
Eurographics Symposium on Parallel Graphics and Visualization (2022)
R. Bujack, J. Tierny, F. Sadlo (Editors)

Profiling and Visualizing GPU Memory Access and
Cache Behavior of Ray Tracers

Max von Buelow1 , Kai Riemann2 , Stefan Guthe1,3 and Dieter W. Fellner1,3,4

1Technical University of Darmstadt, Germany
2Independent Researcher, Germany

3Fraunhofer IGD, Germany
4Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

(a) Time series visualization for the Asian Dragon mesh using two different schedulers.

(b) Time series visualization for the Sponza mesh.

Figure 1: Frames from the scanline progression over time of the Asian Dragon (a) and Sponza (b) mesh with colors representing the cache
state. Faces that are likely to produce cache hits within a frame are marked in yellow. Conversely, red is used to mark faces that are more
likely to produce cache misses as they are being accessed in memory. Only five out of eight frames are shown here due to space limitations.
The big frames show a global scanline progression, while the inset frames demonstrates how scheduling behaves when each SM has a disjoint
scanline region distributed over the image.

Abstract
Graphical processing units (GPUs) have gained popularity in recent years due to their efficiency in running massively parallel
applications. Recent developments have also adapted ray-tracing algorithms to the GPU, where the bottleneck in the overall
performance is usually given by the memory bandwidth. In this paper, we present an interactive, web-based visualization tool
for GPU memory traces that provides visual insight into the memory and cache behavior of our reference ray tracer, by mapping
internal GPU state back onto 3D objects. In order to visualize cache behavior, we use reuse distances on both GPU cache layers
that are calculated on the basis of memory traces extracted from a real GPU using binary instrumentation. An advantage of
our system is that it runs independently of the ray-tracing program. We further show visualizations of our GPU ray tracer
and compare the visualizations of several ray-tracing approaches. We find our work to act as a convenient toolset to gather
insights on which data structures and mesh regions can be cached efficiently, and how ray-tracing acceleration structures
behave on various input meshes, bounding volume hierarchies, memory layouts, frame buffer resolutions, and work distribution
techniques.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Graphics processors; • Theory of com-
putation → Program analysis;

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/pgv.20221061 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0036-319X
https://orcid.org/0000-0002-4375-6479
https://orcid.org/0000-0001-5539-9096
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/pgv.20221061


M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

1. Introduction

The run-time performance of ray-tracing algorithms primarily de-
pends on the number of rays and—when using hierarchical accel-
eration structures—on the logarithmic size of the scene. More re-
alistic rendering requires an increase in either quantity. Recent de-
velopments in the field of GPGPU allow for efficient execution of
ray-tracing algorithms on graphics cards that are nowadays spe-
cialized to run such computations, making ray tracing available for
real-time use in computer games [PBD*10].

The main bottlenecks in ray-tracing applications are the mem-
ory latency and work-distribution [AL09]. Targeting the former,
GPU vendors implemented a cache hierarchy similar to those of
CPUs. Given these caches, the programmer is now faced with the
challenge of keeping the structure of the cache in mind in order to
make programs more efficient. Simultaneously, GPU vendors are
continuously trying to optimize their caches given a set of well-
known applications [JBC*15]. Due to SIMD parallelism and sepa-
ration across different processors on the GPU, these cache hierar-
chies have become quite complex.

Therefore, we developed a two-part toolset providing visual in-
sight into cache and memory behavior. The first tool is used to ex-
tract a list of memory accesses from the ray-tracing binary dur-
ing execution by injecting assembly instructions into the run-time.
Additionally, this tool simulates the cache behavior, transforming
memory accesses into per-element accesses of scene elements, and
lastly writes all values to a file. The second tool is a web-based
dashboard that parses and visualizes said files, giving the user con-
trol over how temporal data should be displayed. The dashboard
consists of a mesh viewer that shows the original mesh along with
a color for each primitive representing various metrics, such as the
current L1 cache state.

In summary, our contributions are:

• A toolset capable of automatically extracting memory profiles
from ray-tracing programs during run-time and interactively vi-
sualizing this data in a high-performance web-based dashboard.

• A method to simulate fine-grained hardware cache rates and vi-
sualizing them onto the original application data (the mesh and
BVH) using a color encoding.

• A toolset that may be used for profiling and teaching purposes to
simultaneously show how caches behave on GPUs for particular
memory permutations, meshes and bounding volume hierarchies
(BVHs), and how they influence which parts of the mesh actually
get referenced.

• A visualization of the write order with respect to the frame
buffer, allowing insight into scheduling and simultaneously in-
dicating the actual application behavior.

2. Related Work

The performance of ray tracers depends on a variety of different
factors. VASIOU, SHKURKO, MALLETT, et al. [VSM*18] show
that energy consumption and computational time of ray-tracing ap-
plications depend on the amount of data movement from DRAM
and caches as well as memory stalls. First, we address memory and
cache accesses optimizations by more efficient hardware work dis-

tribution techniques. AILA and LAINE [AL09] present such opti-
mizations by comparing ray-tracing performance of several hard-
ware work distribution implementations, while PHARR, KOLB,
GERSHBEIN, and HANRAHAN [PKGH97] show that influencing
the scheduling given the state of the cache can also improve ren-
dering performance on CPU architectures. Similar to L1 caches on
GPUs, DEMARLE, GRIBBLE, and PARKER [DGP04] introduce a
distributed shared memory model for ray tracers and ensure that
work is balanced across computing nodes in a way that maximizes
hit rates. Besides work distribution, bounding volume hierarchies
enhance ray-tracing performance by keeping triangle accesses and
intersection rates small. MACDONALD and BOOTH [MB90] intro-
duce the surface-area heuristic that optimizes BVHs, and AILA,
KARRAS, and LAINE [AKL13] define further quality metrics for
BVHs. Different BVH memory layouts have been evaluated by
WODNIOK, SCHULZ, WIDMER, and GOESELE [WSWG13] in
terms of cache performance, while WALD, MORRICAL, and ZELL-
MANN [WMZ22] further enhance memory access rates as well as
caching by reducing the footprint of BVH leaves and faces, using
simple compression techniques.

In order to visually profile a ray tracer, we rely on reuse distances
of memory traces. Reuse distances are a well-researched perfor-
mance metric that have been shown to be an accurate locality es-
timation for CPU architectures by DING and ZHONG [DZ03]. The
Stack Distance Cache Model (SDCM) of AGARWAL, HENNESSY,
and HOROWITZ [AHH89] uses reuse distances in order to estimate
the whole-program hit rate. ARAFA, CHENNUPATI, BARAI, et al.
[ACB*19] apply this technique successfully to GPU architectures.
Based on this, ARAFA, BADAWY, CHENNUPATI, et al. [ABC*20]
use the NVIDIA Binary Instrumentation Tool (NVBIT) [VSNK19]
in order to extract required memory traces during the execution of
arbitrary programs.

