
Eurographics Symposium on Parallel Graphics and Visualization (2017)
J. C. Bennett, A. Telea (Editors)

Interactive Exploration of Dissipation Element Geometry

T. Vierjahn1,3, A. Schnorr1,3, B. Weyers1,3, D. Denker2,3, I. Wald4,5, C. Garth6, T.W. Kuhlen1,3, and B. Hentschel1,3

1 Visual Computing Institute, RWTH Aachen University, Germany
2 Institute for Combustion Technology, RWTH Aachen University, Germany

3 JARA-HPC, Aachen, Germany
4 SCI Institute, University of Utah, USA

5 Intel Corporation, USA
6 University of Kaiserslautern, Germany

Figure 1: Approximations for two dissipation elements.

Abstract
Dissipation elements (DE) define a geometrical structure for the analysis of small-scale turbulence. Existing analyses based on
DEs focus on a statistical treatment of large populations of DEs. In this paper, we propose a method for the interactive visual-
ization of the geometrical shape of DE populations. We follow a two-step approach: in a pre-processing step, we approximate
individual DEs by tube-like, implicit shapes with elliptical cross sections of varying radii; we then render these approximations
by direct ray-casting thereby avoiding the need for costly generation of detailed, explicit geometry for rasterization. Our re-
sults demonstrate that the approximation gives a reasonable representation of DE geometries and the rendering performance is
suitable for interactive use.

CCS Concepts
•Computing methodologies → Scientific visualization; Ray tracing; Parametric curve and surface models;

1. Introduction

The analysis of large-scale, turbulent flows is a major research field
in computational fluid mechanics. In this regard, direct numerical
simulation allows domain experts to predict relevant flow quanti-
ties across scales. Wang and Peters proposed dissipation elements
(DEs) as geometric structures for the analysis of small-scale tur-
bulence [WP06, WP08]. Based on an input scalar field, DEs par-
tition the underlying domain into regions of coherent, monotonic
gradient flow; specifically, a DE is defined by the set of gradi-
ent trajectories which connect a local minimum to a local max-
imum of the given scalar variable. Given a simulation data set,
DEs can be extracted either numerically, i.e. by integrating gradi-

Intel, Intel Core, Xeon, and Xeon Phi are trademarks of the Intel Corpora-
tion in the U.S. and other countries. Other product names and brands may
be claimed as property of others.

ent trajectories [WP06,BSG∗11], or via the 3D Morse Smale Com-
plex [EHNP03, GBHP08, GBP12, SN12]. To date, researchers in
fluid mechanics have focused on a statistical analysis of DEs in
both simulated [AO12, WP06, WP08] and experimental turbulent
flows [SDKS11, SGS13].

This paper was motivated by the need to investigate the geomet-
rical structure of dissipation elements in more detail. While a statis-
tical analysis requires only the storage of key quantities – typically
the Euclidean distance and the scalar difference between the local
extrema – per element, an analysis targeting the geometric structure
is far more demanding in terms of storage. The main goal of this
paper therefore is to devise a method for the compact, memory-
efficient description and subsequent visualization of the approxi-
mate geometry of dissipation elements – as a first step towards an
accurate geometric representation. In order to achieve this goal, we
first compute a linear approximation of a DEs centre line along the
gradient field. We augment this line by elliptical approximations of

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/pgv.20171093

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20171093

Vierjahn et al. / Exploration of Dissipation Elements

the trajectory point distribution in a cross section plane orthogo-
nal to it (c.f. Section 3). As a second component, we devise a ray
casting scheme which directly consumes the previously extracted
approximations. Thereby, we avoid the explicit generation of ge-
ometry, which saves either computation time or storage space, or
both. This rendering stage, which we present in Section 4, relies on
the OSPRay framework [WJA∗17].

We report our findings in Section 5. These validate that our ap-
proximation scheme is efficient compared to the storage of explicit
trajectory geometry and lends itself to interactive rendering of ap-
proximate local element geometry, yet still depicting the main ge-
ometric characteristics of the underlying element data. We derived
these findings in close collaboration with domain experts. Thus,
they reflect, in part, their professional assessment of the proposed
design’s suitability for their analysis requirements.

To summarize our contributions: we propose a compact repre-
sentation for DEs; we describe a direct rendering method that avoids
geometry generation; we demonstrate our method’s effectiveness
based on real-world data from direct numerical simulation.

2. Related Work

In this section, we briefly review previous work related to the
proposed approximation and rendering schemes. For conciseness,
work related to the data being visualized is presented alongside the
description of the data itself.

Visualization of Turbulent Flows Flow visualization in general
and the visualization of turbulent flows in particular has been a
driving use case for scientific visualization at large. Examples
include work by Laney et al., who segment the interface sur-
face in turbulent mixing processes based on concepts from topol-
ogy [LBM∗06]; work by Bremer et al., who follow a similar ap-
proach in order to analyse the flame surface in turbulent combustion
simulations [BWP∗10]; and work by Clyne et al. and Treib et al.,
both of whom target the exploration of large, turbulent flow data
sets on desktop machines [CMNR07, TBR∗12]. Li et al. use tur-
bulent flow data sets to evaluate a wavelet-based compression
scheme [LGP∗15].

Icon-based Visualization Icons have been a fundamental modal-
ity for flow visualization since the early days of the field [vW-
PSP96]. More recently, glyphs have been used, e.g., for the visu-
alization of brain scans [Kin04, KW06] and the analysis of blood
damage in ventricular assist devices [HTP∗08]. Reinders et al. con-
struct a tree-like representation of features by means of a volume
thinning algorithm [RJP00] and use the result for feature visual-
ization and tracking. This approach is conceptually similar to our
centre line approximation described in the next section.

