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Figure 1: Despite the heavy use of instancing in production assets like Disney’s Moana Island Scene [TP18], the raw geometric complexity

of these instanced meshes prevents many production assets from fitting within the memory of a single GPU. In the figure above, colors to

the left encode the thousands of instance IDs used to decorate the island. For scenes like these, finding an efficient spatial distribution is

nontrivial. However, our k-d tree construction algorithm can account for the various challenges that these types of 3-d models present in

order to distribute this data efficiently.

Abstract

Instancing is commonly used to reduce the memory footprint of massive 3-d models. Nevertheless, large production assets

often do not fit into the memory allocated to a single rendering node or into the video memory of a single GPU. For memory

intensive scenes like these, distributed rendering can be helpful. However, finding efficient data distributions for these instanced

3-d models is challenging, since a memory-efficient data distribution often results in an inefficient spatial distribution, and vice

versa. Therefore, we propose a k-d tree construction algorithm that balances these two opposing goals and evaluate our scene

distribution approach using publicly available instanced 3-d models like Disney’s Moana Island Scene.

CCS Concepts

• Computing methodologies → Ray tracing; Self-organization;

1. Introduction

Instancing is a particularly useful technique when 3-d models con-
tain recurrent structures that are geometrically complex and are
replicated thousands of times. Typical examples are outdoor scenes
that contain grass and foliage, like the Moana Island shown in

Figure 1. By storing these complex geometric structures only once
and then later reusing these structures several times by using an ID
and an affine transformation to describe where to place an instance,
studios can reduce the overall memory of an entire shot signifi-
cantly. Despite the memory savings, some instanced 3-d models
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are still so extensively complex that data-parallel rendering on a
distributed memory system or a multi-GPU workstation should be
taken into consideration. While in the field of scientific visualiza-
tion, where data sets usually consist of a large amount of raw trian-
gles, data-parallel rendering is commonly used, we are not aware of
a large corpus of research papers focusing on data-parallel render-
ing of massively instanced production-quality models. While other
options like resource loading on demand or data-parallel rendering
of subsets were explored in the literature [CFS∗18, BPR02], to our
knowledge, our paper is the first one that extensively studies this
problem from a scientific point of view.

Unfortunately, finding a data partitioning to distribute these in-
stanced models across compute nodes is much more challenging
than finding partitionings to distribute non-instanced models. A
good data partitioning that is aware of instancing will have the fol-
lowing properties:

Even data distribution: It is generally desirable to find a rel-
atively even data distribution (i.e. distributing roughly the same
number of entities to each compute node) to make good use of the
available memory and compute resources.

Even spatial distribution: Ray tracers bin rays to the spatial do-
main associated with the compute nodes. Irregular spatial distribu-
tions that potentially contain much empty space will result in load
imbalances, ray replication, and bad rendering performance in gen-
eral.

Little object overlap: Even with spatial decompositions that we
use in this paper, the object bounds potentially reach beyond the
spatial domain they are assigned to. Ray tracers would potentially
intersect the object twice if it is present in multiple domains, so that
little overlap and volume of object bounds is desirable.

Minimal replication: for the distributed rendering of instanced 3-
d models in particular, should an instance be assigned to more than
one node, the base mesh that instance refers to must be replicated.
Ideally, base meshes should be replicated as little as possible.

Unfortunately, these various objectives and quality criteria po-
tentially counteract each other. An even spatial distribution could,
for example, be achieved when the whole mesh data is replicated
on all nodes. A spatial partitioning scheme could then use a simple
heuristic like middle split to equally distribute space among nodes;
however, then the storage benefit of using instances would be ob-
solete. Similarly, an equal data distribution that could be obtained
with a median split does not necessarily lead to a good spatial dis-
tribution.

Therefore, we propose an instance-aware k-d tree construction
algorithm that balances the above opposing goals. Our data parti-
tioning algorithm produces efficient spatial distributions for these
massively instanced 3-d models while also being memory-efficient.
In particular, the contributions we present in this paper are the fol-
lowing:

• A top-down k-d tree construction algorithm that is aware of in-
stancing and that can, for example, be used in conjunction with
a data-parallel ray tracer.

• A split heuristic that places an emphasis on balancing and reduc-
ing the overall memory consumption and that exposes a number
of parameters that can be fine-tuned.

(a) (b) (c)
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Figure 2: Spatial distribution and overlapping object bounds. (a)

shows a 3-d model consisting of three instanced object types A

(3x), B (3x), and C (1x) and a potential spatial split. The dotted

green lines indicate the domain bounds of the respective subtrees.