ISAACS, GIMÉNEZ, JUSUFI, et al. [IGJ*14] give an extensive
overview of state-of-the-art performance visualization tools that
rely on extracted performance profiles. Most importantly, they
mention the HAC model by SCHULZ, LEVINE, BREMER, et al.
[SLB*11] which categorizes performance data into the hardware,
application, and communication domains and explains how to map
between them. As for the hardware domain, memory access vi-
sualization tools such as VAMPIR [NAW*96] and TAU [SM06]
use classical visualization techniques like diagrams, charts, time-
lines, and matrix plots in order to illustrate memory behavior. The
cache visualization tool by van der DEIJL, KANBIER, TEMAM,
and GRANSTON [vdDKTG97], on the other hand, is more centered
around memory layout and visualizes memory addresses as cells in
a 2D grid. Similarly, ROSEN [Ros13] creates visualizations of GPU
memory on the grid, block, warp, and operation level. YU, BEYLS,
and D’HOLLANDER [YBD01] visualize cache hits and reuse dis-
tances as a locality metric in a similar 2D grid. The abstract visual-
ization by CHOUDHURY and ROSEN [CR11] implements a circular
layout for CPU profiles that visualizes spatial and temporal local-
ity of the memory using shaded points whose distance to the center
is smaller in higher-performance memory levels. In the application
domain, bare memory accesses of ray-tracing applications are usu-
ally visualized as heat maps on bounding volumes and polygons
[YLZ*16] not involving further hardware-side metrics. Recent de-
velopments use profiling data from binary instrumentation in order

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

8



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

GPU

DRAM

L2 cache

SM 0 SM 1

L1 cache L1 cache

Block 0 Block 1 Block 2 Block 3

t0 t1 ... t31 t0 t1 ... t31 t0 t1 ... t31 t0 t1 ... t31

t0 t1 ... t31 t0 t1 ... t31 t0 t1 ... t31 t0 t1 ... t31

Grid

Figure 2: A sketch of most NVIDIA architectures. Hardware com-
ponents are marked with solid black borders, and memory (green)
communication with arrows. Execution units are marked in blue.
Software-side concepts are indicated by dashed gray borders. Each
row of 32 threads is called a warp.

to visualize static heat maps directly in Nsight Graphics [NVI21b],
a popular developer tool by NVIDIA.

Although these tools show promising visualizations of general-
purpose memory profiles already, none of them are capable of ex-
tracting and visualizing GPU memory profiles from ray-tracing ap-
plications dynamically, simulating their cache behavior in the hard-
ware domain, and projecting them into the application domain.

3. Preliminaries

In this section, we briefly describe relevant parts of the pipeline that
provide the data for our dashboard. Section 3.1 describes the GPU
architecture and binary instrumentation on a GPU. Reuse distances
are defined and introduced in section 3.2. In section 3.3, we briefly
introduce the foundations of single-hit-point ray tracing.

3.1. Graphics Processing Unit

Architecture Figure 2 shows a compact sketch of most NVIDIA
GPU architectures. Other vendors have similar architectures, but
use a different terminology. The GPU comes with DRAM attached
to an L2 cache. Their L1 cache sits on each streaming multiproces-
sor (SM) and is connected to the L2 cache. Each warp consists of
32 threads and communicates with the L1 cache, which, however,
can optionally be bypassed. Blocks are used as a software-side con-
cept for concurrent scheduling of (multiple) groups of threads to an
SM. The grid consists of the set of blocks.

Binary Instrumentation Binary Instrumentation is a technique to
insert a user-specified instrumentation function into the program
during run-time, before or after a specific low-level assembly in-
struction, while still maintaining correct program execution. In or-
der to achieve this, first, the instrumentation tool enables instruc-
tion selection by providing a detailed list of instructions and their
operands. Then, the selected instruction is replaced with a jump in-
struction to a so-called trampoline. This trampoline then backs up

Time step 0 1 2 3 4

Reference 0 1 1 2 0
Reuse distance ∞ ∞ 0 ∞ 2

Table 1: Exemplary reuse distance calculations given their access
time and reference. Time step 4 shows that only unique memory
references are taken into account. The reuse distance at time step
4 (solid border) is calculated by counting the entries with a dashed
border.

the state, calls the provided instrumentation function, and lastly re-
stores the state. Afterwards (or beforehand, depending on the inser-
tion point), it executes the original replaced instruction and jumps
back to the original program. This technique enables tracking mem-
ory references, making debugging and profiling very prominent use
cases. Recently, this technique has also been officially introduced
to GPUs using the NVBIT [VSNK19] binary instrumentation tool,
which we also use in this work.

3.2. Reuse Distances

The reuse distance is defined as the number of unique mem-
ory references occurring between accesses of two equal references
[DZ03]. Traditionally, reuse distances are also called LRU stack
distances because they implement an LRU stack, counting elements
between its top and the position of the address that is potentially
already in the stack. More efficient algorithms use splay trees in
order to reduce computational complexity [DZ03]. Table 1 shows
exemplary reuse distances for a small set of memory references and
illustrates how to calculate them.

3.3. Ray Tracing

GPUs traditionally have been optimized for the graphics pipeline
(i.e. rasterization). Despite rasterization being more efficient for
simple 3D scenes, renderers become extremely complex to imple-
ment for photorealistic scenes. Ray tracing [App68; Whi79] solves
this by casting rays originating from each pixel in the image plane
through the camera model into the scene, collecting primitives in-
tersecting these rays. As intersecting each primitive with each ray
becomes inefficient for small input meshes already, bounding vol-
ume hierarchies (BVHs) can be used to reduce unneccessary face
intersections. These BVHs are tree data structures that recursively
subdivide space using bounding volumes, preventing rays from in-
tersecting inner bounding volumes and triangles.

4. Memory Trace Extraction

Our toolset consists of two main components; a profiler and a dash-
board. The profiler extracts memory accesses from the program
(section 4.1) and precalculates the computationally intensive cache
model (section 4.2), whereas the dashboard focuses on the presen-
tation of this data. In this section, we will focus on the profiler
whose pipeline is shown in fig. 3.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

9



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

Ray-tracing GPU
binary

Binary
instrumentation

Offset extraction
Reuse distances,

SDCM
Prequantization Data export

allocation descriptions

mesh

Figure 3: The profiler’s internal pipeline. The exported data can subsequently be read by our dashboard.

4.1. Reference Tracing

Our profiler, which we intend to be used as a wrapper for ray-
tracing programs, first traces memory references followed by a
cache simulation. It uses NVBIT in order to inject an instrumen-
tation function before every low-level assembly instruction that in-
cludes a memory reference operand. For each warp, our instrumen-
tation function then extracts 32 memory references r, 32 lane pred-
icates and the SM identifier from the device and streams it to the
host system. We fetch this data warp-wise, since this is the natural
granularity of low-level assembly instructions. As a thread within
a warp may diverge, each instruction with side effects uses a predi-
cate vector in order to prevent execution on the corresponding lane.
Analogously, we discard memory references with a negative predi-
cate on the host system.

In order to assign these references to their corresponding alloca-
tion and enable further processing, we introduced a programming
interface for the ray tracer itself that marks allocations, the list of
bounding volumes, vertices, faces, and the frame buffer with a rep-
resentative name and the size of their elements ae. This way, we can
easily distinguish memory references and identify them with their
actual allocation. However, if the source code of the ray-tracing
program is not available, allocations can also be annotated auto-
matically by analyzing the type of access (load, store) onto them as
well as by the traffic involving them. For example, frame-buffer ac-
cesses exclusively receive write operations. Given the start address
as of an allocation and the size of an element, we can then calculate
the element-wise offset o within the allocation in eq. (1).

o = (r−as)/ae (1)

4.2. Cache Model

Our profiler can then compute reuse distances Di based on these
offset values for faces and bounding volumes (henceforth referred
to as scene elements). In order to simulate the behavior of L1 and
L2 caches separately, we compute an SM-wise reuse distance for
the L1 cache and an SM-independent reuse distance for the L2
cache. For L1 reuse distance computation, we first allocate as many
splay trees as there are SMs on the device. Then, as memory ac-
cesses occur, we update the tree that corresponds to the SM that
caused the memory access in order to simulate the on-chip cache
behavior. Both reuse distances are calculated at cache-line granu-
larity, i.e. 128 B for L1 reuse distances and 32 B for L2 reuse dis-
tances. As element accesses may overlap multiple cache lines due
to misalignment, we may need to compute multiple reuse distances

for single-element accesses that are accumulated later in this sec-
tion.