Ray Tracing for Visualization Though the algorithms described
in this paper are general, our particular implementation is based on
OSPRay [WJA∗17], Embree [WWB∗14], and ISPC [PM12].

Embree [WWB∗14] is a ray tracing kernel library that offers
highly optimized kernels for the fast construction of bounding vol-
ume hierarchies; the traversal of rays, packets of rays, and streams

of rays through this BVH; and, at least for certain primitive types
such as triangles, hair, or subdivision surfaces, the fast ray-primitive
intersection.

In addition to those built-in types, Embree also offers so-called
user geometries, which allow the user to define new geometry types
by providing callbacks for computing a primitive’s bounding box
and ray-primitive intersection, respectively. Given those callbacks
Embree then handles BVH construction and ray traversal, calling
back to the user-provided callbacks as required.

The Intel R© SPMD Program Compiler (ISPC) [PM12] is a “sin-
gle program multiple data” (SPMD) compiler that allows for writing
scalar-looking code which the compiler then automatically maps to
the different lanes of modern CPUs’ vector units. ISPC offers a C99-
style language with some small extensions that, for example, allow
a programmer to specify which variables should exist per vector
lane (varying) vs. per scalar CPU thread (uniform).

ISPC supports all modern CPU instruction sets from Intel Stream-
ing SIMD Extensions (SSE) all the way to the AVX512 instructions
found on the latest Intel R© Xeon PhiTM processors. Most impor-
tantly, ISPC generates linkable Object code that can be called from,
and can callback into, regular C/C++ code. This allows, for exam-
ple, to use ISPC code to be interfaced with Embree, using ISPC-
based ray primitive intersections in Embree user geometries, etc.

Finally, OSPRay [WJA∗17] is a ray tracing based rendering
framework for scientific visualization. It uses a object-oriented ar-
chitecture where different “actors” such as cameras, renderers, ge-
ometries, volumes, etc., interact. OSPRay comes with a set of pre-
defined actor types such as different camera types, triangle meshes,
spheres, stream lines, etc. In addition, OSPRay offers an SDK that
allows users to define additional actor types (e.g., a new geometry
type such as our elliptic tubelets) in the form of demand-loadable
“modules”, which offers users an easy way of adding new actor
types that then work together with the rest of OSPRay.

Internally OSPRay builds on top of Embree and ISPC:
performance-critical code is written in ISPC, and acceleration
data structure construction and traversal are handled through Em-
bree, using either Embree primitives where possible (triangles), or
through Embree user geometries.

In using ray tracing for interactive visualization OSPRay fol-
lows previous work by Parker et al. [PSL∗98, PPL∗99], Wald
et al. [WSBW01, WBS02], Bigler et al. [BSP06], Brownlee et
al. [BPL∗12], etc. Ray tracing in particular has benefitted from ever
faster hardware, and from the emergence of highly tuned ray tracing
libraries such as Embree [WWB∗14] and OptiX [PBD∗10]: today,
a single laptop or workstation can typically deliver sufficient per-
formance to interactively ray-trace non-trivial data sets [WJA∗17].

One of the advantages of ray tracing has always been that it can
represent many different primitive types without the need for ex-
plicit tesselation. VMD’s “Tachyon” ray tracer, for example, na-
tively supports cylinders, spheres, and cones to represent particles,
bonds, and balls-and-stick models. OSPRay does the same, and also
added a piece-wise-linear, constant-radius “stream line” in which
control points are connected through cylinders, using spheres at the
joints to round the edges. The “Brayns” project [Fav16] expands

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

54

Vierjahn et al. / Exploration of Dissipation Elements

on this work by allowing control points with different radius, con-
nected through cylinder segments.

Thick curves are also used in professional rendering, often
to represent hair or fur. A method for intersecting the Render-
man “curves” primitive is, for example, given by Nakamaru et
al. [NO02]. Support for hair primitives was also added to Em-
bree [WBW∗14]; this initially used “flat” ribbons for the hair in-
tersection, but has since been extended to more generalized cubic
Bezier curves. However, all these approaches only allow circular
cross-sections.

In this paper, we extend the use of ray tracing to the immediate
rendering of tubelets with elliptic cross section.

3. Dissipation Element Approximation

Our algorithm for the approximation of dissipation elements com-
prises two main steps: based on a set of input trajectories, which
give a high resolution representation of a single DE’s geometry, we
first compute an approximate centre line; at each of its vertices,
we then approximate the element’s cross-section orthogonal to the
centre line by a 2D ellipse.

For both steps, we decided to use straightforward approaches
in order to evaluate the efficacy of the whole approximation-
rendering-system. Consequently, there is no guarantee that the ap-
proximated centre line lies completely in the interior of a DE. Fur-
thermore, the shape of the cross-section is underestimated by using
the variance of the trajectory-distribution instead of, e.g., the con-
vex hull. This will later help separate individual DEs although they
are space-filling. Nevertheless, more elaborate approaches are de-
liberately left for future work.

3.1. Dissipation Element Extraction

Extracting dissipation elements of a locally smoothed scalar field
from a single time step is implemented as a two-step algo-
rithm [WP08]. First, trajectories are numerically integrated from
each grid point in ascending and descending gradient direction.
A special numerical treatment near critical points that is valid
for diffusion-controlled scalar fields ensures that trajectories re-
sist small perturbations. When a trace is successfully extended to
a pair of local extrema, this trace’s seed point is labelled by that
pair. In the second step, all grid points, which are assigned to the
same pair of extrema, receive a unique DE ID. This algorithm has
been parallelized using OpenMP and tuned for large NUMA sys-
tems [BSG∗11]. For our approximation, we get the set of trajecto-
ries as input that make up a single DE. Our current implementation
relies on this input representation in two key steps. However, we
will point out how it can be adapted to other input formats – e.g.
a labelling of grid cells resulting from an Morse-Smale-Complex-
based data decomposition.