(b) shows the instances assigned to the left subtree, with the ob-

ject bounds of the contained instances indicated by a blue dotted

line. (c) shows the instances assigned to the right subtree. Note that

while the domain bounds do not overlap, the object bounds have al-

most the same size as the 3-d model is dominated by a large base

mesh. Also note how the second from left A-type and the first from

left B-type instances straddle the splitting plane and are replicated

in both subtrees.

(a) (b) (c)
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Figure 3: Spatial vs. object partitioning. (a) shows the domain

bounds for the spatial split indicated by the green vertical line. (b)

shows a naïve object space distribution like that found by a typical

bounding volume hierarchy builder that is not aware of instances

but only of base meshes. (c) shows how the object bounds according

to the split have significantly less overlap because the base meshes

of type A and B are replicated. Our method aims at finding good

spatial distributions with minimally overlapping object bounds and

is also designed to minimize memory overhead due to replication.

• A novel, heuristical approach to distribute large base meshes that
does not actually split those structures until an advantageous split
plane was found.

We evaluate the constructed data structure with several massively
instanced 3-d models like Disney’s Moana Island Scene [TP18].

2. Background

The approach we take in this paper is top-down k-d tree construc-
tion, where we recursively split the space occupied by the 3-d
model. When performing a spatial split of the domain occupied
by an inner node, it is crucial to find a beneficial split position. We
choose a greedy approach with heuristics that find a local optimum
regarding the node that is currently being split.

We adopt the following terminology. We refer to the geometry
that is instanced as base meshes. We call the axis-aligned bound-
ing boxes that surround individual instances (or surround the union

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

2



S. Zellmann, N. Morrical, I. Wald & V. Pascucci / Spatial Distributions for Instanced Models

of several instances) object bounds. The non-overlapping regions
associated with each leaf node we call the domain bounds. Note
that the domain bounds of the leaf nodes are a full space decom-
position of the 3-d model. In Figure 2, the object bounds and the
domain bounds are represented with blue and green dotted lines,
respectively.

Finding efficient data partitionings for instanced models poses
a number of challenges. Large outdoor scenes, for example, often
contain terrain mesh instances that span the whole 3-d model but
are instanced only once. In Figure 2, the object bounds of the large
base mesh associated with instance type C, for example, are much
larger than the domain bounds of the two potential nodes, which
leads to this type of mesh dominating the decision where to perform
the split. Often, the smaller instances are just fully contained inside
the object bounds of those large base meshes, and with a naïve
approach would not contribute to the splitting decision at all.

Another challenge with instanced models is the fact that smaller
instances are often spread out all over the model (cf. Figure 3).
A typical bounding volume hierarchy (BVH) builder that is only
aware of base meshes and not of instances would find an object par-

titioning like the one in Figure 3 (b) which would group the base
meshes of type A and B and their respective instances into separate
tree nodes. By replicating the base meshes (giving us A’ and B’ in
Figure 3 (c)), the object bounds are much tighter (in this example
they are actually identical to the domain bounds). The method we
propose in this paper aims at finding spatial distributions like the
one in Figure 3 (c) while still trying to keep memory overhead and
data replication as low as possible. An example of the various chal-
lenges illustrated in Figure 2 and Figure 3 can be found in Figure 4.

3. Related Work

Geometry instancing was traditionally used in 3-d hardware to
reduce both the storage overhead as well as the bandwidth re-
quired to transmit geometry to the GPU, and to minimize the
number of state and texture changes due to rendering the same
triangle over and over again [Car05]. Nowadays, many industry-
strength ray tracing libraries and production rendering systems
make use of instancing [WWB∗14, PJH16, GIF∗18], where the
primary motivation is to reduce memory overhead while also al-
lowing for more efficient artistic workflows. Typical applications
are large outdoor environments containing tree leaves and foliage
[DCSD02, BLZD12, WLT13]. One very early application of real-
time ray tracing of a (then) massively instanced model is that of
Wald [Wal04], who reported interactive frame rates of about 7
fps at VGA resolution on a cluster with 24 dual-core CPUs. Jo-
hansson [Joh09] used hardware instancing to improve the render-
ing performance of large building information models. Santos and
Filho [SF14] showed the effectiveness of instancing when applied
to large CAD models. Using shape matching, they were able to re-
duce the storage consumption of a CAD model to only 5 % of the
original 3-d data set. Slomp et al. [SDF∗13] used instancing to splat
large point clouds using a variety of different shapes.

