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Abstract

Iterative reconstruction techniques in X-ray computed tomography converge to a result by successively refining increasingly
accurate estimates. Compared to alternative approaches, iterative reconstruction imposes significant computational demand
but generally leads to higher reconstruction quality and is more robust to inherently imperfect scan data. We explore sev-
eral strategies for exploiting parallelism in iterative reconstruction and evaluate their scalability and performance on modern
workstation-class systems. Results show that scalable, high performance iterative reconstruction is possible with careful atten-
tion to the expression of parallelism in both the projection and backprojection phases of computation.

CCS Concepts

e Computing methodologies — Parallel algorithms; Ray tracing;

1. Introduction

X-ray computed tomography (XCT) is an important visualiza-
tion technique in many medical and industrial imaging scenarios.
Three-dimensional (3D) reconstructions of scanned artifacts are
obtained by computing the distribution of X-ray attenuation coef-
ficients using two-dimensional (2D) projections (i. e., images) pro-
duced by XCT scanners.

XCT data acquisition proceeds by rotating an emission source
and a corresponding detector around the target object to record
the pattern of X-ray emission in the field of view at many angles.
In particular, an X-ray of initial intensity [ is emitted and passes
through an object; the X-ray is attenuated according to the Beer-
Lambert Law and measured as intensity /; at the detector:

I = Iyexp™ fL,U(X)dX’

where u is the attenuation coefficient of the material at location x
and L is the path of the X-ray through the object. The attenuation
coefficient characterizes the rate at which X-rays are weakened by
scattering or absorption as they propagate through the object. In-
tuitively, this coefficient is proportional to the material density at
the corresponding position. Therefore, recovering the coefficients
from projection intensities Iy and /; is equivalent to computing the
density distribution of the object.

Whereas analytic reconstruction techniques exploit properties of
operations in the frequency domain to produce accurate reconstruc-
tions, iterative reconstruction techniques converge to a solution by
successively refining increasingly accurate estimates. Iterative re-
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construction algorithms impose significant computational demand:
a single iteration of the reconstruction imposes one (forward) pro-
jection and one backprojection, as well as intermediate updates;
these steps are in contrast to the single backprojection step in typi-
cal analytic methods. However, iterative algorithms generally lead
to higher reconstruction quality (in terms of both contrast and res-
olution) and are more robust to noisy or sparse projection data. As
such, there is renewed interest in iterative reconstruction, particu-
larly with the introduction of widely available, relatively low-cost
parallel computing platforms.

After a brief review the physical and mathematical basis of XCT,
we explore several strategies for exploiting parallelism in itera-
tive reconstruction and evaluate their scalability and performance
on modern workstation-class systems. Results show that scalable,
high-performance iterative reconstruction is possible with careful
attention to the expression of parallelism in both the projection and
backprojection phases of computation.

2. Background

XCT data acquisition consists of directing X-rays through a volume
for several source-detector orientations and measuring the decrease
in intensity along a series of linear paths as characterized by the
Beer-Lambert Law. XCT reconstruction then proceeds by comput-
ing the distribution of X-ray attenuation within the volume from
the scan data. We review the physical and mathematical basis of
XCT before exploring several strategies for exploiting parallelism
in iterative reconstruction in Section 3.
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2.1. Data Acquisition

The development of XCT reconstruction techniques is directly
related to the progression of scanning technologies. The earliest
scanners used parallel-beam geometries (Figure 1a), but later im-
provements led to fan-beam geometries (Figure 1b). Reconstruc-
tions from projections obtained with these scanners are typically
stacked 2D cross-sections, rather than full 3D volumes, and often
lead to poor resolution along the axial direction. Modern scanners
enable continuous data acquisition—and thereby improved image
quality—by continuously rotating the gantry while simultaneously
translating the target object, leading to a spiral or helical locus.
Continued developments in such spiral or helical scanners include
multi-slice (or multi-detector) devices. Here, multiple rows of de-
tectors capture multiple cross-sections simultaneously. In contrast,
modern cone-beam geometries comprise a large number of detec-
tor rows such that coverage in the axial direction is comparable to
coverage across the transverse direction (Figure 1c).
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Figure 1: Common XCT scanner geometries. Early XCT scanners
used parallel-beam geometries (a), but later improvements led to
fan-beam geometries (b). Modern cone-beam geometries comprise
an area detector (c).