In contrast to bounding volumes, faces consist of a set of vertices
forming a polygon. We assume triangular polygons and an indexed
triangle list in our system. Thus, every face-loading procedure re-
sults in loading three vertex indices followed by their coordinates.
In order to depict this hierarchical loading procedure, we capture
reuse distances for faces and additionally their vertices, then accu-
mulate them together.

After computing all reuse distances, we use the stack distance
cache model (SDCM) [AHH89] in order to compute cache-hit
probabilities for each cache line that has been accessed by the ele-
ment, given the number of cache blocks B and its associativity A in
eq. (2).

pi =
A−1

∑
a=0

(
Di

a

)(
A
B

)a(
1− A

B

)Di−a

(2)

We then accumulate the SDCM metrics by averaging [ABC*20]
every cache line that has been accessed by an element (referred to
as Prequantization in fig. 3); this is done independently for either
cache in eq. (3).

s =
N

∑
i=1

pi, pavg =
s
N

(3)

Our memory trace extractor then stores a list of tuples
(i,o,sL1,sL2,N) for further visualization steps. Note that the ex-
tractor stores the sum and divisor separately to be able to correctly
apply further accumulations in the visualization. To be able to show
the mesh during visualization, we also need to store all input data
prior to rendering in the resulting file. We devised a simple and
compact binary file format that encodes this information and can
easily be interpreted by our web dashboard.

5. Visualization Dashboard

This section describes the graphical part of our visualization. First,
we conduct a requirements analysis in section 5.1 and a task analy-
sis in section 5.2. In section 5.3, we describe the structure of the
dashboard. In section 5.4, we then explain any further transfor-
mations to the profiling data and how the dashboard aggregates
it. Finally, we describe the main part of our dashboard—the mesh
viewer—in section 5.5, and our visualization of frame buffer ac-
cesses in section 5.6.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

10



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

in
sp

ec
to

r

Bunny.trace
Sponza.trace

Open file

(a) Startup

in
sp

ec
to

r

Loading. . .

(b) Loading

in
sp

ec
to

r

(c) Task 1

in
sp

ec
to

r

(d) Task 2

in
sp

ec
to

r

(e) Task 3

Figure 4: Overview over tasks and initialization of our dashboard.
The top row shows the selection and loading procedure of mem-
ory traces. The bottom row shows the tasks of our visualization. (c)
shows SDCM values mapped onto mesh parts that receive accesses
within the current frame. In (d), the mesh viewer points to an iden-
tified region of interest. (e) shows the same mesh region using a
different ray tracer configuration, enabling comparison with (d).

5.1. Requirements

The domain experts that our dashboard is targeting are software
architects creating and optimizing ray-tracing applications. These
software architects usually aim to reduce the number of mem-
ory accesses to the DRAM by generating more efficient BVHs
[WSWG13], reducing memory blocking by improving the mem-
ory layout [WMZ22] or changing the work distribution [AL09;
DGP04]. Relying solely on general-purpose profiling values for
optimizing ray-tracing applications can be time-consuming and re-
quires deep knowledge of possible effects caused by individual op-
timizations. A visualization tool should be able to support devel-
opers in finding and identifying possible memory communication
bottlenecks in their ray-tracing applications in a fine-grained man-
ner. This tool should visualize and rely on already well-established
profiling metrics such as L1 and L2 hit rates that should correspond
with metrics from the standard profilers by hardware vendors.

This leads to the following requirements for our dashboard:

(R1) Visualization. The user should be able to see a visualization
of all available metrics mapped onto the mesh geometry and
BVH boundaries. Especially, the SDCM values should corre-
spond with the values of general-purpose GPU profilers un-
der the same ray-tracing configuration.

(R2) Exploration. The user should be able to change the viewport
orientation and the time frame in order to explore regions of
interest.

(R3) Analysis. The user should be able to compare memory pro-
files with one another in order to see differences between in-
dividual optimization strategies.

5.2. Task Analysis

Given the requirements from section 5.1, we define the tasks of our
visualization in the following using the typology of BREHMER and
MUNZNER [BM13] for task definitions.

The user can analyze the cache behavior of a ray tracer as fol-

lows: First, the user has an option to load a memory trace (section 4)
using a list of available example memory traces or load custom
generated ones (fig. 4a). After the mesh has been loaded (fig. 4b),
the user can define an appropriate granularity (task 1), which de-
faults to a single frame. Next, in task 2, the user explores regions of
interest by navigating through the mesh by altering the viewport,
navigating through the time series with a slider and changing the
visualized metrics. Finally, the user compares two separate profiles
against each other by switching between them in task 3 in order to
observe differences between them.

Task 1 (Defining Granularity) In the first task, the user produces
a reduced set of memory operations by deriving an aggregation of
them as defined in eq. (3). The user defines the level of granular-
ity by setting the total number of chunks which correspond to the
number of frames in the visualization. A sketch is shown in fig. 4c,
in which we exemplify this behavior as parts of the mesh that re-
main gray, as they do not receive any memory accesses in the initial
frame, given the selected granularity.

Task 2 (Exploring Cache Behavior) In this task, the developer
should be enabled to visually discover cache behavior in regions of
interest of the mesh. Because these regions are not known before-
hand, the user does this by exploring and identifying them. In order
to visualize the cache behavior, we encode SDCM values using a
color map. As our profiler is capable of producing different metrics
(e.g. L1 or L2 cache behavior), the visualization enables the user
to change the desired metric mapped onto the mesh. Finally, our
visualization allows the user to navigate through the mesh using
pointer controls and a slider to change the temporal component. A
sketch of the altered mesh viewer is shown in fig. 4d.

Task 3 (Configuration Comparison) As individual memory op-
timizations result in different cache visualizations generated by
task 2, the user must be able to discover these differences. This
is done by exploring and comparing these differences. To achieve
this, our dashboard is capable of switching between visualizations
of individual memory profiles. Figures 4d and 4e show a sketch of
two configurations that may be compared to each other.

5.3. Structuring

A sketch of our visualization dashboard can be seen in fig. 4, as
well as a screenshot in fig. 5. As the dashboard processes large
amounts of data, we decided to provide immediate visual feedback
for most latency-prone user interactions, as this approach has been
shown to reduce user frustration [VBNP16]. The dashboard uses
the reactive programming paradigm to express dependencies be-
tween state variables. It permanently shows a mesh viewer in the
background that provides the visualization of the extracted mem-
ory and cache trace. Additionally, an inspector is shown in a side-
bar, providing statistical information about the mesh and offering
control over the visualization. Moreover, the inspector visualizes
accesses to the frame buffer and also includes two sliders to cus-
tomize granularity and choose a time step in the series of frames,
explained later in this section. When the user opens the dashboard,
a modal dialog lists exemplary memory traces and provides the user
with a means to open an arbitrary memory trace from the computer.
Upon loading the mesh, it is rendered in the mesh viewer while the
inspector updates its information accordingly.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

11



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

5.4. Data Sources and Aggregation

Our dashboard quantizes the list of memory accesses into a set of
frames that only visualize a fixed and uniformly distributed number
of memory references. While our visualization dashboard defaults
to a single-frame visualization, the inspector gives the user control
to select both the number of frames q as well as the currently active
frame f to control the visualization in the mesh viewer. Memory
references are then distributed equally between frames, retaining
their order. This temporal visualization enables a fine-grained anal-
ysis of caches which are are highly sensitive on the temporal axis
based on realistic scheduling. The time dependency can be implic-
itly disabled by setting q= 1. To align the controls with human intu-
ition, the active frame f can be controlled using a slider [HJM*11].