Out-of-core rendering approaches often use space partitioning to
distribute objects across nodes when the data set as a whole does
not fit into the memory of the GPU or a single rendering node.

(a) Path Traced Result (b) Coloring by Instance ID

(c) Base Meshes Only (d) Coloring by Mesh ID

Figure 4: Mountain A structure of Moana Island. This part of

the 3-d model is a good example of the difficulties encountered

with data-parallel instancing. While the terrain mesh dominates the

whole spatial extent, the bushes are spread out over the model and

will likely be replicated on many nodes if not explicitly accounted

for. The two large trees in the center of the lower half of the images

are especially challenging and many spatial split heuristics would

just replicate them on multiple nodes.

Kontkanen et al. [KTO11], for instance, used an octree to organize
point data for global illumination. Interactive out-of-core ray trac-
ing of large 3-d models with a binary space partitioning tree was
explored by Wald in [WDS04]. In this work, Wald used memory-
mapped file I/O and relied on the operating system’s disk cache to
keep a relevant working set of the 3-d model in main memory.

Visualization frameworks often employ a sort-last parallel ren-
dering approach [MCEF94] and fix the data distribution across
frames. Especially with homogeneous workloads like direct vol-
ume rendering, both binary space partitioning and k-d trees are a
popular choice for distributing the data, where renderers then sort
the intermediate rendered images in visibility order before com-
positing the partial images together [MSE06, MMD06, MM10].
Abram et al. [ANG∗18] recently presented an asynchronous, mas-
sively parallel ray tracing system that runs on supercomputers.
Their system assumes that the data is already distributed on a uni-
form grid and uses this knowledge to distribute rays among com-
pute nodes. Work in this field was also conducted by Navrátil et
al. [NFLC12, NCFL14] who investigated ray scheduling methods
for distributed ray tracing. Son and Yoon [SY17] presented an out-
of-core ray tracing software for multi-GPU systems which dis-
tributes data to compute nodes based on the resource demand of
the scheduled task, and amongst others based on a time estimate
for the data transfer to the compute node.

Finding efficient spatial or object splits to subdivide a group
of primitives is crucial for ray tracing efficiency. Both k-d trees
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// Build k-d tree with fixed 2**N leaves from
// from instances and precomputed base mesh SVT
void makeTree(Instances inst[], SVT svt) {

int numLeaves = NUM_COMPUTE_RANKS;

// The root domain bounds are just the
// object bounds of all the instances
aabb domain(inst, svt);
Node root = makeInner(domain, inst);

doSplit(root, inst, svt, numLeaves);
}

// Top-down recursive splits
void doSplit(Node n, Instances inst[],

SVT svt, int depth) {
if (depth == 1)

makeLeaf(n.domain, inst);
else {

// Find a split for the domain bounds
Split s = split(n.domain, inst, svt);

// As an optimization, try to shrink the
// child domain bounds by intersecting them
// with their object bounds
aabb objL(s.instL);
aabb objR(s.instR);
s.domainL = intersection(s.domainL, objL);
s.domainR = intersection(s.domainR, objR);

Node n1 = makeInner(s.domainL, s.instL);
Node n2 = makeInner(s.domainR, s.instR);

doSplit(n1, s.instL, svt, depth >> 1);
doSplit(n2, s.instR, svt, depth >> 1);

}
}

Figure 5: Top down k-d tree construction. The k-d tree’s leaf node

count is fixed to the number of (2n) compute ranks.

[WH06] and bounding volume hierarchies [AL09] can be used to
reduce the complexity of an intersection query to O(logn) over the
number of primitives. Bounding volume hierarchies especially are
very popular because their size can be estimated a priori, and be-
cause they do not necessarily need to be fully rebuilt when the scene
changes. Many ray tracing frameworks build both data structures
using the surface area heuristic (SAH) [GS87]. A whole research
branch has recently focused on finding a good balance between
tree quality and tree construction performance. On GPUs, bottom-
up construction schemes are popular. Very fast builders use Morton
codes to construct trees with a naïve middle split [ME17,LGS∗09].
More recent work has focused on clustering of nodes, and construct
a BVH from the bottom up while minimizing surface area in a local
neighborhood [GHFB13, MB18].

To the best of our knowledge, no scientific work has so far di-

rectly concentrated on the problem of finding efficient data distri-
butions for massively instanced 3-d models.