3.2. Adaptive Centre Line Approximation

Assume the input trajectory set is given as a set of pairs

G = {(gi,φi)} , with 1≤ i≤ N,

where the gi : R 7AR3 define the trajectories, and the φi : R 7A
R yield the scalar value at each trajectory point. For the sake of
simplicity, we assume that the scalar field is normalized to the unit
interval for the given DE.

We approximate the centre line of a DE by a series of centres of
gravity of isopoints. We define the set of isopoints for a given scalar
value σ as

Pσ = {gi(α) | φi(α) = σ;1≤ i≤ N} .

Then, its centre of gravity is given by

cσ =
1
N ∑

p∈Pσ

p .

We construct our initial DE centre line approximation from a fixed
set of these points; specifically, we chose the points cσ for σ ∈
{0.0,0.25,0.5,0.75,1.0}.

We then refine this approximation by iteratively checking for
each line segment whether or not it needs to be refined, and by
splitting it as needed. Assume cσ and cτ to be two successive points
in the approximation. We compute the centre of gravity cµ of the
isopoints at the intermediate level µ = σ+τ

2 . We refine the segment
(cσ,cτ) by inserting cµ iff∥∥∥cµ−

cσ + cτ

2

∥∥∥> δe

for a user-specified error δe. Whenever a segment is refined, the
iteration is resumed at its original start point cσ. In this way, we
effectively implement a depth-first refinement pattern which will
terminate as soon as the error constraint is respected for each level.
While the above formulation assumes that the DE is approximated
by a set of gradient trajectories, the isopoint setsPσ can be straight-
forwardly computed from a volume representation of the DE, e.g.,
one extracted from an Morse-Smale-Complex-based labelling of
the data set.

3.3. Cross-Section Approximation

For each centre line segment (cσ,cτ), we first define its tangent
direction as

tσ =
cτ− cσ

‖cτ− cσ‖
. (1)

The pair (cσ, tσ) defines the plane for which

(cσ−x)>tσ = 0 .

We then use this plane as the basis for a cross section through the
element centred at cσ.

For each gradient trajectory, the set

Sσ,i =
{

gi(α)
∣∣ (cσ−gi(α)

)>tσ = 0
}

, with 1≤ i≤ N,

comprises all intersections of gi and the cross section plane at cσ.
In order to consider only those intersections that are approximating
Pσ, we define the set of cross section points as the union of points
from Sσ,i,1≤ i≤ N with minimal distance to the centre:

Sσ =
N⋃

i=0
{argmin

x∈Sσ,i

‖x− cσ‖}

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

55

Vierjahn et al. / Exploration of Dissipation Elements

This definition of Sσ again assumes a set of trajectories as input.
Nonetheless, it is obvious how to transfer Sσ to a grid-based repre-
sentation of the input dissipation element.

Afterwards, we fit a 2D ellipse, which resides inside the cross
section plane, to Sσ. To this end, we first establish an arbitrary co-
ordinate frame inside that plane. In keeping with the notations of
Frenet-Serret frames, we will call the two basis vectors the normal
nσ and binormal bσ. We set

nσ =
p− cσ

‖p− cσ‖

for an arbitrary, off-centre point p ∈ Sσ and consequently

bσ =
tσ×nσ

‖tσ×nσ‖
.

Let p j = (α j,β j) ∈R2 denote the 2D coordinate vectors of the
intersection points in Sσ, such that

∀p j ∈ Sσ : cσ + α jnσ + β jbσ = p j .

We finally obtain our elliptic approximation by computing the co-
variance matrix of the resulting points

ΣΣΣ
(
{p j}

)
=

[
varα j covα j,β j

covα j,β j varβ j

]
and solving for its eigenvalues λ1,2 and corresponding eigenvectors
q1,q2. Since ΣΣΣ

(
{p j}

)
is 2× 2, there exists a closed-form solution

to this problem. Hence, our implementation avoids a (costly) nu-
merical iteration scheme. Assuming λ1 ≥ λ2 ≥ 0, then q1 gives
the major axis of our elliptical fit and we scale its major radius to
r1 =

√
λ1. Analogously, we set r2 =

√
λ2 for the ellipse’s minor

axis given by q2.

In summary, our DE approximation is an ordered set of sample
tuples, each of which has the form (cσ,q1,q2,r1,r2).

4. Ray Tracing Elliptical Tubelets

Our algorithm renders the approximate DE geometry as a set of
straight tube segments, tubelets for short, each with an elliptical
profile. It supports ellipses with arbitrary rotation around the direc-
tion of the tubelets, and it handles arbitrary non-zero radii. Both,
rotation and radii, are allowed to change along the tubelet. In this
section, we derive the intersection test between the traced rays and
a tubelet’s surface. More details leading to our implementation are
provided in the appendix in order to help reproduce our findings.

If the ellipse’s radii and rotation change too much along a tubelet,
a “candy-wrapper” effect will become noticeable. To reduce this
effect, we further subdivide such tubelets. Considering this subdi-
vision already during a DE’s approximation is left for future work.

Furthermore, the individual tubelets will necessarily intersect
each other, whenever a DE’s centre line bends. To mitigate this ef-
fect we slightly shorten the tubelets, introducing larger gaps be-
tween them. Avoiding the intersections and closing the gaps by
properly joining the tubelets is left for future work.

4.1. Ray-Tubelet-Intersection

Let cσ ∈ R3 denote the beginning of a tubelet’s centre line c, and
let cτ ∈R3 denote its end. Then,

c(u) = cσ +u · (cτ− cσ) , u ∈ [0,1]

denotes points on that line. Using the tangent direction tσ from
Equation 1 and the reparameterization

v ..= u · ‖cτ− cσ‖ (2)

yields the line’s equation

c(v) = cσ + v · tσ , v ∈
[
0,‖cτ− cσ‖

]
(3)

parameterized by length.