As mentioned in section 4.2, we calculate the SDCM for L1 and
L2 cache simulation for each scene element. Since the memory
trace potentially includes multiple accesses to the same scene el-
ement within a single frame, our dashboard needs to further ag-
gregate this data. This step is rather simple for the SDCM, as we
apply the same calculations as in eq. (3). In our setting, this effec-
tively means that our visualization represents the conditional prob-
ability that a scene element produces hits during its intersection,
given it has been accessed (i.e. the average probability). Doing this
will effectively use the same calculations as for hit rate estimations
[ABC*20] corresponding with those of standard GPU profilers.

Additionally, our dashboard allows the user to visualize the ac-
cess rate and access order of memory references as these values are
already implicitly encoded in our memory trace. They are obtained
by calculating the access order o = ie/n f from the unique ordering
index ie given by the memory trace (and actually caused by GPU-
internal scheduling (section 4.1)) and the total number of memory
accesses in a frame N f . Access rates r = Ne/N f are calculated based
on the number of per-element accesses Ne in the active frame.

In order to enhance run-time performance, the dashboard further
implements a caching mechanism that automatically stores these
metrics for later on-demand use.

5.5. Cache and Memory Behavior Visualization on the Mesh

The main window is mainly covered by an interactive mesh viewer
based on the OpenGL derivative WebGL. Besides rendering the in-
put mesh from the memory trace, it is capable of visualizing parts
of the bounding volume hierarchy (BVH) and additional parame-
ters.

The viewport of the mesh viewer can be rotated and translated
arbitrarily using pointer controls, and a light source is placed at the
position of the viewport in order to enable scene-independent light-
ing. We set the initial viewport intrinsics and extrinsics to those of
the camera from the memory profile. In order to visualize cam-
era parameters from the profile for an easy assessment of ray di-
rections, we draw the corresponding camera frustum using lines.
At the initial viewport position, the projection of these lines high-
lights relevant regions of the scene that caused ray-triangle inter-
sections. In order to properly visualize the frustum, we find the tri-
angle that is central to the viewport, yielding the distance between
the viewport and the scene, which in accordance with real-world
constraints, is a reasonable upper limit for the far plane.

Mesh The rendered mesh plays an important role in visualizing
memory references. Our dashboard uses a mapping between per-
face metrics from the memory profile to the face color. To achieve
this, it uses a color map to visualize the normalized metrics from
section 5.4 with light-independent shading, making sure that colors
are not distorted. We elaborate on our choice of color maps later
in this section. If a triangle is not accessed, it retains its flat gray
shade, such that it can be clearly distinguished from accessed faces
and denoting that it is inactive.

BVH Our dashboard currently assumes axis-aligned bounding
boxes (AABBs) as the shape of the BVH volume. This is not nec-
essarily a problem, as AABBs are a common data structure for
bounding volumes. However, our dashboard implementation prac-
tically allows for later implementation of other volume shapes. We
draw AABBs as the edges of their spanning cuboid. In contrast
to the mesh, we decided to only show active AABBs within one
frame, lest the visualization be obstructed by needless clutter. We
make sure that triangles and bounding boxes share the same color
scales of visualized metrics for inter-comparability. This is espe-
cially essential for SDCM visualizations, as reuse distances are
computed jointly.

Finally, to give the user a better intuition of scene dimensions,
we also draw color-encoded Cartesian axes that emerge from the
origin. The XZ-plane also includes a grid that makes it easier to
perceive distance and perspective.

Color Mapping We chose Plasma (see left-hand side of fig. 5) be-
cause of its good performance in terms of uniformity and intuitive
ordering [BTS*18] and found its discriminative power used for
comparison of visualizations (R3) to be sufficient [RS21] for our
approach. Additionally, Plasma works particularly well for people
with perceptual deficiencies. We decided against a divergent color
map, as they usually increase from the center; however, hit rates
are generally not balanced around 50 %. We also found that most
divergent color maps conflict with inactive parts of the mesh or the
background, as they contain shades of gray/black near the center or
the poles. While rainbow color maps tend to be more discrimina-
tive, they also tend to be harder to interpret (R1) due to uniformity
issues.

5.6. Frame Buffer

As our profiler automatically extracts writes to the frame buffer, we
decided to include an image matrix in the inspector that visualizes
them. Overall, the visualization is quite straightforward, as it re-
ceives only a single write instruction per pixel, therefore rendering
an analysis of access rates or SDCM visualizations meaningless.
Nevertheless, our dashboard can still visualize the access order. To
accomplish this, our system uses the dimensions of the frame buffer
to draw the matrix where each cell represents a pixel in the frame
buffer. Each pixel represents a value from the color map, identi-
cal to those of triangles or bounding volumes in the mesh viewer,
to represent the relative time when the value was written to the
pixel. This visualization will further highlight which regions of im-
ages are more efficient for ray tracing, as pixels that are written to
earlier involve fewer BVH accesses, which is due to the structure

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

12



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

of BVH algorithms. In contrast to the access order visualization
on the mesh, which is very similar to the frame buffer visualiza-
tion when navigated to the same camera position, the frame buffer
visualization shows pixels after triangles and the BVH have been
traversed. Additionally, the frame buffer visualization also encodes
pixels that did not result in triangle intersections (i.e. triangles in
the background).

6. Discussion

In the following, we discuss the outcome of our visualization dash-
board. Section 6.1 gives an overview of our environment. In sec-
tion 6.2, we discuss the effect of different ray tracer configurations
in our visualization. Section 6.3 further involves the temporal func-
tionality of our dashboard, and section 6.4 presents visualizations
of the frame buffer.

6.1. Data Sets and Environment Parameters

We evaluated our algorithm on two meshes. Both meshes are very
different in their appearance and properties. The Asian Dragon cap-
tured by XYZ RGB is a 3D scanning data set with a resolution of
12 million triangles that are uniformly sized locally, but individ-
ual regions tend to have different resolutions. The Crytek Sponza
mesh (262 267 triangles), however, is a man-made example data set
from a game engine. This leads to very irregularly-shaped triangles,
optimized to result in scenes with fewer triangles overall, making
them more efficient to rasterize. The scene shows Sponza Palace,
where we have placed the camera inside the atrium. We present two
further datasets in section A of the supplemental material.

We use an NVIDIA RTX 2080 Ti GPU to record memory traces
and simulate their cache behavior on the basis of realistic param-
eters of recent GPUs. We assume an L1 cache size of 32 kB with
128-byte lines and an associativity of 64. For the L2 cache, we
assume a capacity of 6 MB with 32-byte lines and an associativ-
ity of 16. Unfortunately, few exact values are published by GPU
vendors [NVI21a], and microbenchmarking experiments contradict
both each other [JMSS19; ABC*20] as well as known values from
the specifications. Thus, we took realistic averages on the basis of
these values. Nevertheless, we do not intend to focus on specific
hardware architectures in this paper, as our visualization was de-
signed to simulate configurable target architectures.