X-ray photons emitted from a radiation source naturally form a
cone emanating from that source. Collimators are used to restrict
the X-ray beam to a single line (parallel-beam) or set of lines (fan-
beam) on the detector plane. In contrast, cone-beam geometries
comprise area (2D) detectors, which reduce scan time and improve
X-ray energy efficiency. For small cone angles, fan-beam recon-
struction techniques are typically adapted for cone-beam geome-
tries. However, for beams subtending large areas on the detector
(typically ten degrees or more), reconstruction techniques designed
explicitly for cone-beam geometries must be applied.

2.2. Reconstruction

A more explicit view of the XCT reconstruction process outlined
in Section 1 is given by the following equation:

= [ p(x)dx

In other words, given input and output X-ray intensities Iy and /j,
respectively, the line integral of the object attenuation coefficients
along the ray path can be determined. The task of XCT reconstruc-
tion is to calculate the attenuation coefficient function u(x) at var-
ious locations x based on initial and measured intensities Iy and I
for a collection of different source-detector orientations.

Radon Transform. Consider the 2D cross-section depicted in
Figure 2. Let f(x,y) be the target object; further, parameterize each

Figure 2: The Radon transform. The line integral Py(t) is called
the Radon transform of the function f(x,y). Intuitively, Py(t) is the
sum of values f(x,y) at each point t along line AB. (Schematic
after Figure 3.1 in Principles of Computerized Tomographic Imag-
ing [KS88])

line integral by (0,7). Then, line AB in Figure 2 is:

t =xcos0+ysin6.

Using this relationship, define the line integral Py() as:

Py(1) = fyo,) S (x:)dL.

The function Py(t) is called the Radon transform of the function
f(x,y). Intuitively, Pg(¢) is simply the sum of values f(x,y) at each
point 7 along line AB, sometimes called the ray-sum.

In practice, Py(t) and f(x,y) are functions of discrete variables—
the variables 6, ¢, x, and y take on only a finite number of values.
In XCT, each point of measurement on the detector, for each pro-
jection angle, is a bin, or ray-sum, and the elements of each 2D
cross-section are pixels. The number of bins N, equals the number
of points of measurement Ny multiplied by the number of angles
Ny. The raw data captured by XCT is represented by an Ny XNy
image called a sinogram, as shown in Figure 3.

Values in a sinogram and the corresponding reconstructed slice
can be considered as matrices or vectors. It can be shown (see, for
example, Appendix 3 in Bruyant’s article [Bru02]) that vector P
is the matrix product of the forward projection operator A and
vector f:

P=Af.
Thus, the value P; for any bin i is a weighted sum of the n pixel

values in the image:

Pi=ajfi+anfr+...+anfn =Y aifi

This equation encodes a discrete formulation of the projection
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Slice Sinogram

Figure 3: A sinogram. Sinograms provide a visual representation
of raw XCT data. Here, the left panel shows a 256 x256 slice of
the Shepp-Logan phantom [SL74], while the right panel depicts
the corresponding sinogram, with 256 pixels per row (s) and 256
uniformly sampled angles (0). (Sinogram image originally pub-
lished in JNM by P. Bruyant [Bru02]. (©) 2002 SNMMI. Avail-
able via http://jnm.snmjournals.orqg/content/43/
10/1343.10ong.)

operation. Importantly, this equation also leads to a discrete form
of the reconstruction process:

f=A""'p.

This system expresses the reconstructed slice as a matrix product
of the inverse projection operator A~ and measured values P.

In theory, direct methods exist to solve the system f = A~'p,
but a direct approach is impractical for several reasons:

o A”! may not exist.
o A7! may not be unique.
o A”! may be ill-conditioned.

In practice, A"l is (at least) ill-conditioned, a result of the mea-
surement noise inherent to XCT data acquisition. Moreover, matrix
inversion is computationally expensive, even for relatively small
matrices. As a result, other more efficient methods must be used to
solvef:A_lP.

Backprojection. The techniques necessary to overcome the draw-
backs of a direct solution to f = Alp rely on the backprojection
operator,

b(x,y) = Jg P(8,1)d6,

which represents the ray-sums of all rays passing through any point
(x,y). As with the projection operator, b(x,y) can be discretized,
leading to:

b(x,y) = Xi_1 P(6x, ;) A8,

where n is the number of projections acquired over & radians, 0y, is
the k' angular position of the detector, 7, is the K" location along
the detector, and A is the angular step between two successive
projections.
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Importantly, backprojection is not simply the inverse of forward
projection: applying backprojection does not yield f(x,y), but a
blurred version of f(x,y). As a result, practical methods strive to
reduce or eliminate artifacts due to blur.