Let o ∈ R3 denote the origin of a ray r, and let d ∈ R3 denote
its direction. Then,

r(t) = o+ t ·d , 0 < t ∈R , ‖d‖= 1

denotes points on that ray.

Assume there exists a plane perpendicular to the line c being
swept along that line. Then,

t>σ
(
x− c(v)

)
= 0

holds for all points x ∈R3 in the plane located at c(v). Intersecting
the ray r with that swept plane yields

t>σ
(
r(t)− c(v)

)
= 0

≡ t>σ (o+ t ·d− cσ− v · tσ) = 0

⇐⇒ t · t>σ d+ t>σ (o− cσ) = v ,

the line’s parameter v for the perpendicular plane located at c(v)
containing a given r(t). Finally, substituting using e, f ∈R for con-
venience yields

t · e+ f = v . (4)

Assume furthermore there exists an ellipsoid being swept along
the line c, and let A denote a matrix specifying that ellipsoid’s ori-
entation and dimensions, then(

pe− c(v)
)> ·A · (pe− c(v)

)
= 1

holds for all points pe ∈R3 on the ellipsoid located at c(v). Inter-
secting the ray r with that ellipsoid yields(

r(t)− c(v)
)> ·A · (r(t)− c(v)

)
= 1 . (5)

In order to render only the hull of the tubelet, the ray needs to be
simultaneously intersected with the swept ellipsoid and the swept
plane. Consequently, inserting v from Equation 4 into Equation 3
yields

c(v) = cσ +(t · e+ f) · tσ

= cσ + f · tσ + t · e · tσ =.. c(t) ,

turning Equation 5 into(
r(t)− c(t)

)> ·A · (r(t)− c(t)
)
= 1

which is quadratic in t.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

56

Vierjahn et al. / Exploration of Dissipation Elements

4.2. Varying Orientation and Radii

Matrix A specifies the orientation and radii of the tubelet’s elliptical
profile. Its eigen decomposition yields

A = QΛΛΛQ> , where

Q =

 | | |
q1 q2 q3
| | |

 and ΛΛΛ =

r−2
1 0 0
0 r−2

2 0
0 0 r−2

3

 ,

with orthogonal unit vectors qi, i = 1, . . . ,3 spanning the ellipsoid,
and with ri, i = 1, . . . ,3 denoting its radii. By definition, in the pro-
posed algorithm

q3
..= tσ and r3

..= 1 ,

since only the ellipse in the swept plane is required for creating
the tubelet’s hull but A needs to be compatible with 3D vectors for
computing ray intersections.

Our DE approximation specifies only an Aσ for each tubelet’s
beginning cσ (c.f. Section 3). The Aτ at the current tubelet’s end
cτ is computed by projecting the orientation of the next tubelet’s
beginning into the cross section plane at the current tubelet’s end.
Consequently, each tubelet has parallel caps. The radii of the cur-
rent tubelet’s end match the radii of the next tubelet’s beginning.

In order to let the profile, i.e., the ellipse’s orientation and radii,
change along the tubelet, we linearly interpolate between an Aσ at
the tubelet’s beginning and an Aτ at the tubelet’s end, yielding

A(u) = Aσ +u · (Aτ−Aσ) .

Using the reparameterization from Equation 2 and v from Equa-
tion 4 turns this into

A(v) = A0 + v · A1−A0
‖cτ− cσ‖

= A0 +(t · e+ f) · A1−A0
‖cτ− cσ‖

= A0 + f · A1−A0
‖cτ− cσ‖

+ t · e · A1−A0
‖cτ− cσ‖

=.. A(t) . (6)

Interpolating Q via SLERP and interpolating each ri linearly
would undoubtedly lead to a more accurate representation of the
tubelet’s shape. However, this would introduce higher-order poly-
nomials to the intersection tests for which root finding gets costly.
In contrast, linearly interpolating the Ai enables us to pose the over-
all ray-tubelet-intersection as(

r(t)− c(t)
)> ·A(t) ·

(
r(t)− c(t)

)
= 1

which is cubic in t. We use Blinn’s numerically robust algo-
rithm [Bli07] to solve this equation in the intersection test.

4.3. Subdividing and Shortening Tubelets

In order to still provide reasonable accuracy, we subdivide indi-
vidual tubelets on import whenever interpolating the Ai is likely
to introduce too large errors. Whenever the ellipsoid’s radii or ori-
entation change too much along a tubelet, we separately compute
interpolated qi and ri for the centre of that tubelet. A radius-ratio
of 1.5 between start and end of a tubelet, and a basis-rotation of π

16

turned out to be reasonable thresholds providing results appropriate
for the described use case.

Without additional measures, the individual tubelets might inter-
sect each other since our algorithm performs a piece-wise linear
approximation of the overall tube. In order to reduce these inter-
section on small-angle bends, we slightly reduce the length of each
tubelet. For this purpose we limit the valid range of the parameter
v such that

v ∈
[
ε · ‖cτ− cσ‖,(1− ε) · ‖cτ− cσ‖

]
.

ε = 0.1 turned out to produce reasonable results.

5. Results

This section summarizes the results that were obtained using our
proposed methods for DE approximation and rendering.