Given the huge set of possibilities of ray-tracing implementa-
tions in terms of physical accuracy, we choose to focus solely on
single-hit-point ray tracers for brevity. However, our visualization
scheme generally works on all ray tracers, as it only depends on
the content of the memory and not on the specific implementa-
tion. The base version of our reference ray tracer implements the
while-while approach on persistent threads [AL09] and scanline
scheduling. We construct a BVH using the surface-area heuristic
on a binary tree stored in DFS layout and store leaves, similar to
the work of WALD, MORRICAL, and ZELLMANN [WMZ22], im-
plicitly. However, we also implemented less optimal configurations
(e.g. median-split, the if-if approach, different memory permuta-
tions) in order to compare the cache rates using our dashboard.

Figure 5 shows a screenshot of our visualization dashboard and

0

0.5

1

Figure 5: Screenshot of our visualization dashboard as schemati-
cally shown in fig. 4. The background shows the mesh viewer in-
cluding a visualization of accessed faces and accessed BVH nodes.
Aside from various access statistics, the inspector also includes a
visualization that illustrates the set of pixels that the ray tracer is
writing to the frame buffer in the current time step. The color bar
on the left shows the Plasma color map used for visualizing our
metrics on triangles and bounding volumes.

its controls. Through the inspector on the right, the user can set
various values such as the time quantization, dividing the list of
memory accesses into the number of frames configured. Setting the
time step then visualizes one of these access frames and updates the
inspector accordingly.

6.2. Effects of Ray Tracer Configurations

To demonstrate the strengths of our dashboard, we implemented
various techniques to influence memory access patterns while using
the same mesh and camera, and making sure that the output image
is the same under all configurations. This allows us to review which
approaches have the potential to produce higher hit rates and where
on the mesh they are higher/lower. Figure 6 shows a comparison
between our different ray tracer configurations which can be done
directly through our dashboard (R3). We employ this comparison
on all memory references, accumulated and visualized onto a single
frame. For an enhanced visible distinctness between geometry hit
rates as well as a comparison for an additional mesh, we would like
to refer to figs. 2 and 3. in the supplemental material

General Observations It can be seen in fig. 6h that the projected
size of triangles (the part of the eye on the top right, for instance)
influences the hit rate. Triangles that are sampled more coarsely
tend to have a better cache rate than triangles that appear smaller
in the projection (i.e. slanted triangles), which also becomes vis-
ible in fig. 6g: Triangles on the sides of the dragon tend to have
lower hit rates than those in the middle. Similar observations can
be made from the BVH visualization: Inner BVH nodes that mainly
include slanted triangles tend to produce inferior hit rates com-
pared to BVH nodes containing camera-facing triangles. Addition-
ally, BVH nodes closer to the root indicate higher hit rates, which
can also be explained by their higher access frequency. It can also
be seen that the implicit occlusion culling of BVHs indeed prevents
most memory accesses on the back of the mesh geometry (fig. 6j).

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

13



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

BVH
Mem. Perm.
Work Distr.
Resolution

(a) SAH
BFS
Scanline, WhWh
512×512

(b) Median-Split
BFS
Scanline, WhWh
512×512

(c) SAH
Random
Scanline, WhWh
512×512

(d) SAH
BFS
Scanline, WhWh
2048×2048

(e) SAH
BFS
Scanline, IfIf
512×512

(f) SAH
BFS
SM-wise scan, WhWh
512×512

(g) Geometry
L1 hit rates,
overview

(h) Geometry
L1 hit rates,
zoomed-in

(i) Geometry
L2 hit rates,
zoomed-in

(j) Geometry
L1 hit rates,
back-facing
side

(k) BVH L1
hit rates

Meas. L1
Meas. L2

67.46 %
94.17 %

67.44 %
94.75 %

61.11 %
89.20 %

72.21 %
98.16 %

62.55 %
87.88 %

68.25 %
93.17 %

Figure 6: Single-frame visualizations using the Asian Dragon. It shows all triangle accesses and their hit rates caused by a render call. The
zoomed-in region (h) of the L1 SDCM visualization (g) near the eye of the dragon is shown for different configurations of the ray tracer.
Similarly, a comparison of L2 visualizations (i) is shown. Memory accesses on back-facing regions (j), and our BVH visualization without
any metric mapped to the faces (k) can be seen in the following rows. Finally, the bottom rows state the L1 and L2 hit rate that we profiled
using NVIDIA Nsight Compute. With the changed parameter highlighted in bold, the columns are compared against the default configuration
(a): The BVH impact (b), the vertex permutation impact (c), the resolution impact (d), and the work distribution impact (e, f).

Nevertheless, some parts of the mesh receive triangle intersection
tests despite their back-facing orientation. This can happen, since
the decision as to which BVH subtree is processed first depends on
the distance from its intersection point to the camera, which may
be inefficient for particular mesh geometries. Generally, our L1 and
L2 visualizations seem to correspond to the bare hit rates from the
NVIDIA profiler (R1), which is to be expected, as the SDCM has
already been used successfully on GPU memory traces [ABC*20].

Vertex Permutation One of the effects we influence is the mem-
ory blocking caused by the memory layout. Instead of changing the
BVH layout [WG16], we focused on the face and vertex cache ef-
ficiency, similar to the work of DEMARLE, GRIBBLE, BOULOS,
and PARKER [DGBP05]. As our tracer uses vertex index lists, we
change the permutation of vertices in memory in two defined ways.
The first order implements a random shuffling operation which
is expected to have weak cache performance. The second order
is locally optimized by traversing the mesh connectivity using a
breadth-first search (BFS) and encoding vertices in traversal order,

which is expected to result in more coherent accesses. The effects
of different memory layouts can be seen in figs. 6a and 6c. Both
visualizations use a BVH constructed with the SAH and use scan-
line scheduling, whereas fig. 6a results from a BFS-sorted memory
layout, and fig. 6c from a randomly shuffled memory layout. As ex-
pected, the randomly shuffled layout results in less efficient cache
utilization, which can be observed in both the NVIDIA profiler
as well as our visualizations of the L1 and L2 caches. Addition-
ally, fig. 6c highlights the strength of our visualization compared
to the bare hit-rate found in standard profilers: It allows to explore
the mesh and locate regions of interest that may behave differently
from one another (R2). More specifically, the remaining visualiza-
tions that also use the BFS-sorted memory layout show a diagonal
pattern on the SDCM metric, especially in figs. 6a and 6b, while the
randomly shuffled layout does not. This effect indicates that there
is still room for improvement in our presented BFS-sorted vertex
permutations in terms of memory coherence, which could possibly
result in a further increase in hit rates. Implementing an optimal
vertex memory layout, however, is beyond the scope of this paper.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

14



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

BVH Heuristic The primary motivation for BVHs is the reduction
of unnecessary memory traffic. However, different types of BVHs
may be more or less efficient in achieving this goal, exhibiting dif-
ferent effects on caches. We implemented a binary BVH using two
different construction heuristics. The more efficient one is the pop-
ular surface-area heuristic. The second one is the more simplistic
median-split strategy. Figures 6a and 6b show that for this partic-
ular mesh, the cache performance of faces is approximately the
same for the median-split-based implementation. This shows that
in this instance, the memory coherence of face accesses does not
suffer from different BVH construction heuristics. Nevertheless,
fig. 3 in the supplemental material demonstrates that hit rates de-
crease when tracing a median-split representation of the additional
San Miguel scene. The effect that median-split-based BVHs tend
to be less efficient can mainly be explained by an increased number
of unnecessary visits of BVH nodes caused by a higher end-point
overlap [AKL13], which also affects BVH cache rates (fig. 6k).

