
Short Paper

Constraint Synthesis for Parametric CAD

Aman Mathur and Damien Zufferey

MPI-SWS, Germany

CAD tool

Static
analysis

Dynamic
analysis

d
h

l

polygon(L) -> extrude(h) -> chamfer(l) -> hole(d)

L, h > 0 l < min (0.43 * L, h)
d < (0.87 * L)

L
h
l
d

L
h
l
d

Runtime

error!

L
h
l
d

L
h
l
d

L
h
l
d

L
h
l
d

L
h
l
d

Empty!

0

L
h
l
d

Runtime

error!

Our contribution

Sampling

L
h
l
d

L

L
h
l
d

L
h
l
d

Empty!

...
Figure 1: We present a technique for the automatic synthesis of constraints to CAD parameters. Using a mix of static and dynamic program
analysis, we restrict the parameter space of designs to only those configurations that produce valid final objects.

Abstract
Parametric CAD, in conjunction with 3D-printing, is democratizing design and production pipelines. End-users can easily
change parameters of publicly available designs, and 3D-print the customized objects. In research and industry, parametric
designs are being used to find optimal, or unique final objects. Unfortunately, for most designs, many combinations of parameter
values are invalid. Restricting the parameter space of designs to only the valid configurations is a difficult problem. Most
publicly available designs do not contain this information. Using ideas from program analysis, we synthesize constraints on
parameters of parametric designs. Some constraints are synthesized statically, by exploiting implicit assumptions of the design
process. Several others are inferred by evaluating the design on many different samples, and then constructing and solving
hypotheses. Our approach is effective at finding constraints on parameter values for a wide variety of parametric designs, with
a very small runtime cost, in the order of seconds.

CCS Concepts
• Computing methodologies → Shape analysis;

1. Introduction

Parametric design is a popular design methodology in which de-
signers encode their design intent by specifying the sequence of
operations in the design. This enables end-users to change param-
eters of the design, which after a re-evaluation of the sequence of
operations, results in different variations of final objects. Paramet-
ric design tools such as AUTODESK FUSION 360, SOLIDWORKS,
PTC CREO, OPENSCAD, and FREECAD are ubiquitous in the in-
dustry and ‘maker’ community. Moreover, websites such as THIN-
GIVERSE, where users share, remix, and customize parametric de-
signs, are extremely popular.

A serious limitation of current customization pipelines is that
the relationship between CAD parameters is often unknown. In
practice, only a small subset of parameter values lead to valid fi-
nal objects. Unfortunately, this information is usually not conveyed
in shared designs. Currently, there is also no good way of infer-
ring this information automatically. This is a hard problem because
designs can have many parameters, each of which influences the
validity of the final object. This complexity grows as designs in-
volve more CAD operations and parameters. At the same time, con-
straints on design parameters are extremely valuable to end-users.
It provides them a high-level perspective on how the parameters

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

Pacific Graphics (2021)
M. Okabe, S. Lee, B. Wuensche, and S. Zollmann (Editors)

DOI: 10.2312/pg.20211396 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-2405-0435
https://orcid.org/0000-0002-3197-8736
https://doi.org/10.2312/pg.20211396

Aman Mathur & Damien Zufferey / Constraint Synthesis for Parametric CAD

interact, and guides them towards valid final objects. Customizable
designs that include information on parameter constraints are much
more popular on THINGIVERSE. Still, most new designs do not
have this information. In many research and industrial use cases,
parameters of designs are sampled to find optimal (according to
metrics like weight, strength, stability, etc.) or otherwise unique
final objects [SWG∗18]. Depending on the design under test, a sig-
nificant proportion of these samples lead to invalid final objects,
and are therefore wasted. This can be drastically improved if infor-
mation on the constraints to design parameters is available.