4. Spatial Index Construction

A reasonable choice to distribute a 3-d model among several
compute nodes is to use k-d trees [PJH16]. In contrast to build-
ing k-d trees to accelerate ray tracing, in our case, the number of

leaf nodes that we will distribute the scene data on is known a pri-
ori to be the number of compute nodes. With a k-d tree, we can also
sort the data in visibility order, which is beneficial for some ren-
dering algorithms. Therefore, we store instances at the leaf nodes,
which consist of an id as a reference to their respective base mesh,
an affine transformation matrix that describes how to orient, posi-
tion or scale the instances, and some auxiliary data such as pre-
transformed bounding boxes.

4.1. Finding optimal splits

We start out by splitting the domain bounds of the root nodes,
which also happen to be the root node’s domain bounds. We then
recursively split the domain bounds until the number of desired leaf
nodes is reached. We use greedy top-down construction to build a
fully balanced binary tree with 2n leaf nodes, which is also the num-
ber of compute node ranks we want to distribute the scene to. This
restriction is specific to our application but could be easily relaxed
by building balanced, but not fully balanced trees. We use binning
with 64 bins per potential split to accelerate the tree construction al-
gorithm. The primitive type we consider during split computation is
the instance, i.e., except for large single-instance base meshes that
we handle separately, we never split instances that straddle candi-
date planes into individual triangles.

As an optimization, before we evaluate split candidates, we try to
shrink the domain bounds by computing their intersection with the
object bounds of the instances contained inside. When testing split
candidates, we use a cost function to test for local optimality that
we describe in the following. This whole procedure is summarized
in Figure 5.

In the absence of instancing, we can find a split that distributes
space equally among compute nodes by using the middle split

heuristic, which splits the bounding box in half along a given split
axis. Likewise, we can find a split that evenly distributes data by us-
ing the median split heuristic, which distributes the same number
of primitives to the left and right child nodes.

However, in the presence of instanced geometry, implementing
these heuristics requires some additional consideration. When ac-
counting for instanced geometry, we could implement these two
heuristics using one of the following strategies. First, we could
have our chosen split heuristic only consider base meshes, and
simply ignore instancing. We would then need to distribute the in-
stances derived from these base meshes to the corresponding sib-
ling nodes that these base meshes were assigned too. This strategy
would give us the configuration depicted in Figure 3 (b), where the
object bounds and the underlying base mesh bounds guiding the
heuristic differ significantly. With that strategy, a split that would
distribute the instances in a favorable way would be hard to find.
Alternatively, we could have our chosen split heuristic only con-
sider instances. In this work, we conversely decided to only con-
sider the instances when testing split candidates. This will give us
a relatively easy way to find spatial splits, but at the cost of poten-
tially having to replicate instances and base meshes across nodes.
As neither the middle split nor the median split heuristic are aware
of instances and replication, we propose to combine them with two
new heuristics:
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(a) min-rep split (b) equal-geo split (c) median split (d) middle split (e) combined (5 : 1 : 1 : 1)

Figure 6: Examples of the splits that the respective heuristics would generate in isolation. The colors show a data assignment to four nodes.

We assigned the color gray to the large base mesh for better visual reference. Instances that were assigned to more than one node are colored

in red. Note how only our combined heuristic assigns the two large trees in the middle to a single node while retaining a well-distributed

layout.

• The min-rep split heuristic finds a split by minimizing the num-
ber of triangles, from underlying base meshes, that we might
replicate across the nodes. This min-rep split can be achieved by
considering a split through the instances, distributing the base
meshes accordingly, and summing up the number of triangles
from base meshes on each side of the split plane.

• The equal-geo split heuristic is relatively analogous to a median
split, only that the split is driven by the instances, while the costs

of the split are computed based on their base meshes.

On its own, these heuristics may run into several corner cases.
The min-rep split heuristic, when used in isolation, would often dis-
tribute all instances to one node, as this would minimize base mesh
replication. The median split heuristic, when considering only the
instances as actual data, could produce a relatively imbalanced data
distribution, since it does not consider the base mesh data distribu-
tion as the equal-geo split heuristic does. Figure 6 illustrates some
of the problems when the heuristics are applied in isolation.

Therefore, we propose to combine these four heuristics using a
linear cost function that applies weights to the normalized values
calculated for each heuristic:

C = w1
T

Tmax
+w2

|Tl −Tr|

Tmax
+w3

|mdn− s|

b
+w4

|mdl − s|

b
, (1)

where w1 is the cost related weight associated with the min-rep
split heuristic, which is normalized by dividing by the maximum
number of triangles from instanced base meshes Tmax. Conserva-
tively setting Tmax to twice the number of triangles of the base
meshes accounts for the unlikely worst case that all base meshes
are replicated on both sides.

