Zero-variance ratio tracking

We will now show how to eliminate variance in the ratio track-
ing estimator. Standard ratio tracking samples the distance X using
the majorant extinction: p(X) = µ̄(X)Tµ̄(a,X). Since we are free to
choose the probability density of sampling distances, we might as
well set it such that a zero-variance estimate is achieved. To elim-
inate all variance, we need the estimator to return the true trans-
mittance for the interval (a,b) at any point during the recursive
invocation—a constraint that we impose over the free parameters.

In ratio tracking, the free parameters Psrc, Prec, and pab are linked
and derived from the sampling density p. We therefore need to im-
pose the aforementioned constraint on one of the free parameters
only and the others will follow.

Focusing on the first (source) term in Equation (5), the constraint

Tµ̄(a,b)
Psrc

= T (a,b) (7)

implies

Psrc = exp
(
−

∫ b

a
µ̄(z)−µ(z)dz

)
(8)

= exp
(
−

∫ b

a
µn(z)dz

)
= Tµn(a,b) . (9)

Since 1−Psrc is the CDF of p(X), the constraint is satisfied with

distance sampling density

pzv(X) = µn(X)exp
(
−

∫ X

a
µn(z)dz

)
. (10)

The density pzv is the free-flight distribution for a particle that col-
lides with only the null particles of the medium. As such, ratio
tracking should sample collisions with the null particles only to
yield zero variance.

The density pzv can also be derived by imposing the constraint
on the second term of Equation (5):

µn(X)Tµ̄(a,X)

Prec pab(X)
= T (a,X) , (11)

and noting that in ratio tracking Prec pab(X) = p(X).

The same result can be derived yet a third way, by using the
equivalence of the ratio-tracking estimator to a single-term power
series estimator, as show by Georgiev et al. The general expression
for such an estimator can be written [GMH∗19, Eq.(26)]

〈T (a,b)〉= e−τ̄

k!P(k)

k

∏
i=1

µn(Xi)

p(Xi)
(12)

where P(k) is the probability that k collisions are sampled, each
collision Xi ∈ (a,b) independently sampled with PDF p(Xi). To
apply our zero-variance constraint to Equation (12), the product
∏

k
i=1

µn(Xi)
p(Xi)

must be zero-variance, regardless of k. This clearly can
only happen when p(Xi) is proportional to µn(Xi), which is when
each Xi is sampled in proportion to µn(Xi). This is is exactly what
delta tracking does when only colliding with the null particles (by
the independence property of Poisson processes), and produces a
Poisson-distributed P(k) ∼ Po(τn) number of points Xi. The prod-
uct reduces to ∏

k
i=1

µn(Xi)
p(Xi)

= τ
k
n and Equation (12) reduces to e−τ

for all k. Therefore, we have also derived the unique zero-variance,
single-term power series estimator.

Note that the zero-variance estimator for a Fredholm integral
equation can be derived in the same fashion: by requiring that
the first sampling decision results in a zero-variance result [dK20].
However, this invariably leads to a product distribution with an un-
known normalization factor (which happens to be the quantity we
set out to estimate). One term in this product distribution is the
unknown importance function, and so there are two intractable un-
knowns in the final estimator. While neither of these appear here
in the Volterra case, we have nevertheless arrived at an intractable
result: we do not know Equation (10).

3.2.1. Discussion

The zero-variance density pzv does not immediately lead to a prac-
tical numerical algorithm; this is a common drawback of zero-
variance schemes. To illustrate the reasons, we rewrite Equation (5)
replacing the generic parameters with expressions that arise when
pzv is used:

〈T (a,b)〉zv =


Tµ̄(a,b)
Tµn(a,b)

if X > b, and

µn(X)Tµ̄(a,X)

pzv(X)
〈T (X ,b)〉 otherwise.

(13)
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In the first case, the ratio of transmittances simplifies to the true
value of transmittance: Tµ̄/Tµn = T . This is the constraint that we
imposed. It makes the estimator zero-variance in theory, but it also
makes the evaluation intractable for general heterogeneous vol-
umes in practice.

The second case features the same problem. Suppose we use a
majorant µ̄(x) that permits evaluating Tµ̄(a,x) in closed form, e.g. a
constant function. Since the majorant is relatively simple, the null
extinction µn(x) will feature variations that are comparable to those
in the real extinction µ(x), hence we cannot sample the distance an-
alytically. One might exercise the idea of utilizing delta tracking to
sample distances in the null medium. This would yield the desired
sample density pzv, but as this density cannot be evaluated when
delta tracking is used, our only hope is that it cancels out with the
terms in the numerator (up to an easy-to-compute factor). Since the
fraction simplifies to T (a,X), we again end up with a quantity that
is intractable to evaluate.

This is a universal property of zero-variance schemes—there is
no point in using them when they are truly zero-variance because
they require solving a harder problem than we set out to solve in
the first place. However, they become valuable in showing exactly
how a given estimator should be perturbed so that its variance is
lowered, and what necessary constraints need to be met to enable
tractable evaluation. In this specific instance, we shall strive to sam-
ple only null collisions when generating distances, but not at the
cost of making the evaluation of other terms intractable.