5.1. Test Data

We base our experiments on real-world data from ongoing re-
search towards a deeper understanding of turbulent flows in gen-
eral and turbulent phenomena in combustion processes in particu-
lar [GSNP13, WP13].

premixed jet flame 1 and 2 – The first and second data sets are
from of a series of direct numerical simulations of planar spatial
evolving premixed turbulent jet flames [LAB16]. These simula-
tions were parametrised to investigate fundamental assumptions of
regimes in turbulent premixed combustion. The full computational
grids consist of 720×480×256 and 2880×1920×512 grid points
for premixed jet flame 1 and 2, respectively. The DE analysis was
performed on the temperature fields T , where a subdomain was
chosen in axial flame position to assure comparability of the DEs.
Table 1 refers to the respective subdomains.

non-premixed jet flame – The third data set was generated by a
direct numerical simulation of a highly turbulent, temporally evolv-
ing non-premixed planar jet flame for the purpose of a detailed in-
vestigation of small scale turbulence / chemistry interaction. The
fuel consists of diluted methane to incite local extinction and re-
ignition for further investigation. The computational grid features
768×1024×512 grid points with a total of approximately 15 bil-
lion degrees of freedom. Including mass fractions of all chemical
species involved, diffusion coefficients, local pressure, and velocity
fields, roughly 360 GB of total data is generated for every time step
of the simulation. A subdomain of the mixture fraction field Z of
the direct numerical simulation is chosen for DE analysis, as it pro-
vides the most insight into the turbulence / chemistry interaction.

Based on a domain expert’s analysis use case, only DEs that
crossed a certain isosurface were extracted. For the premixed jet
flame 1 and 2 cases, the isothermal contour for T = 1800K was
used. In case of the planar jet flame, we selected the elements by
means of the mixture fraction isosurface for Z = 0.2.

The input data dimensions, sizes – given for a 64-bit, double
precision point scalar variable – and resulting DE populations are
summarized at the top of Table 1.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

57

Vierjahn et al. / Exploration of Dissipation Elements

Table 1: Overview of data sets and approximation sizes.

jet jet non-premixed
flame1 flame2 jet flame

input data
data res. 256× 320× 256 512× 640× 387 768× 512× 512

size [MB] 160 1,280 1,536
#elements 1,277 8,307 19,341

full geometry representation
#points 25,273,718 92,185,009 458,309,403
#lines 190,933 756,081 2,245,738
size [MB] 387 1,413 7,010

approx. δe = 5.0
#ellipsoids 18,995 118,753 466,438
avg. line len. 14.87 14.28 24.00
size [MB] 1.16 7.24 28.47
ratio to full 333× 195× 246×

approx. δe = 10.0
#ellipsoids 11,587 70,584 375,744
avg. line len. 9.07 8.49 19,34
size [MB] 0.71 4.21 22.93
ratio to full 545× 336× 306×

approx. δe = 20.0
#ellipsoids 8,114 49,638 262,610
avg. line len. 6.35 5.97 13.52
size [MB] 0.5 3.02 16.03
ratio to full 774× 468× 437×

5.2. Dissipation Element Approximation

Table 1 also summarizes the characteristics of the results of our
approximation scheme in terms of space consumption for different
error thresholds δe. Here, δe is given in cell diameters, i.e., δe = 5
allows for a maximum approximation error of 5 grid cells (c.f. Sec-
tion 3). Before the development of our approximation scheme, our
collaborators would have to collect and store all trajectories as-
signed to a particular DE in order to be able to analyse its geome-
try. With our approximation scheme, the required storage space can
significantly be reduced, i.e., by factors between 195× and 774×,
depending on the data set and algorithm settings.

Here, we would like to note that we specifically compute these
ratios against the size of the full trajectory geometry data that serves
as input to our algorithm. This is, indeed, a very detailed yet lav-
ish representation. In Section 3, we indicated how our algorithm
could be adapted to a volume-based input representation of ele-
ment geometries. This would essentially require a single, 64-bit in-
teger label plus the input scalar data. However, since the DEs in our
example cases do not cover the entire domain, the exact storage re-
quirements are hard to compute. Therefore, we refrain from adding
similar ratios for this representation, but note that they would be
significantly lower than the ratios given in Table 1.

Regarding our approximation scheme, We note that the output
size does not scale linearly with the error bound; quite to the con-
trary, reducing the allowable error by a factor of 4 does not quite

Table 2: Data set sizes and rendering performance.

Size Size Render Time

Elem. ID Traject. δe Ellipses Tubes BW KNL
[MB] [kB] [kB] [ms] [ms]

173,987 2.72 5 0.938 4.22 2.7 2.4
10 0.562 3.09 2.67 2.62
20 0.328 3.0 2.71 2.77

396,760 2.34 5 1.41 6.28 2.49 3.3
10 1.17 5.81 2.47 3.26
20 1.03 4.69 2.37 3.02

581,114 1.85 5 1.31 6.47 3.47 3.22
10 1.17 6.0 3.44 3.37
20 0.844 5.44 3.42 3.32

702,625 0.454 5 1.12 4.69 4.32 3.94
10 0.984 4.41 4.32 3.13
20 0.797 3.38 4.28 3.72

double the number of output ellipses and thus the overall output
size in case of the planar jet flame. We reason that this is due to the
fact that the chosen maximum threshold of δe = 20 already leads
to approximations that capture all essential features well. Further
decreasing the error rate therefore helps to adapt the centre line ap-
proximation to relatively small-scale features of the respective DEs.

This argument is supported by a visual inspection of a number of
DE geometries and their approximations. Figure 2 shows a side-by-
side comparison of four selected elements, each of which is given
for all four error thresholds plus a depiction of the fully detailed
trajectory geometry. As can be seen, the general shape can clearly
be discerned from the lowest-resolution approximation, already. In-
creasing the accuracy by lowering the error threshold allows our
algorithm to better capture fine details, specifically in the long tails
of some elements, as is evident from the thin tail to the left of ele-
ment 173,987 and the lower end of 396,760. As discussed in Sec-
tion 3, our centre-line approximation is not yet guaranteed to lie
completely in the interior of a DE, and our approximation underes-
timates the input point set.