Frame Buffer Resolution As can be seen in fig. 6d, increasing
the size of the frame buffer results in higher cache efficiency on the
geometry. This is caused by higher memory coherence that arises
from a denser sampling of the mesh. The same effect has already
been observed in the eye of the dragon earlier in this section and
now becomes apparent for the entire visible part of the mesh. The
L2 cache in this instance reaches a hit rate of almost 100 %, making
it highly probable that the visible part fully fits into the L2 cache,
and mainly cold misses occur.

Work Distribution We experienced that scheduling has an im-
pact on cache performance, regardless of the specific application.
To demonstrate this in our visualization, we implemented two dif-
ferent scheduling techniques that we integrated directly into the
ray-tracing implementation using the persistent threads method
[AL09]. One configuration allows our ray tracer to use a simple
global scanline scheduling, while in a second configuration, it per-
forms scanline scheduling for each SM independently. By doing
this, we expect to enhance the L1 hit rate, as the L1 cache is lo-
cated directly on the SM. The general-purpose profiler confirms
this expectation with a slight enhancement in the L1 hit rate and a
slight decline in the L2 hit rate, which is further backed up by our
visualization (see fig. 6f, which shows a slightly improved L1 hit
rate on the geometry). The decline in the geometry’s L2 hit rate can
be explained by the fact that when tying scanline scheduling to the
SM, the global memory coherence decreases. In the end, the SM-
wise scanline approach resulted in fewer rays per second, possibly
because of lower L2 performance. Additionally, we implemented
the different work distribution techniques while-while and the less
efficient if-if by AILA and LAINE [AL09]. We can observe that the
if-if implementation leads to worse caching effects, especially on
the BVH.

6.3. Time Series

Figure 1 shows changes in the L1 visualization over time (R2) as
we process the Asian Dragon with the base version of our ray tracer
and the Sponza mesh using a suboptimal random vertex permuta-
tion and the if-if approach. Especially on the Sponza mesh, it can
be seen that the hit rate of a given triangle can drastically change

(a) Frame buffer accesses while ray-tracing the Asian Dragon mesh.

(b) Frame buffer accesses while ray-tracing the Sponza mesh.

Figure 7: Frame buffer accesses from the time series of the Asian
Dragon (a) and the Sponza (b) meshes. Here, we quantized the ac-
cess list to eight frames and omitted the last two due to space limi-
tations. This creates the access bands shown above that give spatial
insight into how the frame buffer is accessed over time during ray
tracing. Brighter colors indicate more recent accesses.

during execution, which has been one of the initial motivations to
introduce a time-based exploration: The averaging operation from
eq. (3) blurs out such effects, making possible misses invisible to
the user. The Sponza visualization also shows that large triangles
are accessed on many frames, as they are included in higher-level
BVH nodes due to their size. In addition, it is visually noticeable
that accessed triangles exhibit higher hit-rate probabilities in subse-
quent frames due to the continously increasing number of memory
accesses onto them. On either mesh, initial frames show bound-
ing volume accesses exclusively. In the following frames, the vi-
sualizations then show that the size of a bounding volume, which
corresponds to its level, decreases during traversal. This behavior
is hardly surprising when keeping the structure of BVH accelera-
tion structures and their traversal in mind. The traversal starts with
bounding volumes until it reaches leaf nodes, which in turn contain
the triangles being accessed. As a result, no triangles are accessed
in the beginning. Additionally, bounding volumes tend to be high-
lighted in brighter shades of yellow compared to faces, denoting
that the former are more likely to be cached.

The figure also shows two versions for each frame of the Asian
Dragon mesh. The larger frames are generated during profiling us-
ing scanline scheduling. The smaller frames on the bottom right
are created via an SM-wise scanline scheduling that assigns a fixed
and disjoined region to each SM and performs an independent scan-
line progression on it. These visualizations clearly illustrate the dif-
ferences between the two scheduling approaches: Regular scanline
scheduling processes the mesh from top to bottom, whereas SM-
wise scheduling subdivides the frame buffer into equally-sized re-
gions, each of which are then processed by one SM each, which
becomes visually apparent through the more distributed access pat-
tern. Figure 1 in the supplemental material demonstrates the time
series visualization on two further meshes and lists the complete set
of frames along with the corresponding single-frame visualization.

6.4. Frame Buffer Visualizations

Visualizations of frame buffer writes show an interesting result as
shown in fig. 7. The mere visualization of pixel write order em-
phasizes the shape through variations in color. The silhouette of

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

15



M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

the object that becomes apparent can be ascribed to the aforemen-
tioned local increase in BVH intersections. The actual 3D appear-
ance is based on the fact that faces in slanted regions tend to result
in deeper BVH levels in order to optimize the surface area of BVH
nodes. The ray tracer then needs to traverse more consecutive BVH
nodes along the viewing direction, resulting in a longer traversal
time. This behavior then accentuates pixels that are located near the
edges of the mesh, highlighted in brighter colors. This phenomenon
acts as a good example of the findings of the previously mentioned
work by SCHULZ, LEVINE, BREMER, et al. [SLB*11]. We already
presented our visualization dashboard mapping hardware perfor-
mance metrics to the application domain. The visualization of the
frame buffer now indicates that the performance metrics from the
hardware domain can give insight into the application behavior, es-
pecially in our BVH-supported ray-tracing environment. Finally,
our visualized frame buffers show an increase of color-mapped ac-
cess order values in the back of the scene, indicating the scanline
scheduling.

7. Conclusion

GPU memory access optimization is an important task in order to
enhance the overall performance of a program. With our toolset,
this can now be supported by a visual aid showing potential bottle-
necks in ray-tracing applications.

Our goal was to present an interactive, web-based visualization
tool for GPU memory profiles that provides visual insight into the
memory and cache behavior of our reference ray tracer by mapping
internal GPU state back onto the 3D object for easy comparison
between different ray-tracing implementations. In order to visual-
ize cache behavior, we successfully used the stack distance cache
model based on reuse distances on both GPU cache layers. Addi-
tionally, we extracted the data to be visualized from a real device
running a ray-tracing kernel without needing to modify it.

In order to evaluate our dashboard, we compared visualizations
of several ray-tracing-related acceleration structures. We found our
visualization to emphasize how ray-tracing implementations and
mesh regions lead to different cache performance. In particular,
we find that faces of a mesh can be cached less efficiently than
bounding volumes due to their memory access frequency, and that
caching depends on the projected triangle size and patterns in the
memory layout that influence caches negatively. Moreover, our
temporal visualization is capable of showing the scheduling behav-
ior of ray tracers. We also presented that the pure visualization of
access rates is not suitable for modeling cache-related information,
making them a suboptimal performance metric to visually profile
ray tracers. Finally, we think of our visualization dashboard as a
good example of inter-domain mapping [SLB*11] of performance
metrics in the field of ray tracing.

Future Work and Limitations In the future, we would like to op-
timize our visualization tool in order to support larger meshes. This
could be done by applying lossy mesh compression techniques to
parts of the mesh that are not accessed, which is true for the ma-
jority of them. Additionally, we would like to further evaluate our
profiler on other ray-tracing applications with more advanced ray-
tracing techniques involving secondary rays. Lastly, as our dash-

board does not necessarily expect GPU memory traces, we also
intend to adapt our visual profiler to CPUs in order to profile ad-
vanced CPU ray-tracing solutions. As a limitation, despite our abil-
ity to visualize hit rates with an already useful degree of detail, it
may still not be possible to find the root cause of cache inefficien-
cies in ray tracers in all cases. It should nevertheless be noted that
the same issue can be observed in general-purpose profilers to a
greater extent. More research is needed to examine such cases and
address them accordingly.