In this paper, we present an approach for synthesizing CAD pa-
rameter constraints automatically. The central intuition behind our
technique is treating parametric designs as traditional programs,
and applying ideas from program analysis for synthesizing parame-
ter constraints. Each design can be broken down into its constituent
CAD operations, and each operation provides us with some infor-
mation on constraints to its parameters. Some of this information
can be collected statically, i.e., without evaluating the design on any
concrete parameter value. For example, when constructing a circle,
we can be sure that its diameter is > 0; when making a counter-
bore hole, we can be sure that the inner hole depth is ≥ outer hole
depth, and that this depth is < the diagonal of the bounding box of
the intermediate object on which the operation is performed.

After a static analysis pass, if there are still parameters with-
out known constraints, we move to dynamic analysis, i.e., we try
to infer constraints based on evidence from evaluating the design
on many concrete parameter values. Such a two-pronged approach
(static & dynamic analysis) has been successful at finding bugs and
program invariants in traditional computer programs (for example,
see [ECH∗01]). We adapt these ideas for parametric CAD, first by
defining what it means for a CAD operation to fail, or for an object
to be invalid. Then, we describe a few inference rules that help syn-
thesize some parameter constraints statically. Finally, we present
a novel guess-and-check algorithm for dynamically synthesizing
constraints.

Let us present a concrete example of our technique in action.
Consider the design in Figure 1. The design consists of first making
a hexagon of diameter L. Then, this is extruded to a height h. Next,
the 6 top-most edges are chamfered using a length of l. Finally, a
hole of diameter d is drilled on the top-most face.

Now, our technique can statically infer the following: (i) as L and
h create new geometry, they should be > 0, (ii) the chamfer opera-
tion cannot succeed (run-time failure) if the value of l is very high,
(iii) if the hole diameter d is very large, then the final object may
be empty, or fractured (segmented into unconnected components).
Additionally, we have rough constraints for l and d. They should
both be less than the bounding box diagonal of the intermediate ob-
ject on which they operate. Precise constraints for l and d need to
be found, for which we move to dynamic analysis.

Our dynamic analysis algorithm samples the design over many
parameter values, and tries to construct and fit hypotheses based
on the observed runs. Our hypothesis generator proposes hypothe-
ses of increasing complexity. To check whether the hypothesis fits,
and to synthesize a precise constraint, we use mixed integer lin-
ear programming. For our current example, this technique synthe-
sizes correct constraints for both, l and d: l < min(0.43*L, h),

l
w

h

f1

f2

...

Figure 2: A design with 5 parameters, and some valid variations.

and d < 0.87*L. Our automated technique finds all constraints in
just 48 seconds. Clearly, coming up with these constraints by hand
would be challenging.

This is hardly a toy example. Another design taken from the
same dataset [LWJ∗21] is presented in Figure 2. Just 5 parameters
here encapsulate a wide-variety of different final objects. To add to
this, sampling this design randomly yields only 3% of the samples
to produce valid final objects (many configurations fail with run-
time errors). In general, designs may have many more parameters,
and much sparser space of valid designs. An automated technique
for finding parameter constraints, therefore, can be quite useful. We
have evaluated our technique on designs with up to 12 parameters,
and as little as 0.1% of configurations valid (see Section 4).

The rest of the paper is organized as follows. In Section 2, we
describe some related work. Then, in Section 3, we present details
about our proposed approach. In Section 4, we evaluate our tech-
nique on a public dataset, and present our accuracy and runtime
characteristics. Finally, in Section 5, we conclude, and discuss op-
portunities for future work.

2. Related Work

Constraints on design parameters. We are not the first to pro-
pose the idea of synthesizing CAD parameter constraints. FAB

FORMS [SSM15] employs user-specified validity conditions to
synthesize constraints for design parameters. These constraints are
then embedded in an interactive design explorer that enables a
quick preview of the various (valid) final objects. FAB FORMS,
however, takes between several hours to several weeks for pre-
computation. Part of this is because they, like other similar tech-
niques [YYPM11, TSG∗14], work (albeit indirectly) with meshes.
Moreover, many of FAB FORMS validity checks are costly (e.g. fi-
nite element method). Our work uses the higher-level, and widely
popular Boundary Representation (B-rep) [Str06]. We perform va-
lidity checks within the representation, which is more efficient than
checks on meshes. The use of B-rep and its operations also enables
us to support more designs, and more design workflows than spe-
cialized constrained editing tools [BWSK12,SSL∗14]. Our validity
conditions come from implicit assumptions of CAD operations and
design methodology. We can therefore quickly eliminate many de-
signs that are generally accepted to be invalid. Then, if more com-
plicated checks are required, these can be performed on a much
smaller subset of final objects.