The weight w2 is associated with the equal-geo split heuristic
and balances, though driven by the instances, the number of base
mesh triangles Tl and Tr on either side of the split plane. As this is
also a geometry-related heuristic, we again divide by the same Tmax

we also used for min-rep split.

w3 and w4 are associated with the median split and the middle
split heuristic, respectively. The two heuristics are however also
normalized so they are roughly within the same range as w1 and
w2. We therefore divide the results from the heuristics by the extent
b of the object bounds along the split axis.

Greedy algorithms that find an optimal spatial index for ray trac-
ing often use the Surface Area Heuristic (SAH). Because our spatial
distribution is not necessarily limited to ray tracing, we chose not
to incorporate this specific heuristic. If desired, we could, however,
include SAH in our combined heuristic. Regardless of the heuristic
used for the top-level splits, a typical ray tracing pipeline will likely
build a SAH BVH at the node level to accelerate local ray traversal.

4.2. Handling large geometric structures

Although so far we have devised a combined splitting heuristic ca-
pable of minimizing base mesh replication, we still must replicate
any split-plane-straddling base meshes to the left and right nodes.
This base mesh replication can be problematic for scenes that con-
tain large, single instance base meshes like the terrain mesh in
Figure 1 or the type C instance in Figure 2. In many scenes, base
meshes like these can consist of hundreds of thousands of indi-
vidual triangles, and should still be split and distributed. Thus, we
make an exception to our previous rule, where we chose not to split
individual instances, to now allow splits for large single instance
base meshes.

Initially, we sort all instances by the reference count of each in-
stance’s corresponding base mesh. As a rough heuristic, we can
identify these splittable instances as those whose base mesh’s cor-
responding reference count is one. Alternatively, we could choose
a more sophisticated test, like checking if the base meshes’ extents
are sufficiently large, for example. For our test data sets, though,
we found this simple reference count heuristic to work reasonably
well. In our large landscape scenes, base meshes that are referenced
only once are usually large, and conversely, base meshes that are
referenced hundreds and thousands of times are usually tiny.

We assume that eventually, i.e. after the k-d tree was built, we
are going to split the large base meshes at the domain bounds and
distribute them as single instance meshes to their respective leaves.
Our instance-aware construction algorithm should therefore take
those potential instances into account and therefore needs to deter-
mine their object bounds and respective triangle counts to compute
and normalize the heuristic. Knowing the bounds and number of
triangles, when naïvely implemented, would require us to split the
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Figure 7: Building an SVT (here we demonstrate the concept using a 2-d summed area table) over triangle vertices and using it to compute

the object bounds from given domain bounds. Vertices that are shared by n triangles count as n rather than a single vertex. With the SVT,

one can find the object bounds within the domain bounds by successively moving the sides of the bounds inwards. When the vertex count

inside the a potential object bounding box is lower than the vertex count inside the domain bounds, we know that we have found an invalid

configuration.
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Figure 8: Calculating rough object bounds and triangle count estimates using SVTs for five split plane candidates. The SVTs do not store the

connectivity information between the triangle vertices; it is thus not possible to exactly determine which triangles partially overlap a spatial

domain. The algorithm rather computes the number of triangle vertices contained inside the domain, as well the object bounds around those

vertices; the triangle count estimate (put to the left and right of the split plane) is roughly estimated from the vertex count. An approximation

is sufficient because it is only used to drive a k-d tree split heuristic and not to distribute actual data.

base meshes on a triangle level over and over again, which is pro-
hibitive performance-wise.

We therefore propose to split the large single instance base
meshes only virtually, and only when the k-d tree is fully built up
we actually split the meshes into individual instances. For the vir-
tual splits, we use a summed volume table (SVT) to compute the
instances’ object bounds and triangle counts. SVTs are uniform,
rectilinear grids that store at each grid cell the 3-d prefix sum with
respect to the origin of the grid.

We first project all the triangle vertices of the base meshes to a
source grid that we later build the SVT from. Each grid cell will
store the number of vertices contained within. Vertices that are
shared by n triangles are treated as n vertices instead of one. From
that initial grid, we build the 3-d prefix sum over the vertex counts,
which gives us the SVT.