Source Code The source code for this paper is available at
https://github.com/maxvonbuelow/rtmemtracer
and a instance of the dashboard at https://riemann.dev/
gpu-blame.

Acknowledgements

Part of the research in this paper was funded by DFG (Deutsche
Forschungsgemeinschaft) project 407 714 161. We thank the
anonymous reviewers whose comments helped improve this
manuscript.

References
[ABC*20] ARAFA, YEHIA, BADAWY, ABDEL-HAMEED, CHENNUPATI,

GOPINATH, et al. “Fast, Accurate, and Scalable Memory Modeling of
GPGPUs Using Reuse Profiles”. Proceedings of the 34th ACM Inter-
national Conference on Supercomputing. ICS ’20. Barcelona, Spain:
Association for Computing Machinery, June 2020. DOI: 10.1145/
3392717.3392761 2, 4, 6–8.

[ACB*19] ARAFA, YEHIA, CHENNUPATI, GOPINATH, BARAI, ATANU,
et al. “GPUs Cache Performance Estimation using Reuse Distance Anal-
ysis”. 2019 IEEE 38th International Performance Computing and Com-
munications Conference (IPCCC). Oct. 2019, 1–8. DOI: 10.1109/
IPCCC47392.2019.8958760 2.

[AHH89] AGARWAL, A., HENNESSY, J., and HOROWITZ, M. “An Ana-
lytical Cache Model”. ACM Trans. Comput. Syst. 7.2 (May 1989), 184–
215. ISSN: 0734-2071. DOI: 10.1145/63404.63407 2, 4.

[AKL13] AILA, TIMO, KARRAS, TERO, and LAINE, SAMULI. “On Qual-
ity Metrics of Bounding Volume Hierarchies”. Proceedings of the 5th
High-Performance Graphics Conference. HPG ’13. Anaheim, Califor-
nia: Association for Computing Machinery, July 2013, 101–107. DOI:
10.1145/2492045.2492056 2, 9.

[AL09] AILA, TIMO and LAINE, SAMULI. “Understanding the Efficiency
of Ray Traversal on GPUs”. Proceedings of the Conference on High
Performance Graphics 2009. HPG ’09. New Orleans, Louisiana: Asso-
ciation for Computing Machinery, 2009, 145–149. DOI: 10.1145/
1572769.1572792 2, 5, 7, 9.

[App68] APPEL, ARTHUR. “Some Techniques for Shading Machine Ren-
derings of Solids”. Proceedings of the April 30–May 2, 1968, Spring
Joint Computer Conference. AFIPS ’68 (Spring). Atlantic City, New
Jersey: Association for Computing Machinery, 1968, 37–45. DOI: 10.
1145/1468075.1468082 3.

[BM13] BREHMER, MATTHEW and MUNZNER, TAMARA. “A Multi-
Level Typology of Abstract Visualization Tasks”. IEEE Transactions on
Visualization and Computer Graphics 19.12 (2013), 2376–2385. DOI:
10.1109/TVCG.2013.124 5.

[BTS*18] BUJACK, ROXANA, TURTON, TERECE L., SAMSEL,
FRANCESCA, et al. “The Good, the Bad, and the Ugly: A Theoretical
Framework for the Assessment of Continuous Colormaps”. IEEE
Transactions on Visualization and Computer Graphics 24.1 (Aug.
2018), 923–933. DOI: 10.1109/TVCG.2017.2743978 6.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

16

https://github.com/maxvonbuelow/rtmemtracer
https://riemann.dev/gpu-blame
https://riemann.dev/gpu-blame
https://doi.org/10.1145/3392717.3392761
https://doi.org/10.1145/3392717.3392761
https://doi.org/10.1109/IPCCC47392.2019.8958760
https://doi.org/10.1109/IPCCC47392.2019.8958760
https://doi.org/10.1145/63404.63407
https://doi.org/10.1145/2492045.2492056
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2017.2743978


M. von Buelow et al. / Memory and Cache Visualization of Ray Tracers

[CR11] CHOUDHURY, A. N. M. IMROZ and ROSEN, PAUL. “Abstract
visualization of runtime memory behavior”. 2011 6th International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT). Sept. 2011, 1–8. DOI: 10 . 1109 / VISSOF . 2011 .
6069452 2.

[DGBP05] DEMARLE, DAVID E., GRIBBLE, CHRISTIAAN P., BOULOS,
SOLOMON, and PARKER, STEVEN G. “Memory sharing for interactive
ray tracing on clusters”. Parallel Computing 31.2 (2005). Parallel Graph-
ics and Visualization, 221–242. DOI: 10.1016/j.parco.2005.
02.007 8.

[DGP04] DEMARLE, DAVID E., GRIBBLE, CHRISTIAAN P., and
PARKER, STEVEN G. “Memory-Savvy Distributed Interactive Ray Trac-
ing”. Eurographics Workshop on Parallel Graphics and Visualization.
The Eurographics Association, 2004. DOI: 10 . 2312 / EGPGV /
EGPGV04/093-100 2, 5.

[DZ03] DING, CHEN and ZHONG, YUTAO. “Predicting Whole-Program
Locality through Reuse Distance Analysis”. SIGPLAN Not. 38.5 (May
2003), 245–257. DOI: 10.1145/780822.781159 2, 3.

[HJM*11] HAO, MING, JANETZKO, HALLDOR, MITTELSTÄDT, SEBAS-
TIAN, et al. “A Visual Analytics Approach for Peak-Preserving Predic-
tion of Large Seasonal Time Series”. Comput. Graph. Forum 30 (June
2011), 691–700. DOI: 10.1111/j.1467-8659.2011.01918.
x 6.

[IGJ*14] ISAACS, KATHERINE E., GIMÉNEZ, ALFREDO, JUSUFI, ILIR, et
al. “State of the Art of Performance Visualization”. EuroVis - STARs. The
Eurographics Association, 2014. DOI: 10.2312/eurovisstar.
20141177 2.

[JBC*15] JUCKELAND, GUIDO, BRANTLEY, WILLIAM, CHAN-
DRASEKARAN, SUNITA, et al. “SPEC ACCEL: A Standard Application
Suite for Measuring Hardware Accelerator Performance”. High Per-
formance Computing Systems. Performance Modeling, Benchmarking,
and Simulation. Springer International Publishing, 2015, 46–67. DOI:
10.1007/978-3-319-17248-4_3 2.

[JMSS19] JIA, ZHE, MAGGIONI, MARCO, SMITH, JEFFREY, and
SCARPAZZA, DANIELE PAOLO. “Dissecting the NVidia Turing T4 GPU
via Microbenchmarking”. CoRR (Mar. 2019). arXiv: 1903.07486 7.

[MB90] MACDONALD, DAVID J. and BOOTH, KELLOGG S. “Heuris-
tics for Ray Tracing Using Space Subdivision”. Vis. Comput. 6.3 (May
1990), 153–166. DOI: 10.1007/BF01911006 2.

[NAW*96] NAGEL, WOLFGANG E., ARNOLD, ALFRED, WEBER,
MICHAEL, et al. “VAMPIR: Visualization and Analysis of MPI Re-
sources”. Supercomputer 12 (1996), 69–80. DOI: 2128/11887 2.

