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Abstract
While common in real life, rendering fiber and cloth accurately is challenging. Recent fiber-based, procedural rendering ap-
proaches proved to be able to capture a great amount of details of real yarn. However, the current automatic method of fitting
the model parameters is expensive and inaccessible as it relies on micro CT scans of the reference yarn. The alternative is to
have an artist fit the parameters by hand, which is impractical because of the large number of parameters.
We present a proof-of-concept for a purely image-based approach to fit the parameters of a procedural yarn model. Using
gradient descent and pixel-based loss functions, we are able to extract a subset of the model parameters from rendered images
with known parameters. The appearance of the fitted models is nearly indistinguishable from the reference images.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Cloth and fabric play a huge role in our everyday lives. Clothing,
blankets, towels, furniture and many more things consist (mostly)
of these materials. It is therefore no surprise that they are of impor-
tance for the field of computer graphics as well, be it in the form of
games, movies or other entertainment software, design and simula-
tion of clothing and fashion or for marketing purposes.

The appearance of fabric and cloth is heavily influenced by fiber-
level details. To replicate the diversity of different kinds of cloth,
we need advanced models that are able to capture many different
aspects of the material.

While these materials can be rendered using volumetric ap-
proaches, in recent years fiber-based approaches became a popu-
lar alternative. These approaches calculate exact fiber curves and
realize them instead of using volume rendering approximations.

Replicating the appearance of real world cloth is challenging as
the models are usually too complex to be fit by hand. Zhao et al.
[ZLB16] proposed an automated fitting approach for their model,
but it involves using data of a micro CT scan. These are not widely
available and can be expensive to obtain.

We therefore studied the possibility of fitting the same model
using only a reference image instead of a CT scan.

As a first step towards this, we used a gradient descent optimizer
with loss functions that calculate the per-pixel difference between
the reference image and a candidate rendering. This rather simple
approach yields good results for a subset of the model parameters

when using an image of yarn rendered with the same rendering
pipeline as the reference.

In this future, we plan to expend upon this approach to be able
to fit the parameters of our model using photos of real-world yarn.

1.1. Previous work

Jakob et al. [JAM∗10] published one of the first papers explicitly
focusing on cloth rendering. They proposed a micro-flake model to
allow for a volumetric approach to capture the appearance of cloth.

Khungurn et al. [KSZ∗15] proposed a method to fit volumetric
models to real world yarn using micro CT scans. In their algorithm,
they convert the density distributions of the CT scan to a fiber-based
representation before converting it into a volumetric model.

Zhao et al. [ZLB16] proposed a procedural fiber-based yarn
model. They also describe an approach to fit their model to a CT
scan using the fiber representation of Khungurn et al. [KSZ∗15].

While the model by Zhao et al. [ZLB16] was intended for offline
rendering, Wu and Yuksel [WY17] implemented a slightly simpli-
fied version of the model that can be evaluated in real time render-
ing applications. We will go into more detail about their model and
the real time implementation in the following sections.

2. The procedural yarn model

The procedural yarn model we used is based on Wu and Yuksel
[WY17], which is in turn a modified version of the model by Zhao
et al. [ZLB16].
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Figure 1: This figure demonstrates the structure of yarn according
to our procedural yarn model. Outlined in blue is the whole yarn,
marked in green is one of the two plies in this rendering. The red
and violet lines approximate the yarn and ply center curve respec-
tively. The brownish tubes that make up the plies are the fibers.

Figure 2: Top: The rayon 2 yarn model of Zhao et al. [ZLB16], ren-
dered with no flyaway fibers. Bottom: The same model with flyaway
fibers.

The model consists of three components: Fibers, plies and yarn.
The yarn as a whole consists of (usually two to three) plies that have
been twisted around a common (yarn) center. The plies consist of
individual fibers, that have been twisted around the ply center. Plies
can consist of up to hundreds of fibers [ZLB16]. This structure is
visualized in figure 1.

Not all fibers are perfectly contained in their respective plies.
Some of them stick out and contribute a lot to the overall appear-
ance. Zhao et al. [ZLB16] coined the term fly-away fibers for them
and distinguished between loop-type and hair-type fly-away fibers.
A hair-type fly-away fiber is a loose end sticking out of the ply
while a loop-type does not expose its ends - it essentially is a regu-
lar fiber that has been pulled out of the “flow” of the ply. See figure
2.

Our model uses 22 parameters to describe its structure. While it
is mostly equal to the model by Wu and Yuksel [WY17], we used
the approach of Zhao et al. [ZLB16] for hair-type fly-away fibers
instead. This leads to half of our parameters describing the fly-away
fiber density and curves, while the rest describes radii, twisting and
number of plies and fibers as well as the fiber distribution and mi-
gration (periodic change in distance of a fiber to its respective ply
center).

3. Real-time rendering

To render the procedural yarn model in real-time, Wu and Yuk-
sel [WY17] proposed an approach that makes heavy use of the tes-
sellation feature of modern OpenGL, more specifically the isoline
tessellation.

This allows individual fibers to be generated on the fly and in
parallel on the GPU. We only need to provide it with the model pa-
rameters and some additional data like the control points of the yarn
curve and the position of (tessellation) patches along the length of
the yarn.

The naive idea is to render each fiber using an isoline generated
by the tessellation stage. Unfortunately current hardware does not
support more than 64 isolines per rendering pass.