Generative design in the context of 3D CAD has gained
widespread prominence in research and industry. The idea is to
generate a large number of objects based on some abstract metric,

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

76

Aman Mathur & Damien Zufferey / Constraint Synthesis for Parametric CAD

such as user choice [XZCOC12,FRS∗12], or physical properties by
sampling parametric designs [SWG∗18]. These techniques are ex-
pensive, and can benefit greatly by a constrained parameter space,
as can be provided by our technique.

Program analysis/synthesis. The idea of applying program lan-
guage techniques to design is not new. Some work already exists on
synthesizing programs for vector graphics [HLC19,CHSA16]. Re-
cently, this has been extended to parametric CAD [MPZ20]. Our
work shares a similar intuition. We analyze CAD representations
as traditional programs [NNH04]. We collect and use implicit as-
sumptions [ECH∗01] of CAD operations and learn constraints on
the design parameters that avoid invalid configurations. This is in-
spired by the work on synthesizing program invariants that are
understandable by programmers [ECGN00, FL01, GLMN14]. Our
synthesis approach is based on enumeratively proposing and check-
ing hypotheses of increasing complexity, as is standard in Syntax
Guided Synthesis (SyGuS) [ABD∗15].

3. Framework

We now provide details of our constraint synthesis technique. We
first introduce our CAD representation, and define what it means
for CAD objects to be valid or invalid. Then, we present some rules
for statically inferring constraints. Finally, we discuss our dynamic
constraint synthesis algorithm.

3.1. CAD and Validity

Though many different representations for parametric CAD exist,
Boundary Representation (B-rep) [Str06] is by far the most popular.
B-rep offers a rich collection of high-level operations to create and
modify 3D shapes. Our CAD interface (CADQUERY) is based on
top of the OPEN CASCADE B-rep kernel. Most other open-source
B-rep tools also use OPEN CASCADE, and therefore support sim-
ilar operations and internal representations.

We now concretely define our notion of invalidity of CAD ob-
jects. We define objects, and the parameter configurations that eval-
uate them as invalid, if either: (i) an error during evaluation occurs,
(ii) the final (or an intermediary) object is empty, (iii) the final (or
an intermediary) object is fractured (unconnected components), or
(iv) an operation specific assumption is not satisfied. The first cri-
terion is a clear flag for invalidity. The next two capture implicit
assumptions of designers, i.e., not to have an empty object, or an
object with a broken topology. The final criterion captures oper-
ation specific assumptions. For example, if a vertex is chosen for
drilling a hole, the implicit assumption is that this vertex must lie
on one of the faces of the object.

In standard programming, it is common to have a set of precon-
ditions, say pre, and a set of postconditions, say post, such that for
a given operation op, if the pre-conditions hold, then after the op-
eration the post-conditions also hold. This is usually written in the
form of a Hoare triple [Hoa69]: {pre}op{post}. In our setting, the
post-conditions are the validity conditions as presented before. Our
aim is to synthesize the weakest pre-condition pre, which means,
∀pre′.{pre′}op{post} ⇒ (pre′⇒ pre). All parameter configura-
tions that satisfy our constraints lead to valid designs, and those that
do not, result in invalid designs.

Hypothesis
Generator

Sampler

Solver
Infeasible

Feasible +
solution

Samples +
new sample

New
hypothesis

Parameter Constraint
or fail

Figure 3: Overview of our dynamic synthesis algorithm. We take
the parameters for which constraints need to be synthesized. The
Hypothesis Generator (Section 3.3.1) generates hypotheses of in-
creasing complexity for these. The Sampler (Section 3.3.2) sam-
ples the parameter space, and evaluates the design/operations. The
Solver (Section 3.3.3) uses samples from the Sampler to formulate
each hypothesis into a linear program. If a solution to this is fea-
sible, then more samples are collected to check and refine the con-
straint derived from the hypothesis (until a fixed threshold of sam-
ples is reached). Else, the hypothesis is rejected, and the Hypothesis
Generator generates a new one.