In particular, one solution to decrease blur first backprojects the
measured data using a summation algorithm and then filters the re-
sult; this approach is therefore called backprojection filtering. An
alternative approach reverses the order of backprojection and fil-
tering, leading to the filtered backprojection (FBP) method. FBP is
most commonly used in commercial XCT scanners, for which the
Feldkamp-Davis-Kress (FDK) algorithm [FDK84] and its deriva-
tives are the most popular.

Work to accelerate FDK-type FBP algorithms follows the his-
torical trends common to high performance computing techniques
applied over the past 30 years, including low-level algorithmic
improvements for core operations; exploitation of parallelism via
threaded or vector processing, distributed computing, and modern
programmable graphics processing units (GPUs); and, dedicated
hardware architectures or field programmable gate array imple-
mentations. Noteworthy examples from the literature include an
early single-instruction, multiple-data (SIMD) implementation for
CPUs [YNCO1], a more recent CUDA implementation for NVIDIA
GPUs [MMBL12], and a hybrid MPI/CUDA implementation for
distributed memory systems [BAL"13]. Turbell [Tur01] provides
an excellent summary of several FDK-type algorithms for FBP.

In contrast to these analytic methods, iterative reconstruction
techniques converge to a solution by successively refining increas-
ingly accurate estimates. The various iterative algorithms, which
include families of both algebraic and statistical reconstruction
techniques, are distinguished by the way in which differences be-
tween estimates and measurements are computed and applied to
determine the estimate for the next iteration.

For example, the algebraic
(ART) [GBHT70], is expressed by:

reconstruction  technique

FED fjgk) N gf—):%lﬁf‘)

J

bl

where f;k) and fl(.kH) are the current and next estimates, respec-
tively; g; is the measured number of counts for ray i; and, for the

K" iteration, Zy:l f;lk ) is the sum of counts in the N pixels along
ray i. In this case, the next estimate is determined by adding a cor-
rection term, computed as the difference between the measured and
estimated projections, to the current estimate.

As with analytic techniques, work to accelerate iterative algo-
rithms follows historical trends in high performance computing.
From low-level algorithmic improvements to exploitation of par-
allelism at many levels, optimization of iterative algorithms has
improved performance such that these techniques are very nearly
ready for practical application in clinical and industrial imag-
ing scenarios. Noteworthy examples from the literature include
an early SIMD implementation of ray-driven forward projection
for CPUs [CSB*99] and a CUDA implementation for NVIDIA
GPUs [CCHW11]. Other work examines the use of accelerated ray-
tracing methods (RTM) for both projection and backprojection on
contemporary GPUs [NJL13,NL15], while Flores et al. [FVM™*13]
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explore a linear system formulation in CUDA. The parallelization
strategies we explore in Section 3 leverage RTM for both projection
and backprojection. Though we explore thread-level parallelism for
multicore CPUs in this work, these strategies can be applied on a
per-lane, rather than per-thread, basis to leverage vector processing
on modern CPUs and GPUs.

Treibig et al. [THH™13] investigate the impact of low-level al-
gorithmic optimizations, parallelization, SIMD vectorization, and
microarchitectural features for backprojection performance on con-
temporary multicore CPUs. Vanhove et al. [VVHV13] present a
similar study in which contemporary GPU implementations of sev-
eral iterative reconstruction algorithms are compared to determine
the fastest alternative with favorable spatial-resolution/noise trade-
offs. These early studies provide a useful point of reference for un-
derstanding iterative reconstruction performance within the evolu-
tion of modern CPUs and GPUs; our scalability study adds another
data point by providing results for modern multicore CPUs (with
possible extension to modern GPUs, if desired).

Molina et al. [dAMSGB*18] evaluate large volume (10243
voxels) reconstruction problems using ray-driven projection and
voxel-driven backprojection, demonstrating up to 48 x improve-
ment over an OpenMP implementation for modern CPUs. Big-
uri et al. [BLB*19] introduce a partitioning strategy for both pro-
jection and backprojection that enables efficient single-CPU/multi-
GPU execution with arbitrarily-large volumes within the To-
mographic Iterative GPU-based Reconstruction (TIGRE) Tool-
box [BDHS16], a collection of methods for XCT reconstruction
in MATLAB using CUDA. In this work, we evaluate performance
with reconstruction volumes up to 800° voxels on several differ-
ent (single-node, shared-memory) multicore CPU systems; how-
ever, these strategies can be combined with other work- or data-
distribution algorithms to implement iterative reconstructive across
multiple nodes in a distributed-memory system, if desired.

For additional information concerning the role of paral-
lelism and iterative algorithms in contemporary XCT recon-
struction, the reader is referred to excellent review articles by
Ni et al. [NLHWO06] and by Beister et al. [BKK12], which explore
these topics in more detail.