Second, Figure 2 shows that the adaptive centre line refinement
scheme places additional points in areas with high variation in
the underlying point set. This leads to shorter tubelets in areas of
high curvature, whereas mostly linear sections are approximated
by longer, linear tubelets. Thus, the tubelet length provides an ad-
ditional channel to communicate information about the underlying
point distribution. The behaviour is clearly evident for the visual-
ization of element 396,760: its body, which seems to twist around
the up direction, is depicted by several smaller ellipses; in contrast,
both mostly linear tails are visualized by thin, prolonged tubelets.

5.3. Rendering Performance

Performance measurements were conducted on

• a dual-socket node with 2× Intel R© Xeon R© E5-2680 v4 [Broad-
well] processor (BW) featuring 14 cores each at 2.4 GHz, and
128 GB DDR4-2400 RAM, and

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

58

Vierjahn et al. / Exploration of Dissipation Elements

Element ID 173,987 Element ID 396,760 Element ID 581,114 Element ID 702,625

O

5

10

20

δe

Figure 2: Overview of the approximation for four selected dissipation elements. The top row shows the original, full trajectory geometry as
given in the input data. The other three rows give the approximation for an error threshold of δe = 5,10,20, respectively. For reference, we
included samples (yellow) from the input data into the renderings of the approximations.

• a single socket Intel R© Xeon PhiTM 7230 [Knights Landing]
processor (KNL) featuring 64 cores at 1.3 GHz, 16 GB of MC-
DRAM(flat mode) and 96 GB of DDR4 RAM.

The presented algorithm was compiled using

• Embree v2.13 from Intel
• OSPRay v1.1.2 from Intel
• Intel R© C++ compiler v17.0.1 with TBB included
• Intel R© SPMD Program Compiler v1.9.1

Each element is loaded in its approximated form as presented
in Section 3. In order to construct the implicit surface, the set of
ellipses is converted into a set of tubelets as presented in Sec-
tion 4. In order to avoid errors due to interpolating the tubelet’s pro-
file, some tubelets are further subdivided on import. Consequently,
the tubelets take more memory than the ellipses. Table 2 presents
the memory requirements of each element’s ellipses and tubelets,

respectively. For reference, the memory requirement of each ele-
ment’s raw input trajectories are listed.

For each element, we automatically positioned the camera in
such a way that the element’s bounding box fits just inside the view
frustum. The element was rendered at a 1024× 768 resolution us-
ing OSPRay’s scivis renderer, one directional light source casting
shadows, one ambient occlusion sample, and no frame accumula-
tion. We allowed the rendering system do a 100-frame warm-up
run prior to measurement, and we then recorded the time for a 100-
frame full 360◦ camera orbit around the element. Consequently, the
measurements reflect the frame times that will occur during inter-
active camera movements. In order to compensate for variation due
to, e.g., scheduling, we repeated each measurement 10 times. Ta-
ble 2 presents the average time spent rendering a single frame for
each of the elements.

Figure 2 presents the renderings of the approximated elements
at three different error thresholds. Here, we used four frame ac-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

59

Vierjahn et al. / Exploration of Dissipation Elements

cumulations in order to reduce the image noise. Consequently, the
images resemble the rendered results that are available four frames
after a user stopped interactively moving the camera. For reference,
we included renderings from the original input data (top row) and
samples from the input data (yellow spheres) in Figure 2.

Rendering times for each element in each approximation level
are consistently low. Rendering on both nodes, the Broadwell and
the KNL, is equally fast. There might be a slight advantage for the
KNL. The achieved frame times leave enough headroom to facili-
tate interactive renderings with larger screen coverage, of more el-
ements simultaneously, and/or using more samples/accumulations
in order to reduce noise.

6. Conclusion and Future Work

In this paper, we have presented an integrated approximation and
rendering scheme for dissipation elements, a structure definition
from contemporary fluid mechanics research. Our approximation
algorithm, which makes use of iterative refinement with user-
controlled error bounds, allows domain scientists to store large
amounts of DE representations for subsequent analysis. Our render-
ing scheme then enables them to interactively investigate the result-
ing representations. By using a ray casting approach, our scheme
avoids the costly generation and/or storage of explicit, intermediate
geometry. Our results show that the proposed scheme reduces the
storage requirements by factors in excess of 200× compared to the
original, fully resolved trajectory data. Moreover, using OSPRay as
the underlying rendering framework, we have demonstrated a ren-
dering of the resulting DE representations at interactive rates.

There are a number of aspects that we would like to address in
future work. First, the current iterative refinement scheme only con-
siders the error w.r.t. the centre line approximation. It does not ac-
count for sudden changes in the point distribution around the centre
line. Hence, the resulting elliptical cross sections might be rotated
against each other, leading to an undesirable “candy-wrapper” ef-
fect. Moreover, our scheme currently does not cope well with sud-
den direction changes of the centre line. In such cases, the resulting
elliptical tube sections frequently intersect each other. We currently
deliberately chose to depict individual tube sections because join-
ing tubes with non-circular cross-sections is non-trivial. This is a
very specific point for future improvements, even more so, if the
joints should be generated in a way that enables artifact-free semi-
transparent visualization.

Finally, our work has been chiefly motivated by the interactive
visualization of dissipation elements. However, the underlying ren-
dering core essentially enables ray casting of tubular geometry with
an elliptical profile. Hence, we plan to investigate other use cases
for this rendering modality.

Appendix

This appendix provides more details on the intersection test in order
to help reproduce our findings.

