
Eurographics Symposium on Parallel Graphics and Visualization (2020)
S. Frey, J. Huang, F. Sadlo (Editors)

Effective Parallelization Strategies for Scalable, High-Performance
Iterative Reconstruction: Supplemental Materials

Christiaan Gribble1

1Applied Technology Operation, SURVICE Engineering

These supplemental materials provide information for accessing
the source code distribution of our prototype XCT reconstruction
system, summarize key elements of the code, and present scaling
results on the two test platforms omitted from the main text.

Source Code

As noted in Section 3.1 of the main text, we provide the full source
code for the prototype XCT system used to explore the impact of
thread count and reconstruction volume resolution on performance.

Access to the most recent stable release of the system is
available via the project homepage at:

http://www.rtvtk.org/~cgribble/research/
pct-egpgv20/

Additionally, read-only access to the development repository
is available via HTTP with git:

git clone http://www.rtvtk.org/code/pct-
egpgv20.git

Unless otherwise stated directly in the source, this code is
distributed under the BSD 3-Clause License. Please see the
LICENSE file distributed with the source for more information.

The key elements of this source distribution include:

• common/ contains code used in both the reconstruction engine
and the supporting applications, including common data struc-
tures and mathematics primitives.

• engine/ contains code implementing the parallelization strate-
gies for iterative reconstruction highlighted in Section 3 of the
main text.

– Key elements supporting forward projection include:

◦ BasicFP.t implements core functionality for FP op-
erations, either with or without parallel execution via
OpenMP.

◦ SerialFP.h (sFP) implements the serial FP operations
that serve as our baseline FP metric for scaling perfor-
mance.

◦ ParallelFP.h (pFP) implements parallel FP opera-
tions using the OpenMP parallel for construct to exploit
pixel-level parallelism over ray-sum computations.

◦ pvmPrepassFP.h (pvmFP) implements parallel FP
operations with distance computation for pixel spacing
work group assignment using the OpenMP parallel for
construct to exploit pixel-level parallelism and per-voxel
mutexes to ensure correct updates.

◦ vpBaseFP.h implements core functionality for paral-
lel FP operations that use voxel projection to compute
conflict-free task/thread mappings for subsequent parallel
BP operations.

◦ vpaPrepassFP.h (vpaFP) implements computations
for conflict-free task/thread mappings by tracking the
maximum projection extents across all voxels of the re-
construction volume.

◦ vpePrepassFP.h (vpeFP) implements computations
for conflict-free task/thread mappings by tracking the
maximum projection extents across only edge voxels of
the reconstruction volume.

– Key elements supporting backprojection include:

◦ BasicBP.t implements core functionality for BP op-
erations, either with or without parallel execution via
OpenMP.

◦ SerialBP.h (sBP) implements the serial BP operations
that serve as our baseline BP metric for scaling perfor-
mance.

◦ pvmParallelBP.h (pvmBP) implements parallel BP
operations using the OpenMP parallel for construct to ex-
ploit pixel-level parallelism and per-voxel mutexes to en-
sure correct updates.

◦ psParallelBP.h (psBP) implements parallel BP by
assigning tasks to threads using the pixel spacing work
group assignment data computed during FP together with
the OpenMP parallel for construct to exploit pixel-level
parallelism.

• apps/ contains code implementing two utility applications and
a driver program supporting our scalability study.

– volume_gen.cc generates the sinewave synthetic XCT

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

https://orcid.org/0000-0002-1857-2782
http://www.rtvtk.org/~cgribble/research/pct-egpgv20/
http://www.rtvtk.org/~cgribble/research/pct-egpgv20/


C. Gribble / Effective Parallelization Strategies for Scalable, High-Performance Iterative Reconstruction: Supplemental Materials

phantom dataset according to various command line parame-
ters.

– simulate_xct.cc generates simulated XCT projections
of an input volume according to various command line pa-
rameters.

– art.cc executes iterative reconstruction using any one of
the valid FP + BP combinations described in Section 3.1 of
the main text.

• Useful shell scripts include:

– gen_vol.sh generates the complete set of sinewave syn-
thetic XCT phantom datasets used in our scalability study.

– gen_pct.sh generates the complete set of sinewave simu-
lated XCT projections used in our scalability study.

– run_bench.sh executes the full suite of experiments used
in our scalability study.

– cat_results.sh concatenates results of scaling tests into
a single space-delimited text file for post-processing.