3.2. Static Analysis

The static analysis part of our technique looks at the sequence of
operations in the design, and comes up with an initial set of param-
eter constraints. The following inference rules capture most of our
statically inferred constraints:

pi, pii, piii, > 0
CreateGeometry(pi, pii, piii,)

din ≤ dout , hout ≤ hin

CounterSink/BoreHole(din,dout ,hout ,hin)

p < BB().Diagonal

Fillet/Cham f er/Hole(p)

t >−BB().Diagonal

Shell(t)

The first rule captures CAD operations that are responsible for cre-
ating new geometry (excluding geometry that is later used for a
cut or difference operation). Operations such as creating a circle,
box, extrude, etc. are constrained using this rule, so are inter-
mediary operations such as offsets, which later create geometry
using lofts, for example. The second rule captures easily encoded
constraints that must hold for these operations to succeed. The last
two rules capture rough constraints. These rough constraints can be
used later by the dynamic analysis to more effectively find precise
constraints. BB().Diagonal stands for the bounding box diagonal
of the intermediate object on which these operations are applied.
Though the exact value of this expression would require evaluating
the design on concrete parameter values, it is an over-approximated
bound that would surely hold for any valid evaluation.

3.3. Dynamic Analysis

An overview of our dynamic analysis approach is presented in Fig-
ure 3. We now discuss each component individually.

3.3.1. Hypothesis Generator

We follow the approach of enumerative program synthesis
[ABD∗15], and propose expressions of increasing complexity. The

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

77

Aman Mathur & Damien Zufferey / Constraint Synthesis for Parametric CAD

following is the grammar of a hypothesis h in our system:

〈H〉 |= 〈expr〉 〈op〉 〈expr〉 | 〈H〉∧ 〈H〉
〈expr〉 |= 〈expr〉+ 〈expr〉 | min(〈atom〉,〈atom〉)

| max(〈atom〉,〈atom〉) | 〈atom〉
〈atom〉 |= 〈c〉 | 〈c〉 · 〈p〉
〈op〉 |= < | ≤

where c denotes a constant in R, and p denotes a parameter of
the design. Our hypotheses are essentially linear expressions aug-
mented with min and max.

3.3.2. Sampler

The Sampler samples different parameter values (until a threshold
maximum number of samples is reached) and evaluates the design
on these. If an evaluation is invalid, we also track which operation
is responsible. Each sample generated by the Sampler respects al-
ready known constraints. This is done by sampling randomly until
such a sample is found. If a hypothesis is found to be feasible, then
we sample at the boundary of this hypothesis so as to refine the
values of constants in the hypothesis.

3.3.3. Solver

Each proposed hypothesis needs to be checked, and the missing
coefficients need to be found. For this, we use mixed integer linear
programming. We have a set of samples from the Sampler, and we
also know, for each operation, if these samples are valid or invalid.
Our hypotheses can be converted into a conjunction of n linear in-
equalities over the parameters P. Then for a valid sample s+, we
simply substitute the sample values:

n∧
i=1

(
∑
p∈P

ci,p · s+[p]≥ di

)
where ci,q and di are the constants whose values need to be deter-
mined. For an invalid sample s−, we need the following inequality:

n∨
i=1

(
∑
p∈P

ci,p · s−[p]< di

)
However, this introduces disjunctions, which are not natively sup-
ported in linear programming. To get rid of these, we use a variation
of the Big-M method [GNS09] to generate the following inequali-
ties:

n∧
i=1

(
∑
p∈P

ci,p · s−[p]< di−M ·mi

)

n∧
i=1

mi ∈ {0,1}, 0≤
n

∑
i=1

mi < n

where M is a sufficiently large constant that overpowers the rest of
the inequality, and the mi act as switches that ensure at least one
disjunct holds.