3. Parallelization Strategies

Iterative reconstruction algorithms have high computational de-
mand but generally lead to higher reconstruction quality, are more
robust to noisy or sparse projection data, and—as we show here—
can be explicitly parallelized to scale gracefully. Our fastest itera-
tive reconstruction approaches also offer high performance: recon-
structions involving 300 million or more ray-sums complete in sec-
onds or minutes using modern workstation-class systems, thereby
allowing users to quickly identify features of interest, ultimately
reducing time-to-insight across various imaging scenarios.

We are motivated by an industrial imaging application designed
to support near real-time decision-making in non-destructive test-
ing and dimensional metrology. Key system parameters and per-
formance targets for this application are outlined in Table 1. These
goals serve as the primary metrics in our performance study and
will ultimately guide deployment decisions regarding the imaging

and visualization pipeline in our target application. In particular,
any XCT reconstruction technique intended to inform decisions in
our target application must process about 80—160 projections in two
minutes (or about 0.6—1.3 projections per second) to satisfy our
near real-time performance constraint.

Parameter Goal
Reconstruction interval 2 minutes
Projections per iteration | 8-16 images

Maximum iterations 10 iterations

Spatial extent 12m’
1:400 (3 mm°)
2 MP (1600 x 1200 pixels)

Feature size
Image resolution

Table 1: Key performance and fidelity goals. We are motivated by
an industrial imaging application designed to support near real-
time decision-making in non-destructive testing and dimensional
metrology. The values here outline the key performance and fidelity
goals for our target application.

We seek to capitalize on the computing resources afforded by
widely available, relatively low-cost parallel computing platforms
for our target application; as such, we design and implement sev-
eral forward projection (FP) and backprojection (BP) variants to
support iterative reconstruction, and we evaluate their scalability
and performance on modern workstation-class systems.

To begin, we observe that ray-sum computations in the FP opera-
tion are trivially parallel, as the corresponding computations do not
update reconstruction volume voxels, but only per-pixel ray-sums;
as a result, rays through each detector pixel (s,#) can be propagated
simultaneously without use of low-level synchronization primitives
or significant concern for high-level task/thread assignments.

In contrast, the BP operator updates each reconstruction volume
voxel (x,y,z) through which rays corresponding to each detector
pixel (s,r) pass. As a result, BP is not trivially parallel, and care
must be taken when attempting to exploit parallelism during BP.

A straightforward approach to parallel BP uses low-level syn-
chronization primitives, e. g., mutexes, to serialize updates to data
shared among threads. Though correct, contention for shared data
may limit the effectiveness of this approach in practice.

An alternative parallel BP approach instead assigns tasks, i.e.,
rays through detector pixels (s,7), to simultaneously executing
threads such that no two rays within the same group pass through
the same voxel (x,y,z). In particular, the pixel spacing work group
assignment approach determines this conflict-free task/thread map-
ping by computing the maximum distance between any two rays
that pass through the same voxel (x,y,z) across the entire detector
plane. BP tasks are then assigned to threads such that the distance
between rays, d(s,1), is greater than the maximum distance for the
corresponding axis, dmax(s,1), as depicted in Figure 4.

Another approach to determine conflict-free task/thread map-
pings leverages voxel projection. In this case, the corners of each
reconstruction volume voxel (x,y,z) are projected to the detector
plane, and the maximum projection extents are tracked across all
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d(s, t) > dpa(s, t)

. Work group 0
|:| Work group 1
. Work group 2

Detector

Figure 4: Backprojection with pixel spacing work group assign-
ment. We implement conflict-free parallel BP without low-level syn-
chronization by assigning BP tasks to threads such that no two rays
within the group pass through the same voxel. Here, the pixel spac-
ing used in work group assignment, d(s,t), is greater than the max-
imum distance on the detector plane between any two rays that pass
through the same voxel, dmax(s,t).

voxels to determine the pixel spacing distance, d(s,7). BP tasks are
then assigned to threads in the manner described above.

Finally, we observe that, for any particular source-detector ori-
entation, the set of voxels generating maximum distances will nec-
essarily incorporate at least one voxel along an edge of the recon-
struction volume. As such, potentially significant computational ef-
ficiency is gained by projecting only edge voxels, rather than every
voxel in the reconstruction volume, to compute these distances.

Thus, by carefully assigning BP tasks to simultaneously execut-
ing threads such that no two rays within the group pass through the
same voxel, we can implement conflict-free parallel BP without
low-level synchronization mechanisms.

We exploit these observations in the implementation of the pro-
totype XCT reconstruction system described below.