Given a split candidate, we can now feed the domain bounds to
the left and the right of that into the SVT, which will allow us to
query the number of all the large single instance base mesh vertices
within the domain, as well as their object bounds. As the connec-
tivity between triangles is lost, this is only a rough estimate for the
object bounds of the actual triangles.

The advantage of this approach is that object bounds and
vertex count inside the domains can be found in logarithmic
time [VMD08, ZSL18]. The procedure involves starting out with
the domain bounds, counting the number of vertices contained in-
side, and then shrinking the domain bounds towards the object

bounds. If shrinking was successful or not is determined by track-
ing the vertex count. If the vertex count within the shrunk bounds
is below that of the domain, shrinking was an invalid operation.
Querying the vertex count is a constant time operation with SVTs.
The triangle count that we require to normalize the geometry-
related heuristics we approximate by simply dividing the vertex
count by three. While being somewhat inexact, we find this approx-
imation acceptable because we only need it to later feed the result
into a heuristic, and do not use the count to actually distribute any
data. This overall procedure is illustrated in Figure 7 and Figure 8.

A common problem with SVTs or their 2-d equivalent—summed
area tables—is that the prefix sum operation can overflow. It is thus
in general necessary to have the SVT use an integer type with more
bits than that of the source grid. A property of the SVTs that we
compute is however that they are sparse; i.e. the total sum stored
in the SVT will just be the number of all triangle vertices from
large base meshes, which is known a priori and also determines
how many bits we need for the SVT elements. Assuming that we
never have more than roughly four billion vertices, this allows us to
use 32-bit unsigned integers for the SVT elements. Sensible choices
for the SVT size depend on the data set size. For all our test cases
we us an SVT of size 2563. Binning will discretize the domain of
the root node level anyway, so that a much higher resolution would
not be necessary.

Only when we have fully built up the k-d tree, we split the large
base meshes into their domain bounds and distribute the resulting
geometry and instances to the respective leaves. We therefore first
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Split split(Node n, Instances inst[], SVT svt) {
aabb domain = n.domain;
int axis = argmax(domain.w,domain.h,domain.d);
aabb obj(inst); // object bounds for median
sort(inst,axis); // also for median split
Split bestSplit = {};
Instances instL[], instR[]; // empty sets

foreach (bin in bins) {
float S = domain.min[axis] + bin * BinWidth;
// Distribute large base meshes to either
// side of split candidate S using SVT
addVirtualInstances(inst, svt, S);

foreach (I in inst) {
if (bounds(I).max[axis] < S)

instL.append(I);
else if(bounds(I).min[axis] >= s)

instR.append(I);
else {

instL.append(I);
instR.append(I);

}
}

float mdl = (domain.min[axis]
+domain.max[axis])/2;

float mdn = bounds(inst[inst.size()/2]);
float Tl = instL.countTriangles();
float Tr = instR.countTriangles();
float T = Tl+Tr;
float b = obj.size[axis];
float Tmax = inst.countTriangles()*2;

// Determine the costs associated with split S
float C = w1*(T/Tmax) + w2*(abs(Tl-Tr)/Tmax)

+ w3*(abs(mdn-S)/b) + w4*(mdl-S)/b;

if (C < bestSplit.cost)
bestSplit = { C, S, instL, instR };

}

aabb domains[2] = splitInHalf(domain);
bestSplit.domainL = domains[0];
bestSplit.domainR = domains[1];

return bestSplit;
}

Figure 9: Split function for top-down k-d tree construction. We use

a greedy heuristic with binning (64 bins) and compute the best split

position as the weighted average of four individual split heuristics.

partition the triangles of each base mesh to both sides of the re-
spective split planes, duplicate those triangles that straddle the split
plane, and thus obtain up to one new mesh per leaf node. This mesh
we assign an instance that is initialized with the transform of the
original single instance.

The pseudocode in Figure 9 summarizes the split routine includ-
ing how we compute the split heuristic and when we use the SVT
to determine virtual instances.

5. Results

We perform a thorough analysis of our k-d tree construction al-
gorithm using several massively instanced, publicly available 3-
d models. We are interested in the storage overhead of our algo-
rithm as compared to the middle split heuristic and the median split

heuristic. We, therefore, construct k-d trees with all three heuristics
and calculate the total storage costs as the sum of the size of all
triangles and all instances.