Hypotheses that use min and max can be turned into linear in-

equalities by:
e≤min(e1,e2) ⇔ (e≤ e1∧ e≤ e2)
e≤max(e1,e2) ⇔ (e≤ e1∨ e≤ e2)

and removing the disjunction as explained above.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m) (n) (o) (p)

(q) (r) (s) (t) (u)

Figure 4: Objects from the Fusion 360 Segmentation dataset used
in the experiment (some views clipped to show prominent features).

4. Evaluation

We now provide some implementation details, and present exper-
imental evidence on the efficacy of our technique for synthesizing
CAD parameter constraints.

4.1. Implementation

Our implementation consists of approximately 2000 lines of
Python code. The source code of our project, as well as the ex-
periments in the evaluation are available at: https://gitlab.
mpi-sws.org/mathur/constraints-cad. We use CAD-
QUERY (version 2.0) as our CAD interface. CAD validity checks
are performed using PYTHONOCC, which provides access to most
of the underlying OPEN CASCADE structures. The synthesis pro-
cedure uses PULP as the mixed integer linear programming library,
and GLPK as the solver.

4.2. Experiments

We now evaluate our technique on some real-world designs from
the recently released, and publicly accessible Fusion 360 Segmen-
tation Dataset [LWJ∗21].

4.2.1. Experimental Procedure

We re-design objects in the dataset to an equivalent B-rep sequence
of operations in CADQUERY. Due to practical considerations, we
consider the first 21 compatible designs (excluding duplicates, triv-
ial objects, and designs involving sketching or non-straightforward
mappings to CADQUERY syntax). The designs we use for our eval-
uation are presented in Fig. 4, labelled (a) - (u). The number of
parameters in these designs range from 3 to 12, with an average
of 5.5. For our dynamic analysis, we set the threshold of maxi-
mum number of samples for each constraint to 320 samples; the
Hypothesis Generator generates hypotheses with at most 3 atomic
predicates. The experiments are performed on a computer with an
Intel Core i7-7820HK processor, 32 GB of RAM, and running on
Windows 10.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

78

https://gitlab.mpi-sws.org/mathur/constraints-cad
https://gitlab.mpi-sws.org/mathur/constraints-cad

Aman Mathur & Damien Zufferey / Constraint Synthesis for Parametric CAD

Table 1: Synthesis of constraints, and runtimes for the various de-
signs under test. For each design, we report the total number of pa-
rameters, and for how many we can synthesize constraints through
static or dynamic analysis. The Success corresponds to how many
random samples (out of 1000) lead to valid designs without con-
straints (Before) or with the synthesized constraints (After).

Parameters Success

Id. Total Static Dynamic Runtime Before After

Fully solved; statically (14%)
(a) 3 3 0 0.1 s 100 % 100 %
(b) 6 6 0 0 s 100 % 100 %
(c) 4 4 0 0 s 100 % 100 %

Fully solved; statically & dynamically (52%)
(d) 3 2 1 7.6 s 19.6 % 99.4 %
(e) 4 2 2 48.0 s 10.6 % 98.7 %
(f) 3 2 1 7.4 s 46.2 % 100 %
(g) 4 3 1 6.8 s 15.5 % 98.2 %
(h) 5 3 2 45.6 s 3.1 % 98.6 %
(i) 3 2 1 5.9 s 19.8 % 99.2 %
(j) 4 3 1 176.4 s 14.8 % 97.7 %
(k) 8 6 2 48.8 s 17.6 % 83.9 %
(l) 3 2 1 7.3 s 15.7 % 98.4 %
(m) 4 2 2 22.4 s 4.2 % 83.1 %
(n) 4 3 1 8.4 s 16.3 % 98.2 %