3.1. Implementation

We implement the FP and BP phases of a prototype XCT recon-
struction system based on ART [GBH70] using thread-level par-
allelism expressed with OpenMP [DM98, Opel5]. ART has an in-
tuitive formulation that computes ray-sums directly, and the algo-
rithms serves as the basis of more advanced algebraic and statistical
iterative reconstruction techniques—our prototype system can thus
be extended for more advanced applications, if necessary.

Likewise, OpenMP provides an open, portable, and widely sup-
ported mechanism for expressing parallelism at different gran-
ularities; we leverage thread-level parallelism in the prototype
implementation described here, but other approaches, e.g., vec-
tor processing via SIMD operations, or even a combined vector-
ized/threaded approach, could be used to exploit the observations
described above.

We summarize each of the FP and BP implementations below. To

(© 2020 The Author(s)
Eurographics Proceedings (© 2020 The Eurographics Association.

support reproducibility and further experimentation, we also pro-
vide the full source code for our prototype XCT system online;
please see the supplemental materials accompanying this paper for
more information about accessing the code.

Serial FP (sFP). The sFP approach employs a simple computation
scheme in which ray-sums are computed by serially propagating
rays corresponding to each detector pixel (s,#) through the recon-
struction volume.

This scheme does not leverage parallelism in any way, and rep-
resents the baseline FP metric for scaling performance.

Parallel FP (pFP). As noted, ray-sum computations in FP are triv-
ially parallel, so the pFP scheme leverages the OpenMP parallel
for construct to exploit pixel-level parallelism over the ray-sums
corresponding to each detector pixel (s,7).

Our current implementation simply assigns FP tasks to threads
in a straightforward nested-loop order (inner loop over s, outer loop
over t). While more sophisticated task/thread mappings using a
traversal order based on image tiles or z-order curves, for exam-
ple, might provide better pFP performance, FP is not the compu-
tational bottleneck in reconstruction, so exploration of alternative
task/thread mappings in pFP is left as future work.

PFP with per-voxel mutex pixel spacing prepass (pvmFP). This
method computes the distances for pixel spacing work group as-
signment used in subsequent BP operations, d(s,¢) and dpmax(s,1),
by tracking the minimum and maximum detector pixel coordi-
nates (s,f) of rays passing through each voxel during FP. This op-
eration imposes an update, so per-voxel mutexes are used to ensure
correctness.

This scheme leverages the OpenMP parallel for construct to
exploit pixel-level parallelism during FP, uses low-level synchro-
nization primitives (per-voxel mutexes) to ensure correct updates,
and supports the parallel BP schemes that build on the conflict-free
pixel spacing work group assignment concept.

PFP with voxel projection pixel spacing prepass (vpaFP). This
approach determines conflict-free task/thread mappings for subse-
quent BP operations using voxel projection: here, the corners of
each reconstruction volume voxel (x,y,z) are projected to the detec-
tor plane, and the maximum projection extents are tracked across
all voxels. BP tasks are then assigned to threads in the manner de-
scribed above.

Again, this tracking operation itself is an update, but a
lightweight per-voxel data structure can be used to exploit loop-
level parallelism over the voxels (x,y,z) during projection. Deter-
mining the final maximum distance requires reduction over the per-
voxel extents, which is relatively inexpensive.

This scheme leverages the OpenMP parallel for construct to ex-
ploit loop-level parallelism both during FP and during voxel projec-
tion, reduces per-voxel extents to the minimum/maximum values
using a simple serial loop over all voxels, and supports the parallel
BP schemes that build on the conflict-free work group assignment
concept.

PFP with edge-only voxel projection pixel spacing prepass
(vpeFP). As noted above, the set of voxels generating maximum
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(a) z-axis slices through the sinewave phantom dataset

(b) Simulated 2 MP XCT sinewave projections

Figure 5: The sinewave XCT phantom. Several reconstruction volume resolutions, from 1 00° 10 800° voxels, are used to test the scalability
and performance of our parallelization strategies. The images in this figure depict slices through the z-axis (a) and simulated XCT projections

with a 2 MP detector (b) using the 4003 -voxel sinewave phantom.

distances will necessarily incorporate at least one voxel along an
edge of the reconstruction volume, so significant computational ef-
ficiency is gained by projecting only edge voxels to compute these
distances. In this approach, the corners of only edge voxels (x,y,z)
are projected to the detector plane, and the maximum projection ex-
tents are tracked across all active voxels. BP tasks are then assigned
to threads in the manner described above.