• Other helpful files include:

– CMakeLists.txt provides content for compiling our pro-
totype XCT reconstruction system using the CMake build
system.

– LICENSE provides information governing redistribution and
use of source and binary forms of our system.

– README provides instructions for building the code and run-
ning the driver program.

Additional Results

Recall from Section 3.2 of the main text that we execute our ini-
tial performance study using several systems with various hardware
configurations:

• Test Platform #0 (TP0)—a Debian 8.11 system with two Intel
Xeon E5-2699 v3 2.30 GHz processors (36 cores, 72 hardware
threads), 64 GB of RAM, and GCC 7.3.0.

• Test Platform #1 (TP1)—an Ubuntu 18.04 system with two In-
tel Core i7-7820X 3.60 GHz processors (8 cores, 16 hardware
threads), 64 GB of RAM, and GCC 7.4.0.

• Test Platform #2 (TP2)—an Ubuntu 16.04 system with two In-
tel Core i7-7800X 3.50 GHz processors (6 cores, 12 hardware
threads), 64 GB of RAM, and GCC 5.4.0.

In the main text, we include results for only TP0. Here, we include
results for TP1 in Figures 1–4 and for TP2 in Figures 5—8. Gener-
ally speaking, we observe the same trends on these platforms as on
TP0.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



C. Gribble / Effective Parallelization Strategies for Scalable, High-Performance Iterative Reconstruction: Supplemental Materials

Figure 1: TP1 - Reconstruction performance with 1003-voxel reconstruction volume. All five parallelization strategies outperform the serial
baseline when using 8 or 16 threads, with vpeFP + psBP performing best overall; however, with far fewer threads than TP0, strategies
employing per-voxel mutexes (pFP + pvmBP and pvmFP + psBP) simply add overhead and thus underperform the serial baseline at lower
thread counts.

Figure 2: TP1 - Reconstruction performance with 2003-voxel reconstruction volume. As in the 1003-voxel case, vpeFP + psBP performs
best overall, while projecting all voxels (vpaFP + psBP) is simply too costly for even this relatively low-resolution reconstruction volume. As
with TP0, pFP + pvmBP also begins to show some promise for this 2003-voxel reconstruction volume.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



C. Gribble / Effective Parallelization Strategies for Scalable, High-Performance Iterative Reconstruction: Supplemental Materials

Figure 3: TP1 - Reconstruction performance with 4003-voxel reconstruction volume. Here, too, projecting all voxels (vpaFP + psBP)
performs poorly, while pFP + pvmBP becomes more attractive, underperforming vpeFP + psBS by only about 20% with 16 threads.

Figure 4: TP1 - Reconstruction performance with 8003-voxel reconstruction volume. As with TP0, projecting all voxels (vpaFP + psBP)
simply does not scale. In contrast, vpeFP + psBP performs best overall on this platform, but pFP + pvmBP remains viable in situations
involving high-resolution reconstruction volumes.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



C. Gribble / Effective Parallelization Strategies for Scalable, High-Performance Iterative Reconstruction: Supplemental Materials

Figure 5: TP2 - Reconstruction performance with 1003-voxel reconstruction volume. Here, all five parallelization strategies outperform the
serial baseline when using 6–12 threads, with vpeFP + psBP performing best overall; however, as with TP1, strategies employing per-voxel
mutexes (pFP + pvmBP and pvmFP + psBP) simply add overhead and thus underperform the serial baseline at lower thread counts.

Figure 6: TP2 - Reconstruction performance with 2003-voxel reconstruction volume. As in the 1003-voxel case, vpeFP + psBP performs
best overall, while projecting all voxels (vpaFP + psBP) is again too costly for even this relatively low-resolution reconstruction volume. As
with TP0 and TP1, pFP + pvmBP also begins to show some promise for this 2003-voxel reconstruction volume.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



C. Gribble / Effective Parallelization Strategies for Scalable, High-Performance Iterative Reconstruction: Supplemental Materials

Figure 7: TP2 - Reconstruction performance with 4003-voxel reconstruction volume. Projecting all voxels (vpaFP + psBP) continues to
perform poorly, while pFP + pvmBP becomes more attractive, underperforming vpeFP + psBS by only about 25% with 12 threads.

Figure 8: TP2 - Reconstruction performance with 8003-voxel reconstruction volume. As with the lower-resolution volumes, projecting all
voxels (vpaFP + psBP) simply does not scale, vpeFP + psBP performs best overall, and pFP + pvmBP remains viable in situations involving
high-resolution reconstruction volumes.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.