Partially solved (33%)
(o) 12 7 3 121.3 s 4.8 % 86.3 %
(p) 4 3 0 3.0 s 22.6 % 40.4 %
(q) 11 9 1 44.8 s 18.2 % 79.8 %
(r) 7 3 3 54.9 s 1.3 % 9.4 %
(s) 6 2 2 44.2 s 10.4 % 28.0 %
(t) 8 3 2 21.2 s 4.2 % 86.0 %
(u) 10 6 4 67.5 s 0.1 % 71.3 %

Averages
5.5 3.6 1.4 36.1 s 26 % 83.6 %

4.2.2. Results and Discussion

The results of our evaluation are summarized in Table 1. We are
able to synthesize constraints for almost all the designs under test.
For a significant majority of the designs, we synthesize correct
constraints for all the parameters involved, thereby segmenting the
space of valid designs with a high degree of accuracy. There are
also some designs for which we cannot synthesize constraints for
all design parameters. In such cases, we synthesize constraints for
some parameters, and are still able to segment the space of valid
designs fairly well. There is just one design for which we can-
not synthesize any constraints. For this design, we still do better
than naive sampling of the parameter space because we can identify
samples that have no chance of passing (restricting fillet radius to <
bounding box diagonal). Our technique is reasonably fast (median:
21.2 s, average: 36.1 s, max: 176.4 s). The constraints we synthesize
improve sampling efficiency from 26% to 83.6% on average. We
organize further discussion by how the constraints are generated.

Fully solved statically. There are 3 designs where the static anal-
ysis finds all the constraints. Our method has a negligible runtime
for these cases. The results may seem a bit uninteresting, as all

h

d1

d2

h'

f

h

d2

d1

h'

f

Figure 5: Two variations of the design (p). The parameter f de-
pends on d1 and d2, as well as h’. However, h’ is not an exposed
parameter, but h (the offset between the two circles) is. We know
that f must be less than the bounding box diagonal. However, the
precise constraint cannot be synthesized, as doing so would require
non-linear hypotheses with geometric functions.

points in the parameter space are valid, but the synthesized con-
straints can still be useful to end-users to get a general overview of
the design, and how the parameters interact.

Fully solved statically and dynamically. There are 11 designs
that can be solved fully via a combination of static and dynamic
analysis. The solved constraints fall shy of 100% accuracy, but are
in-fact correct (verified manually). The small errors noticed here
primarily show up when working with curved shapes, and are due
to numerical instabilities in the underlying CAD kernel. As de-
picted in Table 1, the designs here have a uniformly low success
rate when sampling naively. With just a small runtime overhead,
we are able to synthesize accurate constraints for all parameters of
these designs.

We already discussed (e) from this segment in Section 1. Let us
now look at our solution for the design (h), as depicted in Figure 4.
A detailed view of its parameters and variations of final objects was
presented earlier, in Figure 2. The design consists of the following
sequence of operations: (i) a box with dimensions l, w, and h is
created, (ii) the 4 edges parallel to the Y-axis are filleted with radius
f1, (iii) the 4 edges on top in the Y-axis are filleted with radius
f2. Our static analyzer quickly comes up with constraints for l,
w, and h. Then, our dynamic analyzer is asked to find constraints
for f1 and f2. They cannot take any arbitrary values, and must
take values less than the bounding box diagonal of their respective
intermediate objects. We enumeratively build hypotheses for both,
f1, and f2. The simplest inequalities do not work out. We first find
a solution for f1 of the form: f1 < c * min(l, h), with c =

0.478 initially. This is later refined to c = 0.499. Similarly, we
find a constraint for f2 as: f2 < 0.5 * min(l, w, h).

Partially Solved. For 7 designs in the experiment, we are only
able to synthesize constraints for some of the parameters involved.
For the rest, our hypothesis generator cannot construct correctly
fitting hypotheses. As shown in the final segment of Table 1, our
technique still significantly improves the sampling success rate vis-
á-vis random sampling. This is because in addition to finding cor-
rect constraints for at least some of the parameters involved, we
can often eliminate configurations that fail for sure (for example,
see Figure 5), or find an approximate constraint (see Figure 6).