[NVI21a] NVIDIA CORPORATION. “CUDA Programming Guide”.
(2021). URL: https://docs.nvidia.com/cuda/cuda-c-
programming-guide 7.

[NVI21b] NVIDIA CORPORATION. “Nsight Graphics”. (2021). URL:
https://developer.nvidia.com/nsight-graphics 3.

[PBD*10] PARKER, STEVEN G., BIGLER, JAMES, DIETRICH, AN-
DREAS, et al. “OptiX: A General Purpose Ray Tracing Engine”. ACM
Trans. Graph. 29.4 (July 2010). DOI: 10 . 1145 / 1778765 .
1778803 2.

[PKGH97] PHARR, MATT, KOLB, CRAIG, GERSHBEIN, REID, and HAN-
RAHAN, PAT. “Rendering Complex Scenes with Memory-Coherent Ray
Tracing”. Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’97. USA: ACM
Press/Addison-Wesley Publishing Co., 1997, 101–108. DOI: 10.1145/
258734.258791 2.

[Ros13] ROSEN, PAUL. “A Visual Approach to Investigating Shared and
Global Memory Behavior of CUDA Kernels”. EuroVis ’13. Leipzig,
Germany: The Eurographs Association & John Wiley & Sons, Ltd.,
2013, 161–170. DOI: 10.1111/cgf.12103 2.

[RS21] REDA, KHAIRI and SZAFIR, DANIELLE ALBERS. “Rainbows
Revisited: Modeling Effective Colormap Design for Graphical Infer-
ence”. IEEE Transactions on Visualization and Computer Graphics 27.2
(2021), 1032–1042. DOI: 10.1109/TVCG.2020.3030439 6.

[SLB*11] SCHULZ, MARTIN, LEVINE, JOSHUA A., BREMER, PEER-
TIMO, et al. “Interpreting Performance Data across Intuitive Domains”.
2011 International Conference on Parallel Processing. 2011, 206–215.
DOI: 10.1109/ICPP.2011.60 2, 10.

[SM06] SHENDE, SAMEER S. and MALONY, ALLEN D. “The Tau Paral-
lel Performance System”. Int. J. High Perform. Comput. Appl. 20.2 (May
2006), 287–311. DOI: 10.1177/1094342006064482 2.

[VBNP16] VARVELLO, MATTEO, BLACKBURN, JEREMY, NAYLOR,
DAVID, and PAPAGIANNAKI, KONSTANTINA. “EYEORG: A Platform
For Crowdsourcing Web Quality Of Experience Measurements”. Pro-
ceedings of the 12th International on Conference on Emerging Net-
working EXperiments and Technologies. CoNEXT ’16. Irvine, Califor-
nia, USA: Association for Computing Machinery, 2016, 399–412. DOI:
10.1145/2999572.2999590 5.

[vdDKTG97] Van der DEIJL, ERIC, KANBIER, GERCO, TEMAM,
OLIVIER, and GRANSTON, ELENA D. “A Cache Visualization Tool”.
Computer 30.7 (July 1997), 71–78. DOI: 10.1109/2.596631 2.

[VSM*18] VASIOU, ELENA, SHKURKO, KONSTANTIN, MALLETT, IAN,
et al. “A Detailed Study of Ray Tracing Performance: Render Time and
Energy Cost”. Vis. Comput. 34.6–8 (June 2018), 875–885. DOI: 10.
1007/s00371-018-1532-8 2.

[VSNK19] VILLA, ORESTE, STEPHENSON, MARK, NELLANS, DAVID,
and KECKLER, STEPHEN W. “NVBit: A Dynamic Binary Instrumen-
tation Framework for NVIDIA GPUs”. Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture. MI-
CRO ’52. Columbus, OH, USA: Association for Computing Machinery,
Oct. 2019, 372–383. DOI: 10.1145/3352460.3358307 2, 3.

[WG16] WODNIOK, DOMINIK and GOESELE, MICHAEL. “Recursive
SAH-Based Bounding Volume Hierarchy Construction”. Proceedings
of the 42nd Graphics Interface Conference. GI ’16. Victoria, British
Columbia, Canada: Canadian Human-Computer Communications Soci-
ety, June 2016, 101–107 8.

[Whi79] WHITTED, TURNER. “An Improved Illumination Model for
Shaded Display”. SIGGRAPH Comput. Graph. 13.2 (Aug. 1979), 14.
DOI: 10.1145/965103.807419 3.

[WMZ22] WALD, INGO, MORRICAL, NATE, and ZELLMANN, STEFAN.
“A Memory Efficient Encoding for Ray Tracing Large Unstructured
Data”. IEEE Transactions on Visualization and Computer Graphics 28.1
(2022), 583–592. DOI: 10.1109/TVCG.2021.3114869 2, 5, 7.

[WSWG13] WODNIOK, DOMINIK, SCHULZ, ANDRE, WIDMER, SVEN,
and GOESELE, MICHAEL. “Analysis of Cache Behavior and Perfor-
mance of Different BVH Memory Layouts for Tracing Incoherent Rays”.
Eurographics Symposium on Parallel Graphics and Visualization. The
Eurographics Association, 2013. DOI: 10.2312/EGPGV/EGPGV13/
057-064 2, 5.

[YBD01] YU, Y., BEYLS, K., and D’HOLLANDER, E.H. “Visualizing the
impact of the cache on program execution”. Proceedings Fifth Inter-
national Conference on Information Visualisation. July 2001, 336–341.
DOI: 10.1109/IV.2001.942079 2.

[YLZ*16] YANG, XIN, LIU, QI, ZHANG, PENGFEI, et al. “DKD: A Fast
k-d Tree Update Design for Dynamic Scenes”. Comput. Animat. Virtual
Worlds 27.3–4 (May 2016), 340–350. DOI: 10.1002/cav.1717 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

17

https://doi.org/10.1109/VISSOF.2011.6069452
https://doi.org/10.1109/VISSOF.2011.6069452
https://doi.org/10.1016/j.parco.2005.02.007
https://doi.org/10.1016/j.parco.2005.02.007
https://doi.org/10.2312/EGPGV/EGPGV04/093-100
https://doi.org/10.2312/EGPGV/EGPGV04/093-100
https://doi.org/10.1145/780822.781159
https://doi.org/10.1111/j.1467-8659.2011.01918.x
https://doi.org/10.1111/j.1467-8659.2011.01918.x
https://doi.org/10.2312/eurovisstar.20141177
https://doi.org/10.2312/eurovisstar.20141177
https://doi.org/10.1007/978-3-319-17248-4_3
https://arxiv.org/abs/1903.07486
https://doi.org/10.1007/BF01911006
https://doi.org/2128/11887
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://developer.nvidia.com/nsight-graphics
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/258734.258791
https://doi.org/10.1145/258734.258791
https://doi.org/10.1111/cgf.12103
https://doi.org/10.1109/TVCG.2020.3030439
https://doi.org/10.1109/ICPP.2011.60
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1145/2999572.2999590
https://doi.org/10.1109/2.596631
https://doi.org/10.1007/s00371-018-1532-8
https://doi.org/10.1007/s00371-018-1532-8
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1145/965103.807419
https://doi.org/10.1109/TVCG.2021.3114869
https://doi.org/10.2312/EGPGV/EGPGV13/057-064
https://doi.org/10.2312/EGPGV/EGPGV13/057-064
https://doi.org/10.1109/IV.2001.942079
https://doi.org/10.1002/cav.1717