This scheme leverages the OpenMP parallel for construct to ex-
ploit loop-level parallelism both during FP and during voxel pro-
jection, projects only edge voxels for efficiency, reduces per-voxel
extents to the minimum/maximum values using a simple serial loop
over all voxels, and supports the parallel BP schemes that build on
the conflict-free work group assignment concept.

We note that even though per-voxel extents corresponding to in-
terior voxels are null in this scheme, the reduction operation is so
inexpensive that the implementation complexity necessary to mini-
mize the set of per-voxel extents stored and compared during reduc-
tion does not present a reasonable tradeoff. As such, we store null
extents and reduce across all voxels, as in the project-all-voxels ap-
proach, despite computing valid extents for only edge voxels.

Serial BP (sBP). The sBP approach employs a simple computa-
tion scheme in which reconstruction volume values are computed
by serially backpropagating ray-sum values for each voxel (x,y,z)
through which each ray passes.

This scheme does not leverage parallelism in any way, and rep-
resents the baseline BP metric for scaling performance.

Parallel BP with per-voxel mutexes (pvmBP). In this approach,
per-voxel mutexes ensure correct update operations by serializing
access to the per-voxel ray-sum values: rays corresponding to each
detector pixel (s,#) must first acquire the lock for each voxel (x,y,z)

through which they pass, then update the voxel ray-sum value, and
finally release the lock.

This scheme leverages the OpenMP parallel for construct to ex-
ploit pixel-level parallelism during BP but uses low-level synchro-
nization primitives (per-voxel mutexes) to ensure correct updates
for per-voxel ray-sums.

Parallel BP with pixel spacing work group assignment (psBP).
This approach assumes the maximum distance between any two
rays that pass through the same reconstruction voxel (x,y,z) across
the entire detector plane, dmax(s,?), is available prior to work group
assignment, and is thus paired with the parallel FP pixel spacing
prepass techniques described above. BP tasks are then assigned to
threads such that the pixel spacing distance, d(s,t), is greater than
dmax(s,1).

This scheme leverages the OpenMP parallel for construct to ex-
ploit pixel-level parallelism during BP and employs pixel spacing
work group assignment to ensure correct updates for per-voxel ray-
sums.

3.2. Performance

Using the implementations described above, we execute an initial
performance study to explore the impact of thread count and recon-
struction volume resolution on performance.

Experimental Setup. We use a synthetic XCT phantom dataset,
sinewave, for this study. Figure 5a depicts several slices through the
sinewave dataset; in these images, the volume comprises a 1.2 m?
spatial extent with 400° voxels, corresponding to a 3 mm® fea-
ture size. Similarly, Figure 5b depicts several simulated XCT pro-
jections of the sinewave dataset; here, the projections capture the
400%-voxel volume using a 2 MP, or 1600 x 1200 pixel, detector.
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Results are obtained on several systems with various hardware
configurations:

o Test Platform #0 (TPO)—a Debian 8.11 system with two Intel
Xeon E5-2699 v3 2.30 GHz processors (36 cores, 72 hardware
threads), 64 GB of RAM, and the GNU Compiler Collection
(GCC) 7.3.0.

o Test Platform #1 (TP1)—an Ubuntu 18.04 system with two In-
tel Core i7-7820X 3.60 GHz processors (8 cores, 16 hardware
threads), 64 GB of RAM, and GCC 7.4.0.

o Test Platform #2 (TP2)—an Ubuntu 16.04 system with two In-
tel Core 17-7800X 3.50 GHz processors (6 cores, 12 hardware
threads), 64 GB of RAM, and GCC 5.4.0.

We note that TP0O provides more but lower frequency cores,
whereas TP1 and TP2 provide fewer but higher frequency cores.

We scale the system from one to the maximum number of hard-
ware threads for each of the following F'P 4+ BP combinations:

e pFP+sBP
o pFP+ pvmBP
o pvmF P+ psBP

e vpaF' P+ psBP
e vpeF P+ psBP

For each FP + BP combination and thread count, we test recon-
struction volumes comprising a 1.2 m? spatial extent at the follow-
ing spatial resolutions:

1003 voxels; feature size, 12.2 mm?>

[ ]

e 200° voxels; feature size, 6.1 mm?>
e 4003 voxels; feature size, 3.0 mm?>
e 800° voxels; feature size, 1.5 mm?>

For each experiment in this study, we use a 2 MP detector,
16 simulated projections in a full-ring configuration at 22.5° in-
crements, and 10 ART iterations.

Results. For brevity, we report results for only 7P0 here; however,
the supplemental data accompanying this paper includes scaling
results for TPI and TP2 as well. Generally speaking, we observe
the same trends on these platforms as for TPO0.