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

79

Aman Mathur & Damien Zufferey / Constraint Synthesis for Parametric CAD

s

xf1

f2

Figure 6: Incomplete top-view of the design (u). We synthesize cor-
rect constraints for f1, f2, and x. For s, we obtain s < 3.31 *
max(l, w, h), which is an approximation.

5. Conclusion and Future Work

The power of parameterization is foundational to many modern ap-
plications of CAD. Our proposed technique is successful at synthe-
sizing constraints for CAD parameters accurately and efficiently
for a wide-variety of designs. However, designs can get arbitrarily
complex, and we cannot directly synthesize many non-linear and
geometric constraints. Supporting these would be an obvious next
step, but this would also make the synthesis procedure significantly
more complex. We may need to settle for predictors, rather than ac-
curate constraints. In initial experiments, as is typical with machine
learning, we also found an obvious trade-off between readability
and accuracy. If knowledge about the valid space of designs is not
human readable, it becomes useless for many end-users. Though
such predictors may still be useful for optimization and generative
techniques, misclassifications would be difficult to debug.

Acknowledgements

This research was funded in part by the Deutsche Forschungsge-
meinschaft project 389792660-TRR 248 and by the European
Research Council under the Grant Agreement 610150 (ERC Syn-
ergy Grant ImPACT).

References

[ABD∗15] ALUR R., BODÍK R., DALLAL E., FISMAN D., GARG
P., JUNIWAL G., KRESS-GAZIT H., MADHUSUDAN P., MARTIN M.
M. K., RAGHOTHAMAN M., SAHA S., SESHIA S. A., SINGH R.,
SOLAR-LEZAMA A., TORLAK E., UDUPA A.: Syntax-guided syn-
thesis. In Dependable Software Systems Engineering, Irlbeck M.,
Peled D. A., Pretschner A., (Eds.), vol. 40 of NATO Science for
Peace and Security Series, D: Information and Communication Security.
IOS Press, 2015, pp. 1–25. URL: https://doi.org/10.3233/
978-1-61499-495-4-1. 3

[BWSK12] BOKELOH M., WAND M., SEIDEL H.-P., KOLTUN V.: An
algebraic model for parameterized shape editing. ACM Trans. Graph.
31, 4 (July 2012). URL: https://doi.org/10.1145/2185520.
2185574. 2

[CHSA16] CHUGH R., HEMPEL B., SPRADLIN M., ALBERS J.: Pro-
grammatic and direct manipulation, together at last. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (2016), pp. 341–354. 3

[ECGN00] ERNST M. D., CZEISLER A., GRISWOLD W. G., NOTKIN
D.: Quickly detecting relevant program invariants. In Proceedings of the
22nd International Conference on on Software Engineering, ICSE 2000,
Limerick Ireland, June 4-11, 2000 (2000), Ghezzi C., Jazayeri M., Wolf
A. L., (Eds.), ACM, pp. 449–458. URL: https://doi.org/10.
1145/337180.337240. 3

[ECH∗01] ENGLER D., CHEN D. Y., HALLEM S., CHOU A., CHELF
B.: Bugs as deviant behavior: A general approach to inferring errors
in systems code. In Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2001), SOSP
’01, Association for Computing Machinery, pp. 57–72. URL: https:
//doi.org/10.1145/502034.502041. 2, 3

[FL01] FLANAGAN C., LEINO K. R. M.: Houdini, an annotation as-
sistant for esc/java. In FME 2001: Formal Methods for Increasing
Software Productivity, International Symposium of Formal Methods Eu-
rope, Berlin, Germany, March 12-16, 2001, Proceedings (2001), Oliveira
J. N., Zave P., (Eds.), vol. 2021 of Lecture Notes in Computer Sci-
ence, Springer, pp. 500–517. URL: https://doi.org/10.1007/
3-540-45251-6_29. 3

[FRS∗12] FISHER M., RITCHIE D., SAVVA M., FUNKHOUSER T.,
HANRAHAN P.: Example-based synthesis of 3D object arrangements.
ACM Trans. Graph. 31, 6 (Nov. 2012). URL: https://doi.org/
10.1145/2366145.2366154. 3