There also remains the question of cost, which can be arbitrarily
high. Note that for any strict majorant, pzv(x) is well defined. As the
majorant is made closer to the control, the cost goes down, fewer
points are sampled on average along the interval (there is less null
mass between a and b), but the estimator remains zero-variance. So
unlike the analogous Fredholm random walk, there is not a unique
last-event zero-variance estimator. We should strive for variants that
reduce not only variance but also the cost in practice.

3.3. Approximate zero-variance ratio tracking

In order to create a tractable low-variance estimator, we define the
approximate null extinction along the (a,b) segment to be µ̃n(x) =
µ̄(x)− µ̃(x); here, µ̃(x) can be interpreted as an approximation of
the real extinction function µ(x).

The approximate null extinction µ̃n(x) can be any non-negative
function for x > a provided that µ̃n(x)> 0 whenever µn(x)> 0. We
also demand that the transmittance Tµ̃n(a,x) = exp

(
−

∫ x
a µ̃n(z)dz

)
can be evaluated exactly, and

∫∞
b µ̃n(x)dx =∞. These conditions

merely ensure that we can generate finite distance samples and
evaluate the transmittance in this new approximate null medium.

The approximately zero-variance, ratio-tracking estimator that
samples distances using pazv(X) = µ̃n(X)Tµ̃n(a,X) reads:

〈T (a,b)〉azv =


Tµ̄(a,b)
Tµ̃n(a,b)

if X > b, and

µn(X)Tµ̄(a,X)

pazv(X)
〈T (X ,b)〉 otherwise.

(14)

Comparing this estimator to Equation (13), we merely replaced the

sampling PDF and the null-medium transmittance with their corre-
sponding counterparts derived from the approximate null extinction
µ̃n(x). The benefit of this substitution is that all terms on the right-
hand side can now be easily evaluated, albeit at the cost of losing
the zero-variance property.

3.3.1. Correspondences with residual ratio tracking

The approximate zero-variance estimator in Equation (14) corre-
sponds identically to the residual ratio tracking (RRT) estima-
tor [NSJ14] (which is equivalent to the Poisson estimator [BPRF06,
KdPN21]), the only difference being the nomenclature. We will
now outline these correspondences.

In this article, we utilized the approximate real extinction µ̃(x),
which maps to the “control extinction”—denoted µc(x)—in RRT;
in both cases this quantity serves as a close approximation to the
real extinction. We also introduced the approximate null extinc-
tion µ̃n(x), which corresponds to the “majorant of the residual
medium”—denoted µ̄r(x)—in RRT; both articles propose to gen-
erate distances according to this quantity.

As such, we have not presented a new algorithm for estimating
transmittance, but merely a new derivation of an existing estima-
tor. Nevertheless, there are two important insights gained from this
derivation:

• It is evident that one can minimize variance by sampling colli-
sions in the null medium only; this has not been obvious from
prior works.
• The introduction of the residual medium [NSJ14] serves as a

step towards introducing the majorant of the residual medium.
While being perhaps didactic, we show that the concept of the
residual medium is unnecessary as we only need its majorant (the
approximate null extinction µ̃n(x) in our terminology) to draw
the distance samples.

Our work complements the original RRT article by providing a
more direct, and arguably more intuitive, way of deriving a variance
minimizing transmittance estimator. Additionally, we note close
analogies to path-stretching methods first introduced in approxi-
mating zero-variance walks in neutron transport—specifically the
exponential transform that results from sampling free-flight dis-
tances in homogeneous media using an altered constant extinc-
tion coefficient [NGHJ18,dK20]: this is exactly what residual ratio
tracking does when the majorant and control are both constant over
the interval (a,b).

Zero variance theory is typically applied by deriving the the-
oretical result and then testing an approximate importance func-
tion to measure the increase in efficiency as the error in the ap-
proximation is reduced. Due to the correspondence with RRT,
these studies have already been performed and we will not repeat
them here. When the majorant and the control are restricted to be
constants over the interval, the optimum value for the control is
known [BPRF06,KdPN21], which follows from the simple expres-
sion for the exact variance of the RRT estimator. The efficiency of
non-constant controls has also been measured as a function of the
degree of piecewise-polynomial approximations and their resolu-
tion [NSJ14, Fig.(13)].
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4. The collision estimator

In this section, we discuss the application of zero-variance the-
ory to next-flight estimators. Specifically, we consider the weighted
next-flight (WNF) estimator by Cramer [Cra78] (in graphics some-
times dubbed the next-flight ratio tracking estimator). Georgiev
et al. [GMH∗19] noted that this estimator emerges from Equa-
tion (5) when Psrc is set to 1 (i.e. the source term is always eval-
uated) and the probability density of recursing at point x is kept the
same as in standard ratio tracking, again using free-flight distances
arising from collisions with the total medium (i.e. Prec pab(X) =
µ̄(X)Tµ̄(a,X)).