For deriving Equation 5, let pe denote a point on an ellipsoid
centred at c(v) in world space. Then,

pe− ce

yields the relative position of that point with respect to the ellip-
soid’s centre ce, i.e., the point in an ellipsoid-local coordinate space
with the ellipsoid centred at the origin. Since the columns of Q
specify the orientation of the ellipsoid’s axes in world space,

Q> · (pe− ce)

rotates the arbitrarily oriented, origin-centred ellipsoid into an axis-
aligned one. Afterwards, the axis-aligned, origin-centred ellipsoid
is scaled into a unit sphere via

S−1Q> · (pe− ce) ,

where S−1 =

r−1
1 0 0
0 r−1

2 0
0 0 r−1

3

 ,

with ri, i = 1, . . . ,3 denoting the ellipsoid’s radii. For a unit sphere
r2 = 1. Consequently,

∥∥S−1Q> · (pe− ce)
∥∥2

= 1

≡
(
S−1Q> · (pe− ce)

)>(S−1Q> · (pe− ce)
)
= 1

≡ (pe− ce)
> ·QS−1S−1Q> · (pe− ce) = 1 ,

and using ΛΛΛ ..= S−1S−1 and A ..= QΛΛΛQ>:

≡ (pe− ce)
> ·QΛΛΛQ> · (pe− ce) = 1

≡ (pe− ce)
> ·A · (pe− ce) = 1

Finally, in order to test for an intersection between a ray and the
swept ellipsoid, pe ..= r(t) and ce ..= c(v).

In order to create a concise notation for the implementation, we
concatenate t-dependent and t-independent terms in the leftmost
part of Equation 5:

r(t)− c(v) = o+ t ·d− cσ− f · tσ− t · e · tσ

= t · (d+ e · tσ)+o− cσ− f · tσ

= t ·g+h .

We also concatenate t-dependent and t-independent terms in
A(t) from Equation 6 for conciseness. Therefore, let

2D ..=
A1−A0
‖cτ− cσ‖

Then,

A(t) = A0 + f ·D+ t · e ·D
= t ·B+C .

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

60

Vierjahn et al. / Exploration of Dissipation Elements

In total, this yields for the intersection test

(t ·g+h)> · (t ·B+C) · (t ·g+h) = 1

≡ t3 ·g>Bg+ t2 ·g>Bh+ t2 ·g>Cg+

t ·g>Ch+ t2 ·g>Bh+ t ·h>Bh+

t ·g>Ch+h>Ch = 1

⇐⇒ t3 ·g>Bg+ t2 · (2 ·g>Bh+g>Cg)+

t · (h>Bh+2 ·g>Ch)+h>Ch−1 = 0

≡ a3 · t3 +a2 · t2 +a1 · t +a0 = 0 ,

a cubic equation being solved using Blinn’s numerically stable al-
gorithm [Bli07].

Acknowledgements

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 720270 (HBP SGA1), from the German Research Foun-
dation (DFG) under grant agreement No KU 1132/10-1, and from
the Excellence Initiative of the German federal and state govern-
ments.

References
[AO12] ALDUDAK F., OBERLACK M.: Dissipation element analysis in

turbulent channel flow. Journal of Fluid Mechanics 694 (2012), 332–
351. 1

[Bli07] BLINN J. F.: How to solve a cubic equation, part 5: Back to
numerics. IEEE Computer Graphics and Applications 27, 3 (2007), 78–
89. 5, 9

[BPL∗12] BROWNLEE C., PATCHETT J., LO L.-T., DEMARLE D.,
MITCHELL C., AHRENS J., HANSEN C.: A Study of Ray Tracing
Large-scale Scientific Data in two widely used Parallel Visualization Ap-
plications. In Eurographics Symposium on Parallel Graphics and Visu-
alization (EGPGV âĂŹ12) (2012), pp. 51–60. 2

[BSG∗11] BERR N., SCHMIDL D., GÖBBERT J. H., LANKES S.,
AN MEY D., BEMMERL T., BISCHOF C. H.: Trajectory-Search on
ScaleMP’s vSMP Architecture. In PARCO (2011), pp. 227–234. 1, 3

[BSP06] BIGLER J., STEPHENS A., PARKER S. G.: Design for Paral-
lel Interactive Ray Tracing Systems. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing (2006), pp. 187–196. 2

[BWP∗10] BREMER P.-T., WEBER G. H., PASCUCCI V., DAY M.,
BELL J. B.: Analyzing and Tracking Burning Structures in Lean Pre-
mixed Hydrogen Flames. IEEE Transactions on Visualization and Com-
puter Graphics 16, 2 (2010), 248–260. 2

[CMNR07] CLYNE J., MININNI P., NORTON A., RAST M.: Interactive
desktop analysis of high resolution simulations: Application to turbulent
plume dynamics and current sheet formation. New Journal of Physics 9,
8 (2007). 2

[EHNP03] EDELSBRUNNER H., HARER J., NATARAJAN V., PASCUCCI
V.: Morse-smale Complexes for Piecewise Linear 3-Manifolds. In Pro-
ceedings of the Annual Symposium on Computational Geometry (San
Diego, CA, 2003), ACM Press, pp. 361–370. 1

[Fav16] FAVREAU C.: Bluebrain/brayns: Visualizer for large-scale and
interactive ray-tracing of neurons. https://github.com/BlueBrain/Brayns,
2016. 2

[GBHP08] GYULASSY A., BREMER P.-T., HAMANN B., PASCUCCI V.:
A Practical Approach to Morse-Smale Complex Computation: Scalabil-
ity and Generality. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1619–1626. 1

[GBP12] GYULASSY A., BREMER P.-T., PASCUCCI V.: Computing
Morse-Smale Complexes with Accurate Geometry. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2014–2022. 1

[GSNP13] GAMPERT M., SCHÄFER P., NARAYANASWAMY V., PE-
TERS N.: Gradient trajectory analysis in a jet flow for turbulent com-
bustion modeling. J. Turbul. 14 (2013), 147–164. 5