The size in bytes of a triangle or an instance will vary from ap-
plication to application. We integrate our prototypical implemen-
tation into the Visionaray framework [ZWL17] and load models
in the pbrt format that we integrate using the pbrtParser li-
brary [Wal]. We make the application-dependent assumption that
triangles have a memory requirement of 32 bytes per vertex (12
bytes position, 12 bytes vertex normal, 8 bytes texture coordinate)
for a total of 96 bytes per single triangle. We further assume that we
can store an instance using 128 bytes total (64 bytes for the trans-
formation matrix, 24 bytes for the pre-transformed bounding box,
and 40 extra bytes for bookkeeping information like instance id, or
padding). Other applications will assess the memory requirements
differently; our estimate, for example, excludes space required for
texture images, which would make a fair comparison much harder.
Some applications might also store the inverse transformation ma-
trix along with each instance so that rays can be efficiently trans-
formed into object space. For our tests, we use the following data
sets that are also depicted in Figure 10.

PBRT Ecosys 141 base meshes, 1.17 M triangles total, 12.8 K in-
stances, 114 MB memory with our cost estimate.

PBRT Landscape 3870 base meshes, 27.7 M triangles total,
408 K instances, 2.72 GB memory with our cost estimate.

Moana Mountain 1.09 K base meshes, 7.65 M triangles total,
2.30 M instances, 1.03 GB memory with our cost estimate.

Moana Island 1.46 M base meshes, 141 M triangles total, 66.5 M
instances, 22 GB memory with our cost estimate.

We compare our method to the median split and the middle split
heuristics. However, even with those, we employ the strategy to
split large meshes into instances with an SVT, as the results without
that optimization would not be as meaningful. We assign weights
for the cost function that favor lower total storage costs, as this is
one of the main goals of our method. We therefore assign the value
1 to each of the weights but the one that is associated with the min-
rep split heuristic that we assign the value 5.

In a first test setup, we are interested in a qualitative assess-
ment of our method. We therefore calculate partitionings for N =
2,4,8,16,32,64,128,256 compute nodes. We compute the total
memory requirement for the partitionings, as well as the sum of the
object bounds of the N nodes and present an average taken for all
the test models we test with, as well as confidence intervals based
on the standard deviation in Figure 11. There we also report the av-
erage range of the metrics as mentioned earlier averaged over the
four models, i.e. we report the difference between the maximum
and minimum memory requirement and domain bounds volume on
each node.

We perform a sensitivity analysis to find out how susceptible our
heuristic is to parameter changes. Therefore, we single out each
one of the weights and fix all the other weights to 1. We then vary
the weight we singled out and compute partitionings for N = 256
nodes. We report the influence of the changes in weight on the met-
rics from before in Figure 12.

We also measure the speed of the k-d tree construction algorithm
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Figure 10: Our test data sets, color coded by assignment to 16 compute nodes. We show spatial partitionings from the middle split heuristic,

the median split heuristic, and the combined heuristic with the weights set to w1 = 5,w2 = 1,w3 = 1,w4 = 1.

on an eight core Intel Xeon system with 128 GB DDR RAM. Of
the eight cores we however only use one core so far because our
implementation is single-threaded. We report results for partition-
ings of N = 4,32, and 256 nodes. Our timing results are comprised
of the SVT construction phase, the recursive, top-down tree con-
struction phase, and the phase where we split and distribute large
base meshes across the nodes. We report those results in Table 1.

As an indicator how the choice of heuristic would affect render-
ing performance, we feed the obtained paritionings into a prototyp-

ical multi-GPU renderer that performs path tracing using environ-
ment lighting. As it is hard to say how rendering performance is
affected by the choice of top level split with such such a setup, we
rather generate heatmap results that indicate how many ray trans-
fers along one path will occur. We present those images for the
PBRT Ecosys and Moana Mountain data sets for an assignment to
n = 16 nodes in Figure 13.
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Figure 11: Total memory and object bounds volume summed over

all nodes, as well as memory range and volume range (difference

of maximum and minimum per node). The values are averaged over

the test models. Error bands signify the similarity of those measures

across test models.

Figure 12: Sensitivity analysis results. We fix all weights but a

single one to 1 and vary that singled out weight in an empirically

determined range. We report the weights’ influence on total mem-

ory and on the total volume of the object bounds over all nodes, as

well as on the memory range and the volume range (difference of

maximum and minimum per node). The values are averaged over

the test models. Error bands signify the similarity of those measures

across test models.

