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Abstract

Nowadays, LIDAR scanners are able to capture complex scenes of real life, leading to extremely detailed point clouds. However,
the amount of points acquired (several billions) and their distribution raise the problem of sampling a surface optimally. Indeed,
these point clouds finely describe the acquired scene, but also exhibit numerous defects in terms of sampling quality, and
sometimes contain too many samples to be processed as they are. In this work, we introduce a local graph-based structure
that enables to manipulate gigantic point clouds, by taking advantage of their inherent structure. In particular, we show how
this structure allows to resample gigantic point clouds efficiently, with good blue-noise properties, whatever their size in a

reasonable time.

1. Introduction

Recently, it became quite easy to digitize large and complex 3D
scenes via a set of terrestrial LIDAR acquisitions. By merging all
these data, we obtain gigantic point clouds (over one billion points)
that finely describe the acquired scene. However, these point clouds
exhibit numerous defects in terms of sampling quality (overlap-
ping regions, highly non-uniform distributions, etc.), and contain
too many samples to be processed as they are. These drawbacks
limit their usage, and make some processing very complex, or even
impossible (e.g., surface reconstruction). One solution is to resam-
ple these point clouds. In our context, resampling aims to reduce
the amount of data while improving the quality of the distributions.

To process gigantic point clouds, many prior methods subdivide
the 3D space containing them [EBN13]. Thus, without additional
processing, these methods are unable to consider efficiently the lo-
cal behavior of the surface described by the point cloud.

Therefore, we developed on a graph-based approach, similarly
to [CTF*18]. The graph provides a discrete representation of the
captured surface. However, rather than constructing a single graph
on a point cloud, leading to a representation hardly scalable, we
chose to create a set of graphs from the connectivity of the acqui-
sitions, i.e., by using depth maps. As a consequence, the memory
required for any local processing can be bounded by the number of
graphs involved, instead of the whole point cloud.

2. A set of local graphs to describe the captured surface

Construction For each acquisition, a terrestrial LIDAR scanner
provides a depth map. A depth map is a 2D image whose inten-
sities represent the distance between the points acquired and the
position of the scanner. It is composed of valid pixels, i.e., acquired
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points, and non-valid pixels, representing directions with no depth
information (intensity equal to zero). A depth map can be seen as a
structured representation of the acquired scene, and we consider its
connectivity to construct a graph over this part of the point cloud.

For a given depth map, the points belonging to distinct elements
of the scene but projected to neighboring pixels in the depth map
must not be connected in the graph. For this purpose, we combine
morphological gradients [RSB93] with an adaptive thresholding in
order to tag as non-valid the pixels around the highest depth varia-
tions. From this step, a graph G(V, E) is constructed, where the ver-
tices V are the valid pixels, and where the edges E connect neigh-
boring valid pixels (points belonging to the same element).

Connection between the local graphs To link all the graphs rel-
ative to the set of acquisitions, we establish correspondences be-
tween the vertices of the different graphs that describe the same
part of the surface. More precisely, for each vertex v € V; of a given
graph G; = (V;, E;), we associate a set of corresponding vertices
in the other graphs (if such vertices exist). As the acquisitions are
registered together, we use the transition functions T which links all
the pairs of depth maps.

Occasionally, a single acquisition can capture hundreds of mil-
lions of points. In that case, the associated graph may not fit into
memory. To tackle this problem, our algorithm splits a priori a
depth map into a set of overlapping tiles, and their respective transi-
tion functions 7 are determined (they are simply translations of the
transition function of the original depth map). Hence, processing
the set of original depth maps or these sets of overlapping tiles is
equivalent. As a consequence, the local graphs can be constructed
and then connected on any computer, whatever the size of the ac-
quisitions, and the memory limitations, by simply controlling the
size of the overlapping tiles.
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Managing the overlapping regions To avoid superfluous compu-
tations in the overlapping regions, for a given set of corresponding
vertices, only the one belonging to the acquisition with the highest
sampling density is considered during the computations. Hence, for
each graph, only a subset of vertices VfL C V; has to be processed.
The other ones will fetch the results from the other graphs.

3. Resampling gigantic point clouds using local graphs

Now we show how the popular dart throwing algorithm [Coo86]
can be implemented efficiently over a set of local graphs, to
get a maximal Poisson-disk sampling of the underlying surface
of a gigantic point cloud. Due to its principle, this algorithm is
able to process the local graphs in a sequential manner. Let G =
{G1,Ga,...,Gn} be the set of n local graphs constructed using the
aforementioned approach. For each graph G; € G :

e Maximally sample G;, by considering the vertices ViJr as the can-
didate samples;

o For each other graph G; € G,i # j, the vertices V; fetch the in-
formation of inclusion (or not) in a specific disk from their cor-
responding vertex in V;.

4. Experimental results and Discussion

Figure 1 gives an example of point clouds generated with our re-
sampling. On the left a uniform sampling, on the right a curvature-
aware sampling to enhance detailed areas. This is one interesting
aspect of our graph-based approach: many metrics can be mod-
eled, by simply modifying the weights associated to the edges of
the graphs.

Figure 1: Example of two distributions obtained with our graph-
based approach on Interior (0.15% of the 2 billion original points
remaining).

To validate the global sampling quality of our distributions, we
also analyzed the resulting point clouds with the tool [WW11]
on synthetic models. The results are satisfactory: RAPS and
anisotropy of our distributions always exhibit nice blue noise prop-
erties, which are typical of Poisson-disk samplings (Figure 2 shows
an example).

We also evaluated the performances of our algorithm in term
of timings and memory on many gigantic acquisitions of real-life
scenes (Table 1 gives two examples). Observe how the size of the
tiles allows us to control the peak memory reached, whatever the
size of the input data.

Finally, Figure 3 shows that nice reconstructions can also be ob-
tained from our resampled point clouds.

Figure 2: Quality of the distributions obtained with our graph-
based approach. The red and blue curves correspond to the RAPS
and the anisotropy, respectively.

Time (h:m) / Peak mem. (GB)
Model | #pts. (#acq.) | 8192x8192 4096x4096
Facade 977M (19) 00:59 /6.1 01:36/2.1
Interior 2.0B (35) 02:38/7.5 06:55/2.0

Table 1: Computing time and peak memory of our algorithm, w.r.t
the size of the overlapping tiles (with the same disk radius).
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Figure 3: Part of Eim Ya Kyaung resampled (2.9% of the 1.3 bil-
lion original points remaining) and reconstructed using [BLI17].
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