For each sampled distance point, the WNF estimator computes
a score consisting of the transmittance along the remaining seg-
ment considering the combined medium Tµ̄(X ,b), and scales it by
the product of µn(X)

µ̄(X)
weights from all preceding sampled locations.

These scores are added together to form the transmittance estimate.
In this way, instead of scoring a single weight at the end when the
source term is finally evaluated (as in last-event estimators), here
a contribution to the transmittance is made at each collision. This
maps exactly to the collision estimator of zero-variance theory.

In order to derive the zero-variance version of this estimator, we
constrain it to always return the correct transmittance value, i.e.
〈T (x,y)〉 := T (x,y). The sampling PDF pzv(X) can be derived di-
rectly from Equation (5) where all estimators are replaced by the
actual transmittance functions (and Psrc = 1):

T (a,b) = Tµ̄(a,b)+
Tµ̄(a,X)µn(X)

pzv(X)
T (X ,b). (15)

The PDF

pzv(X) =
Tµ̄(a,X)µn(X)T (X ,b)

T (a,b)−Tµ̄(a,b)
(16)

=
T (a,b)Tµn(a,X)µn(X)

T (a,b)
(

1− Tµ̄(a,b)
T (a,b)

) (17)

and can be further simplified to

pzv(X) =
µn(X)Tµn(a,X)

1−Tµn(a,b)
. (18)

The zero-variance PDF is valid (i.e. it integrates to unity) but for
the range [a,b]. The numerator corresponds to the probability den-
sity of null collisions along a half line [a,∞]. The denominator
corresponds to the integral of this density over the range [a,b]. The
fraction thus equals the probability density of null collisions within
[a,b], and so again we find that zero-variance is attained when the
distance-sampling guiding is governed by a collision process that
only considers the null particles along the interval. The truly zero-
variance result is intractable, but an approximate density can be
used to approach the limit of zero variance as we saw for ratio
tracking.

There is, however, an important difference here to the ratio track-
ing result. In order to yield a zero-variance estimation with the next-
flight ratio-tracking estimator, we must evaluate the second term. In
other words, the recursion never stops (Prec = 1). The zero-variance
estimator thus incurs an infinite cost. This is consistent with zero-
variance theory: it is known that the collision estimator requires

an unterminated random walk to achieve zero variance [Hoo08].
To create a practical, approximately zero-variance estimator, one
would therefore need to trade between zero variance and infinite
cost, for example by returning 1 when the remaining interval to be
estimated is below some threshold. Alternatively, a hybrid approach
that eventually switches to a zero-variance ratio tracker would ter-
minate the estimator and maintain zero-variance. We leave the ex-
ploration of such recipes to future work.

In the non-guided case, ratio tracking tends to outperform next-
flight ratio tracking [Cra78, GMH∗19], but with some exceptions.
We would expect this general trend to hold in the case that both
are guided towards zero variance with the same approximate null
density. One interesting feature of the zero-variance next-flight es-
timator, compared to the original, is that the zero-variance free-
flight PDFs pzv(x) are correlated (they increase by a constant as
the remaining interval narrows). This correlation is missing from
the original estimator and would seem to be required in order to
achieve low variance results and is perhaps why next-flight tends to
underperform relative to ratio tracking.

For the last-event estimator, we found that the power-series for-
mulation immediately led to the same zero-variance derivation. It
is, however, not immediately obvious from the corresponding equa-
tion for a truncated power-series estimator [GMH∗19, Eq.(28)]

〈T (a,b)〉= e−τ̄
k

∑
j=0

∏
j
i=1

µn(Xi)
p(Xi)

j!
(

1−∑
j−1
m=0 P(m)

) (19)

that Xi should be correlated, or even that k must be ∞ to yield
a zero-variance result. Whether there are additional zero-variance
power-series estimators we believe to remain an open question.

5. Conclusion and future work

We have shown that zero-variance theory can be applied to trans-
mittance estimation and we have derived two zero-variance trans-
mittance estimators. Both share the common feature that collisions
along the interval should be sampled by considering only the null
particles. By using an approximate description of the extinction co-
efficient along an interval to guide distance sampling, both ratio
tracking and next-flight ratio tracking approach zero variance. We
noted that this corresponds to residual ratio tracking and a related
residual next-flight estimator that requires an infinite cost to achieve
zero variance. We have also established that our zero-variance ratio
tracking estimator is the unique zero-variance single-term power-
series estimator for transmittance.

By reformulating variance reduction in the path-stretching
framework of zero-variance theory, instead of the control/residual
collision picture of prior theory, there are a number of possible on-
line variance-reduction methods that become more directly appli-
cable to transmittance estimation. For example, when the distance-
sampling PDFs p(x,ω) at any position and direction in the vol-
ume are drawn from parameteric distributions (such as exponen-
tial or Gamma), the spatial and directional parameters of these dis-
tributions could be directly informed by heuristics, online/neural
predictions or possibly utilize spatio-temporal reservoir schemes
[BWP∗20], etc. We feel that these are interesting directions for fu-
ture work.
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