[GLMN14] GARG P., LÖDING C., MADHUSUDAN P., NEIDER D.: Ice:
A robust framework for learning invariants. In International Conference
on Computer Aided Verification (2014), Springer, pp. 69–87. 3

[GNS09] GRIVA I., NASH S. G., SOFER A.: Linear and nonlinear opti-
mization, vol. 108. SIAM, 2009. 4

[HLC19] HEMPEL B., LUBIN J., CHUGH R.: Sketch-n-Sketch: Output-
directed programming for svg. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (2019), pp. 281–
292. 3

[Hoa69] HOARE C. A. R.: An axiomatic basis for computer program-
ming. Commun. ACM 12, 10 (1969), 576–580. URL: https://doi.
org/10.1145/363235.363259. 3

[LWJ∗21] LAMBOURNE J. G., WILLIS K. D., JAYARAMAN P. K.,
SANGHI A., MELTZER P., SHAYANI H.: Brepnet: A topological mes-
sage passing system for solid models. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2021). arXiv:2104.00706.
2, 4

[MPZ20] MATHUR A., PIRRON M., ZUFFEREY D.: Interactive pro-
gramming for parametric CAD. In Computer Graphics Forum (2020),
vol. 39, Wiley Online Library, pp. 408–425. 3

[NNH04] NIELSON F., NIELSON H. R., HANKIN C.: Principles of pro-
gram analysis. Springer Science & Business Media, 2004. 3

[SSL∗14] SCHULZ A., SHAMIR A., LEVIN D. I. W., SITTHI-AMORN
P., MATUSIK W.: Design and fabrication by example. ACM Trans.
Graph. 33, 4 (July 2014). URL: https://doi.org/10.1145/
2601097.2601127. 2

[SSM15] SHUGRINA M., SHAMIR A., MATUSIK W.: Fab forms: Cus-
tomizable objects for fabrication with validity and geometry caching.
ACM Trans. Graph. 34, 4 (July 2015). URL: https://doi.org/
10.1145/2766994. 2

[Str06] STROUD I.: Boundary representation modelling techniques.
Springer Science & Business Media, 2006. 2, 3

[SWG∗18] SCHULZ A., WANG H., GRINSPUN E., SOLOMON J., MA-
TUSIK W.: Interactive exploration of design trade-offs. ACM Transac-
tions on Graphics (TOG) 37, 4 (2018), 1–14. 2, 3

[TSG∗14] TANG C., SUN X., GOMES A., WALLNER J., POTTMANN
H.: Form-finding with polyhedral meshes made simple. ACM Trans.
Graph. 33, 4 (July 2014). URL: https://doi.org/10.1145/
2601097.2601213. 2

[XZCOC12] XU K., ZHANG H., COHEN-OR D., CHEN B.: Fit and di-
verse: Set evolution for inspiring 3D shape galleries. ACM Trans. Graph.
31, 4 (July 2012). URL: https://doi.org/10.1145/2185520.
2185553. 3

[YYPM11] YANG Y.-L., YANG Y.-J., POTTMANN H., MITRA N. J.:
Shape space exploration of constrained meshes. ACM Trans. Graph. 30,
6 (2011), 124. 2

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

80

https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1145/2185520.2185574
https://doi.org/10.1145/2185520.2185574
https://doi.org/10.1145/337180.337240
https://doi.org/10.1145/337180.337240
https://doi.org/10.1145/502034.502041
https://doi.org/10.1145/502034.502041
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1145/2366145.2366154
https://doi.org/10.1145/2366145.2366154
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
http://arxiv.org/abs/2104.00706
https://doi.org/10.1145/2601097.2601127
https://doi.org/10.1145/2601097.2601127
https://doi.org/10.1145/2766994
https://doi.org/10.1145/2766994
https://doi.org/10.1145/2601097.2601213
https://doi.org/10.1145/2601097.2601213
https://doi.org/10.1145/2185520.2185553
https://doi.org/10.1145/2185520.2185553

