Learning 3D Visualis ation with MALUDA

Joao A. Madeiras Pereira and Mario Rui Gomes
Instituto Superior Técnico/Instituto Engenharia Sistemas ¢ Computadores

Lisboa, Portugal.
{jap, Mrg} @inesc.pt

Abstract
This paper describes MALUDA system, which
constitutes an important tool for teaching 3D-

visualisation pipeline at the laboratory classes of the
Computer Graphics course at Instituto Superior
Técnico.

Keywords: application tool, 3D visualisation pipeline,
modelling, rasterization algorithms.

1. Objectives

The traditional 3D-visualisation pipeline is one of the
main topics to be taught in any introductory Computer
Graphics course. The MALUDA system constitutes
itself as an important complementary tool to learn
about 3D visualisation. In fact, it is used at the
laboratory classes of the Computer Graphics course at
Instituto Superior Técnico, not only as a way to
practice the use of a virtual camera model based-
viewing pipeline but also as a test environment for
rasterization algorithms developed by the students.

2. MALUDA main features

There are three main approaches a novice student in
Computer Graphics can take to make effective use of
MALUDA:

* Learning to create 3-dimensional scenes

* Understanding and observing different realism
levels of image rendering

* Testing his own scan conversion strategy.

L

2.1. Three-dimensional modelling
A scene can be built up by using the NFF (Neutral File
Format) language and/or the SIPP (Simple Polygon
Processor) scene description library.

NFF [1] is a low level scene description language in
the sense that it provides a minimal interface which
allows a programmer to quickly create a scene by
describing the geometry and basic surface
characteristics of objects, the placement of lights, and
the viewing frustum for the eye. There is no

GVE'99 — Coimbra — Portugal

hierarchical modelling. An example of a NFF file is
illustrated in Appendix A.1.

In addition to support the NFF scene description
language, MALUDA also supports SIPP scene
description library [2]. A SIPP scene is built up of
objects (described in their local coordinates systems)
which can be transformed with rotation, translation and
scaling. The objects form hicrarchies where each object
can have arbitrarily many sub-objects. It allows also a
scene to be illuminated by an arbitrary number of light
sources of different types. In a SIPP scene is possible
to create several virtual cameras, and then specify one
of them to use when rendering the scene.

An important feature of MALUDA modelling
capability is the possibility of merging a SIPP scene
with one described in NFF language. Then, a user can
ask either to render the resulting scene or to export it in
NFF format (containing optionally only triangles).

2.2. Image Rendering

MALUDA provides the ability for creating 3-
dimensional scenes and rendering them using cither the
internal scan-line z-buffer algorithm or an external
rasterization algorithm provided by the user. By
default, the internal rastcrization engine is used in the
rendering operation. This engine, through the use of the
public domain SIPP library, renders images at different
realism levels. Scene objects are rendered with either
Phong, Gouraud or flat shading. An image can also be
rendered as a line drawing of the polygon edges
without any shading at all. The SIPP library also
provides 3-dimensional texture mapping with
automatic interpolation of texture coordinates. Simple
anti-aliasing can be performed through oversampling.
Transparencies are allowed and several shading
functions (“shaders”) are available. Some examples
generated by MALUDA by using the internal SIPP
rasterization engine are illustrated in Appendix B.

2.3. Rasterization support

A major feature of this tool is the ability for a student
to provide his own rasterization function. This makes it
casy to experiment with various scan conversion
schemes and to do special effects.

65

Two procedures can be used accordingly to the
platform to execute the rasterization algorithm is
relevant or not for the test. If execution platform is not
important, the routine containing the rasterization code
developed by the student can be integrated into
MALUDA system to be invoked later. This procedure
is meant to check the strategy and its performance
whatever the machine and operating system. Or, the
platform is important, like a parallel machine where we
are interested to experiment several parallel schemes
for the rasterization stage. In this case, MALUDA

should be instructed to output an ASCII file containing
device dependent coordinates polygonal database,
which will be then used to feed the target rasterization
algorithm. An example of this “flat” file is shown in
Appendix A.2

3. MALUDA architecture

In figure 1, is depicted the MALUDA activity flow
diagram

World, View &
= Light definitions
[¢] [(SIPP 3D Library)
Export Database
Neutral File Format (NFF) D
Object Modeling
T NFF Parser Potygons &
Geomatric Transfanmation
Polygon to
Trang Sp . fil=e, | e
x o Structure
Yas
Transformation
- — Local to World Yes. Export ?
Coordinate System
Modelagao e construgao da base de dados
(importagao e exportagao)
Transformagdes ST
Btri Calculate 'gon
geométricas @@
o
@ Yes —7 Backface Removal
Calculate Vertex 2____m_ 5 ’
Averaged Normals
Y
Polygon Clipping D
(Sutherdand-Hodgeman)
[3
Transtormation
Perspective o
12
Phong Reflection Model
(Vertex Level) o
(2 4
N o Polygon to
@ o= Triangle Split
Transformation
Device Dep le—
Coordinales [14)
Gerador de saida

User

Export Rendering Data
(Coordinates & RGB) |'Y°‘ X

‘bmﬁ::'“' - User-— Antemal —
- o

%

Rasterization
Hidden Surface Removal,

Figure 1 - MALUDA activity flow diagram

66 G

VE’99 — Coimbra — Portugal

An analysis of it shows to a reader the most important
modules and their associated functionality. Thus,
accordingly to the MALUDA system description made
above, we can distinguish the following functional
blocks:

e Reader and parser of scenes created by NFF and/or
SIPP languages

e Geometric transformer

¢ QOutput generator

At this point, is convenient to remind some important
features of MALUDA and relate them with the
numbered operations illustrated in Figure 1.