In particular, we report performance in projections/second across
each F'P+ BP combination and thread count for each reconstruc-
tion volume resolution in Figures 6-9. In these figures, serial indi-
cates performance for the baseline serial combination, sFP + sBP.

As seen in Figures 6 and 7, most parallelization strategies
provide at least some improvement over the serial case for 9—
72 threads. In particular, strategies employing per-voxel mutexes
(pFP + pvmBP, pvmFP + psBP) outperform the serial case by
a factor of 1.2-4.3x, with pFP + pvmBP performing as the bet-
ter of the two. Interestingly, projecting all voxels (vpaFP + psBP)
does not perform well, barely exceeding (100 voxels) or under-
performing (200° voxels) the serial baseline. The sheer number
of voxels makes this approach unacceptably expensive, even for
these relatively low-resolution reconstruction volumes. In contrast,
edge-only voxel projection (vpeFP + psBP) provides the best abso-
lute performance for 100- and 2003-voxel reconstruction volumes
(very nearly 4 projections/seconds in each case), outperforms the
serial baseline as much as 6 x, and provides an additional 1.2—1.4 X
performance over the next-best strategy (pFP + pvmBP).

(© 2020 The Author(s)
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The data in Figure 8 also show some improvement for the 400°%-
voxel reconstruction volume over the serial case for most strate-
gies when using 9-72 threads. As before, projecting all voxels
(vpaFP + psBP) underperforms the serial case, though this time
by as much as 30%. With this approach, projection time is directly
proportional to the total number of voxels, so the already-expensive
voxel projection step simply becomes even more costly with this
higher-resolution reconstruction volume. And as before, edge-only
voxel project performs well, outperforming the serial baseline by
more than 6X. Interestingly, strategies employing per-voxel mu-
texes (pFP + pvmBP, pymFP + psBP) become more attractive in
this case. For a given detector size and volume extent, the rela-
tive projected size of each voxel decreases as the number of voxels
increases, which in turn reduces contention for the corresponding
per-voxel mutexes across rays. In fact, pFP + pvmBP provides the
best absolute performance—about 1.5 projections/second—for the
4003-voxel reconstruction volume.

Performance trends are similar for the 8003-voxel reconstruc-
tion volume, as shown Figure 9: most strategies provide at least
some improvement over the serial baseline (1.5-9.9x), and pro-
jecting all voxels (vpaFP + psBP) simply does not scale. More-
over, these results indicate that pFP + pvmBP performs best for
high-resolution reconstruction volumes: as in the 4003-voxel case,
for a given detector size and volume extent, the relative projected
size of each voxel decreases as the number of voxels increases,
which once again reduces contention for the corresponding per-
voxel mutexes across rays. Here, too, pFP + pvmBP provides the
best absolute performance (about 0.78 projections/second), outper-
forms the serial baseline by almost 10, and provides an additional
1.5 performance over the next-best strategy (vpeFP + psBP).

We note that absolute performance begins to lag behind the tar-
get performance goals with 800°-voxel reconstruction volumes on
TPO for all but pFP + pvmBP with 36 or more threads. (Simi-
larly, for 800°-voxel reconstruction volumes, neither TP/ nor TP2
provide performance sufficient for our goals with any strategy at
any thread count.) Nevertheless, pFP + pvmBP scales well with
thread count, so a machine supporting more hardware threads could
be used to further reduce processing time for 800°-voxel recon-
struction volumes. We thus anticipate that additional computing re-
sources will enable reconstruction performance satisfying our near
real-time constraint with higher resolution reconstruction volumes,
should the requirement for 1.5 mm?> (or smaller) features arise in
future imaging scenarios.

Furthermore, when considering results for TP/ and TP2, we see
that processor frequency also impacts overall performance. For ex-
ample, the best performing strategy for 100°-voxel reconstruction
volumes on TPO (vpeFP + psBP with 36 threads) actually under-
performs the same strategy with only 16 threads on 7P1: 3.85 pro-
jections/second vs. 4.04 projections/second. This result suggests
that the necessarily serial operations along any one ray—e.g., ray-
sum computations in forward projection—benefit from lower per-
operation cost on higher frequency cores. Though this result does
not hold for higher-resolution volumes (2003 or more voxels) on
our test platforms, fewer but higher frequency cores may never-
theless provide better absolute performance for imaging scenarios
involving low-resolution reconstruction volumes.
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Figure 6: Reconstruction performance with 1003-voxel reconstruction volume. All five parallelization strategies outperform the serial base-
line when using 9—72 threads, with vpeFP + psBP performing best overall and pFP + pvmBP showing promise.
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Figure 7: Reconstruction performance with 200°-voxel reconstruction volume. As in the 100°-voxel case, vpeFP + psBP performs best
overall, while projecting all voxels (vpaFP + psBP) is simply too costly for even this relatively low-resolution reconstruction volume.
pFP + pvmBP also shows promise for this 200 -voxel reconstruction volume.