5.1. Discussion

In our results we have mostly focused on the min-rep heuristic that
tries to reduce the total costs from the paritioning across all nodes,
and the graphs and the images we created indicate that the heuristic
is successful at that. With instancing even more than with simple
triangle meshes there exist a number of quality criteria that con-
tradict each other. Our sensitivity analysis indicates that the four

Ecosys Landscape Mountain Moana

Nodes Nodes Nodes Nodes

4 32 256 4 32 256 4 32 256 4 32 256

SVT 0.156 0.782 0.153 7.565

TD 0.025 0.067 0.137 1.528 3.126 4.310 4.198 12.07 21.48 595.6 1449. 2286.

Split 0.086 0.130 0.526 5.640 11.31 42.27 0.238 0.308 0.715 71.20 114.5 374.0

∑ 0.267 0.353 0.819 7.950 15.22 47.36 4.589 12.53 22.35 674.4 1571. 2668.

Table 1: Timing results for the k-d tree construction algorithm in

seconds, itemized by SVT setup, top-down construction, and large

base mesh splitting.

weights that can be used to fine-tune the construction algorithm are
effective at what they are meant to do.

One objective that we explicitly not addressed was that of finding
partitionings that lend themselves to good rendering performance.
We assume that the renderer will build an optimal rendering data
structure, e.g. a BVH with Surface Area Heuristic, on the node
level of our trees. We still find it reassuring that our heuristic will
find partitionings for which our multi-GPU renderer will not exces-
sively transfer rays between nodes. Our heuristic in most cases even
performs a bit better in this regard than the other two heuristics.

The decision to prefer spatial partitioning over object partition-
ing and thus k-d trees over BVHs was one that we made explicitly.
It was driven by the thought that rays are more easily binned ac-
cording to the domain bounds of the k-d tree leaf nodes than to the
potentially overlapping object bounds of a BVH. It would still gen-
erally be possible to use object partitioning to address the various
challenges with instanced 3-d models, and it would be interesting
to compare such an implementation with our approach. Effectively,
with object partitioning, one would not have to deal with the ge-
ometry replication problem but instead with replicating rays across
nodes. A problem with spatial subdivision is that for large numbers
of ranks, the greedy heuristic sometimes just will not find a split,
resulting in very few nodes getting no work assigned at all. This
problem could, for example, be solved by using object splits.

6. Conclusions and Future Work

We have presented a heuristical k-d tree construction algorithm for
massively instanced 3-d models. The split heuristic we employ is
designed to find a good trade-off between even spatial distributions
on the one hand, and an even data distribution on the other hand. In
contrast to data structures aimed at 3-d models without instances,
the construction algorithm has to treat both the geometry as well as
the instances themselves as input. The user can tune the construc-
tion algorithm by adapting weights and can decide for either of the
objectives to be more important than the others. 3-d models with
instances often contain larger structures like terrain meshes that are
instanced only once, which is specially handled by our construc-
tion algorithm. Terrain models, especially if they are procedurally
generated, often contain millions of triangles. We decided to keep
the construction costs moderate by extracting virtual instances from
the terrain model while splitting.

Part of the reasoning not to handle individual triangles in the con-
struction pipeline is that we can in the future devise data-parallel
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(a) middle split (b) median split (c) w1,2,3,4 = {5,1,1,1} (d) middle split (e) median split (f) w1,2,3,4 = {5,1,1,1}

Figure 13: Heatmap visualization of the number of ray transitions a distributed path tracer would require to perform for the middle heuristic,

the median heuristic, and our combined heuristic with weights w1 = 5, w2 = 1, w3 = 1, and w4 = 1. Ray transitions are one indicator for the

rendering performance of a distributed path tracing system. The image shows an assignment of the PBRT Ecosys and the Moana Mountain

models to 16 nodes. We can see from the images that the number of ray transitions is comparable or even lower for the combined heuristic

than for the two simpler heuristics. Note however that the weight assignment (and the heuristic itself) are not fine-tuned for rendering

performance but for memory efficiency.

construction schemes for our algorithm where the individual nodes
would not need to have access to the actual geometry, but only to
the instances and the precomputed SVT. We believe that the con-
struction scheme based on first projecting the triangle vertices on a
uniform grid, and then using an SVT to build a spatial index, might
even be useful for in-core ray tracing. This is also a direction we
consider to further investigate in the future. Our evaluation so far
has concentrated on memory consumption and only assumed that
the spatial distribution will have an influence on the rendering per-
formance. In the future we intend to integrate our algorithm in a
distributed, data-parallel rendering pipeline and test this assump-
tion.
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