[HTP∗08] HENTSCHEL B., TEDJO I., PROBST M., WOLTER M., BEHR
M., BISCHOF C., KUHLEN T.: Interactive Blood Damage Analysis
for Ventricular Assist Devices. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (2008), 1515–1522. 2

[Kin04] KINDLMANN G.: Superquadric Tensor Glyphs. In Proceedings
of the Sixth Joint Eurographics-IEEE TCVG Conference on Visualization
(2004), Eurographics Association, pp. 147–154. 2

[KW06] KINDLMANN G., WESTIN C.-F.: Diffusion Tensor Visualiza-
tion with Glyph Packing. IEEE Transactions on Visualization and Com-
puter Graphics 12, 5 (2006), 1329–1335. 2

[LAB16] LUCA S., ATTILI A., BISETTI F.: Direct numerical simula-
tion of turbulent lean methane-air bunsen flames with mixture inhomo-
geneities. In 54th AIAA Aerospace Sciences Meeting (AIAA 2016-0189)
(2016), p. 0189. 5

[LBM∗06] LANEY D., BREMER P.-T., MASCARENHAS A., MILLER
P., PASCUCCI V.: Understanding the Structure of the Turbulent Mixing
Layer in Hydrodynamic Instabilities. IEEE Transactions on Visualiza-
tion and Computer Graphics 12, 5 (2006), 1053–1060. 2

[LGP∗15] LI S., GRUCHALLA K., POTTER K., CLYNE J., CHILDS H.:
Evaluating the efficacy of wavelet configurations on turbulent-flow data.
In Proceedings of the IEEE Symposium on Large Data Analysis and Vi-
sualization (2015). 2

[NO02] NAKAMARU K., OHNO Y.: Ray tracing for curves primitive. In
Proceedings of Winter School of Computer Graphics (WSCG) (2002),
pp. 311–316. 3

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A.: OptiX: A General Purpose Ray Tracing Engine.
ACM Transactions on Graphics (Proceedings ACM SIGGRAPH) 29, 4
(2010). 2

[PM12] PHARR M., MARK B.: ISPC: A SPMD Compiler for High-
Performance CPU Programming. In Proceedings of Innovative Parallel
Computing (inPar) (2012), pp. 184–196. 2

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN P.-P., HANSEN
C., SHIRLEY P.: Interactive Ray Tracing for Volume Visualization.
IEEE Computer Graphics and Applications 5, 3 (1999), 238–250. 2

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C., SLOAN
P.-P.: Interactive ray tracing for isosurface rendering. In Proceedings
of the Conference on Visualization ’98 (Los Alamitos, CA, USA, 1998),
VIS ’98, IEEE Computer Society Press, pp. 233–238. 2

[RJP00] REINDERS F., JACOBSON M. E. D., POST F. H.: Skeleton
Graph Generation for Feature Shape Description. In Proceedings of
the Joint Eurographics/IEEE VGTC Symposium on Visualization (2000),
Springer Verlag, pp. 73–82. 2

[SDKS11] SCHÄFER L., DIERKSHEIDE U., KLAAS M., SCHRÖDER
W.: Investigation of dissipation elements in a fully developed turbu-
lent channel flow by tomographic particle-image velocimetry. Physics of
Fluids 23, 3 (2011), 035106. 1

[SGS13] SCHÄFER L., GÖBBERT J. H., SCHRÖDER W.: Dissipation
Element Analysis in Experimental and Numerical Shear Flow. European
Journal of Mechanics - B/Fluids 38 (2013), 85–92. 1

[SN12] SHIVASHANKAR N., NATARAJAN V.: Parallel Computation
of 3D Morse-Smale Complexes. Computer Graphics Forum 31, 3pt1
(2012), 965–974. 1

[TBR∗12] TREIB M., BÜRGER K., REICHL F., MENEVEAU C., SZA-
LAY A., WESTERMANN R.: Turbulence visualization at the terascale on
desktop pcs. IEEE Transactions on Visualization and Computer Graph-
ics 18, 12 (2012), 2169–2177. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

61

Vierjahn et al. / Exploration of Dissipation Elements

[vWPSP96] VAN WALSUM T., POST F. H., SILVER D., POST F. J.: Fea-
ture Extraction and Iconic Visualization. IEEE Transactions on Visual-
ization and Computer Graphics 2, 2 (1996), 111–119. 2

[WBS02] WALD I., BENTHIN C., SLUSALLEK P.: OpenRT - A Flexi-
ble and Scalable Rendering Engine for Interactive 3D Graphics. Tech.
rep., Saarland University, 2002. Available at http://graphics.cs.uni-
sb.de/Publications. 2

[WBW∗14] WOOP S., BENTHIN C., WALD I., JOHNSON G. S.,
TABELLION E.: Exploiting Local Orientation Similarity for Efficient
Ray Traversal of Hair and Fur. In High Performance Graphics (2014),
pp. 41–49. 3

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRATIL P.: Ospray - a cpu
ray tracing framework for scientific visualization. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan 2017), 931–940. 2

[WP06] WANG L., PETERS N.: The Length-Scale Distribution Function
of the Distance Between Extremal Points in Passive Scalar Turbulence.
Journal of Fluid Mechanics 554 (2006), 457–475. 1

[WP08] WANG L., PETERS N.: Length-scale distribution functions and
conditional means for various fields in turbulence. Journal of Fluid Me-
chanics 608 (2008), 113–138. 1, 3

[WP13] WANG L., PETERS N.: A new view of flow topology and con-
ditional statistics in turbulence. Phil. Trans. of Roy. Soc. 371, 20120169
(2013). 5

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-
teractive Rendering with Coherent Ray Tracing. Computer Graphics
Forum 20, 3 (2001), 153–164. (Proceedings of Eurographics 2001). 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A kernel framework for efficient CPU ray tracing. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH) 33 (2014).
2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

62