Finally, we observe that several parallelization strategies already
meet or exceed the target performance goals for 400%-voxel recon-
struction volumes on all three of our test platforms—in some cases,
with fewer-than-all threads. Here, the results in Figure 8 show that
pFP + pvmBP, pymFP + psBP, and vpeF'P + psBP process at least
0.6 projections/second for a 1.2 m? volume with a 3 mm® feature
size on TP0, while similar results are also observed for TP/ and
TP2 in the supplemental data.

The results of this study demonstrate excellent scalability
through the maximum number on each test platform, particularly
with the pFP + pvmBP strategy. The best-performing combination
depends not only on reconstruction volume resolution and thread
count, but also on processor frequency, so the characteristics of any

particular imaging scenario can be used to guide the appropriate
choice at runtime.

4. Conclusion and Future Work

The high computational demand of iterative reconstruction tech-
niques represents a key opportunity for the application of modern
parallel computing hardware and software to XCT reconstruction.
In this work, we design and implement several parallel iterative re-
construction strategies and evaluate their performance on modern
workstations. The methodology development strategy we employ
quickly uncovers effective parallel computing techniques that are
used to accelerate iterative reconstruction on these platforms.

In particular, results show that several parallelization strategies

(© 2020 The Author(s)
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Figure 8: Reconstruction performance with 400%-voxel reconstruction volume. Here, projecting all voxels (vpaFP + psBP) continues to
perform poorly, while pFP + pvmBP becomes more attractive, outperforming vpeFP + psBS by about 5—10%.
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Figure 9: Reconstruction performance with 8003-voxel reconstruction volume. As with the lower-resolution reconstruction volumes, pro-
Jjecting all voxels (vpaFP + psBP) simply does not scale. However, pFP + pvmBP remains viable in situations involving high-resolution
reconstruction volumes, achieving nearly 0.8 projections/second with 72 threads.

process at least 80 high-resolution projections in less than two min-
utes for 1.2 m® volumes with 3 mm? feature size. These results
demonstrate the feasibility of an affordable, scalable, and acceler-
ated visualization pipeline to guide decision-making in near real-
time for our target application.

There are many practical implications for medical and indus-
trial imaging if the computational challenges facing iterative re-
construction techniques are overcome. For example, robustness to
sparse projection data provides the opportunity to use fewer acqui-
sition steps in our target application (where data capture is costly in
both time and resources) while keeping overall reconstruction qual-
ity high. Likewise, accurate reconstruction with sparse data could
reduce scan times in medical settings by requiring fewer angular
samples to accurately image patients. Similarly, these techniques

(© 2020 The Author(s)
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promise to reduce patient exposure to potentially harmful X-ray
radiation by permitting accurate reconstructions from noisy data
acquired by low-dose CT scanners.

We plan to continue development of the iterative reconstruc-
tion engine for the prototype XCT system described here. The
family of algebraic reconstruction techniques, in particular, pro-
vides an opportunity to apply modern, high performance ray trac-
ing techniques to XCT reconstruction. Use of ray tracing in this
context—specifically the computation of radiological paths for for-
ward projection—stems from early work by Joseph [Jos83] and
Siddon [Sid85] that initiated a line of inquiry to optimize ray/grid
traversal [JSS*98, HLY99, ZR03] in XCT reconstruction. In fact,
the work to accelerate ray/grid traversal in this context parallels
ray tracing research in computer graphics over the past 30 years.
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However, it is unclear that additional optimizations from com-
puter graphics—for example, packet-based ray tracing—have been
adapted for XCT reconstruction. The application of advanced tech-
niques from computer graphics—for example, coherent grid traver-
sal [WIK*06]—to XCT reconstruction represents one avenue of
future work.

More immediately, additional performance improvements may
be possible with vector processing by applying the paralleliza-
tion strategies outlined here on a per-lane, rather than per-
thread, basis. We plan to explore a combined vectorized/threaded
implementation—parallel concepts both expressible in OpenMP
(version 4.0 or better)—in our XCT reconstruction prototype. Simi-
larly, a vectorized implementation in CUDA, for example, could be
used to exploit our parallelization strategies for GPU-accelerated
iterative reconstruction.
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