MALUDA can export the input scene as a NFF file
format (World Coordinates) —operation 6— or as an
ASCII polygonal “flat” file format (Device Dependent
Coordinates) —operation 15. The system provides also
the ability of image rendering by using either the
internal SIPP rasterization engine —operation 17- or an
external rasterization algorithm provided by the student
—operation 16.

It is interesting to mention that when MALUDA is
configured to act as image renderer, diagnostic and
statistics informations arc provided by the system.
Appendix A.3 shows the information provided by the
system when the default SIPP rasterization engine is
being used.

References

1] Eric Haines, “A Proposal for Standard
Graphic Environments”, in I[EEE Computer
Graphics and Applications, Vol 17, n°l1,
November 1987, pp 3-5

[2] J. Yngvesson, 1. Wallin; “User’s Guide to
SIPP —a 3D rendering library”, version 3.1,
Public Domain Software via anonymous ftp
from isy.liu.se (IP n® 130.236.1.3) in the
directory /pub/sipp; March 1993

GVE’99 — Coimbra — Portugal

Appendix A - MALUDA Input/Output

information
A.1 NFF File Format
v Viewpoint definition;

from 1.02285 -3.17715 -2.1745

at -0.004103 -0.004103 0.216539

up -0.816497 -0.816497 0.816497

angle 45

hither 1

resolution 1024 1024

1 1.87607 -18.1239 -5.00042 light source position;
f 10.20.21010000000 surface parameters;
p3 Polygon with three vertices;

-1 -11

-1 -0.9375 0.9375

-0.9375 -1 0.9375

p3

-0.9375 -0.9375 1

-0.9375 -1 0.9375

-1 -0.9375 0.9375

p4

12 12 -0.5

-1212 05

-12 -12 -0.5

12 -12 -0.5

f1090.70.50.5452776 00 New surface;
s0000.5 a sphere;

5 0.272166 0.272166 0.544331 0.166667

A.2 Device Dependent Coordinates Output File

512 512 65535 255 Maximum resolution (x,y,z and colour);
120838 Total number of polygons;

1 Separator;

3100 50 Polygon with 3 vertices and Ymax/Ymin;
40 100 89 30 128 30 (x.y.z) and (RGB)

50 80 89 30 128 30
60 50 89 30 128 30
1

411040

4040 89 30 128 30
50 110 89 30 128 30
60 50 89 30 128 30
5560 89 30 128 30
|

127 End of file;

Polygon with 4 vertices and Ymax/Ymin;

67

A.3 Diagnostic and Statistics information

NFF scene will be imported!

Pipeline: Parsing NFF file, wait...

Pipeline: Be aware that some SIPP and user defined view parameters
will be override by NFF parameters!

Pipeline: NFF background loaded

Pipeline: NFF view parameters loaded

Pipeline: NFF light loaded (6.00 6.00 6.00) (1.00 1.00 1.00)

Pipeline: NFF surface with 1 polygons

(0.30,0.60,0.30,5,1.00,0.85,0.70)

Pipeline: NFF surface with 1 polygons

(0.30,0.00,0.20,5,1.00,0.61,0.41)

Pipeline: NFF surface with 145 polygons

(0.30,0.00,0.20,5,1.00,0.61,0.41)

Pipeline: NFF surface with 1 polygons

(0.30,0.00,1.00,5,1.00,1.00,1.00)

Pipeline: NFF surface with 145 polygons

(0.30,0.00,1.00,5,1.00,1.00,1.00)

Pipeline: NFF surface with 1 polygons

(0.30,0.00,1.00,5,0.02,0.67,1.00)

Pipeline: NFF surface with 145 polygons

(0.30,0.00,1.00,5,0.02,0.67,1.00)

Pipeline: NFF surface with 1 polygons

(0.30,0.00,1.00,5,0.21,1.00,0.01)

Pipeline: NFF surface with 145 polygons
(0.30,0.00,1.00,5,1.00,0.26,0.75)

Pipeline: Imported 129 surfaces with 9345 polygons, 0 spheres and 0
cones.

Pipeline: NFF parser done

Pipeline: Hither:1.00,Yon:15.00,
Resolution(X,Y,Z,Color):1024,1024,1024,512

Pipeline: Pipeline creating render data, wait...

Timer started Geometric Transformations start;
Pipeline: Image file to be created: ‘pipe.ppm’

Pipeline: Objects loaded: 3

Pipeline: Surfaces loaded: 129

Pipeline: Polygons loaded: 9345

Pipeline: Polygons ready to be rendered by SIPP!
Transformations end,;

Timer Stopped (Elapsed: 2.108s, User: 2.023s, System: 0.066s)
Pipeline: SIPP rendering, wait...

Timer started Rasterization stage;

Pipeline: Render Mode: Gouraud Método de sombreamento;
Pipeline: SIPP rasterization done!

Timer Stopped (Elapsed: 112.693s, User: 108.058s, System: 1.053s)

Geometric

Pipeline: Successful End

Pipeline: Polygons backfacing: 4864
Pipeline: Polygons totally clipped: 39
Pipeline: Polygons splited to triangles: 0
Pipeline: Polygons rendered: 4442
Pipeline: Releasing resources...!
Pipeline: Release complete

Appendix B — Different types of image rendering with SIPP rasterization

Teapot - Wire-Frame model

68

v Teapot F"l‘ashadmg

GVE’99 — Coimbra — Portugal

Appendix B — Different types of image rendering with SIPP rasterization (cont.)

Teapot — Phong Shading

Mount with transparent spheres Teapot clipped by Sutherland-Hodgman

GVE’99 — Coimbra — Portugal 69