Wu and Yuksel [WY17] therefore proposed the use of so-called
core fibers. These are thick fibers that follow the ply center and are
textured to look like a collection of multiple individual fibers. To
generate the necessary texture, the fiber curves are simplified in a
way that the resulting texture can be tiled.

Using core fibers, the remaining isolines can be used to render
the outermost fibers of each ply. While this approach can not fully
capture the diversity in appearance of actually rendering all the in-
dividual fibers [LZB17], this approach can be good enough in many
use cases.

4. Fitting the model

To fit the model, we make use of the real-time rendering approach
by Wu and Yuksel [WY17]. It allows us to generate dozens to hun-
dreds of close-up images of a thread of yarn per second. The core
fiber approach is not useful for us as we generate only one image
per model thus forcing us to regenerate the core fiber textures for
every rendering anyway. Still, using isoline tessellation to render
the yarn is a fast enough approach to allow us to fit most parameter
combinations in under an hour.

We fit the model using an optimizer and loss functions that com-
pare the images on pixel-level. We initially ran some tests with the
Nelder Mead method (also known as downhill-simplex method)
[NM65] and some variations of it. Unfortunately these tests have
shown low accuracy and precision. We decided to settle on gradi-
ent descent with momentum [Qia99] as our optimizer, as it yielded
promising results.

The loss functions we used compare pixels of a candidate render-
ing to the respective pixels in the reference image. We convert the
pixels from RGB into HSV and compare two pixels by taking the
absolute or the squared difference of their V component. We ignore
the hue and saturation component because we do not fit the color
and are able to mostly ignore it this way, similar to [AWW13].

We then add up these differences and divide by the number of
non-background pixels in the reference image to get the loss value.
The division normalizes the loss for the size of the thread of yarn
both in resolution and relative to the size of the image.

5. Results

For certain parameters and paramter combinations our fitting ap-
proach works very well. Unfortunately this is not the case for all of
them. Looking at figure 3 one can see why this might be: Parame-
ters like rply, the radius of the plies, provide a meaningful change
on the pixel level and therefore show a rather smooth gradient with
a single minimum that can easily be found following the gradient
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Figure 3: Plots of the absolute color distance loss function. The pa-
rameters are normalized to the mean and standard deviation of the
given parameter calculated from all models Zhao et al. [ZLB16]
introduced. Every parameter except for the plotted one matches
the parameters of their cotton 1 model and the loss is calculated
against a rendering of the same yarn model.

curve. Meaningful in this case means that small changes in the pa-
rameter value, away from the optimal value, lead to small increases
in loss.

Other parameters like α
ply, the parameter controlling the twist

of the plies around the yarn center, do not provide these meaning-
ful changes on the pixel level. They change pixels seemingly “at
random”. Therefore their gradient is bumpy and has a lot of lo-
cal minima the optimizers can get stuck in even when reducing the
problem to an 1D case.

While figure 3 only shows a reduced variation of the original
fitting problem, the parameters that look like they could be fitted
well on their own could in fact usually be fitted together with others
parameters in this category. For most combinations we were able to
find parameters with an average relative error below 0.1 in under an
hour. Both fitting time and average relative error grew larger with
higher dimensionality.

The decision between absolute or squared error as the used loss
function had an influence on both fitting time and relative error.
In most cases the absolute error loss function terminated slightly
quicker but with a slightly higher relative error. However, we found
exceptions to this rule.

While not directly comparable because of the vast difference in
available data for fitting, we want to note, that Zhao et al. claim to
be able to fit yarn in “several core hours” [ZLB16].

It is also noteworthy that our implementation of the real-time
rendering approach by Wu and Yuksel [WY17] was significantly
slower than their implementation according to their measurements.
Depending on the test configurations our implementation took any-
where from circa 1.5 to over 100 times longer to render the images
than their implementation.

Initial Model Iteration 20

Iteration 40 Iteration 60

Iteration 84/Result Reference

Figure 4: Demonstration of the fitting process fitting Rmin (the min-
imal distance between a fiber and its respective ply center) and m
(the number of fibers per ply) to the polyester 1 model by Zhao et
al. [ZLB16].

6. Future work

Our fitting approach is not yet able to cross the domain gap to fit the
yarn model to real world photos and even struggles with some of
the model parameters given a reference image that has been created
using the same rendering pipeline. We believe there are multiple
ways to tackle this problem.

The loss functions currently work by comparing pixels of the
candidate rendering to the respective pixels in the reference. This
cannot work if the images were created with different methods.

Instead we could try to extract information about the yarn like
the direction of fibers and plies directly from the reference image.
We can then simplify the fitting problem: Although these directions
depend on multiple parameters of our model, we can optimize only
these to match the given estimated directions.

Counting fly-away fibers in a similar fashion to the fitting ap-
proach by Zhao et al. [ZLB16] might also be possible, although we
only have 2D data instead of the 3D data they use. Still, we might
be able to approximate the density of fly-away fibers directly from
an image.

Alternatively it might be possible to augment the pure 2D image
data with depth information to restore the surface of one side of
the yarn. This could then be used to measure the fly-away fiber
parameters.

Another approach to cross the domain gap involves machine
learning and neural networks. Gaidon et al. [GWCV16] have shown
that pre-training a neural network with virtual data and then fine
tuning it to real world data can lead to highly precise and accurate
results. This might also be applicable for fitting the procedural yarn
model.

Image-based fitting might have other applications in cloth ren-
dering as well. It might be possible to extract weaving patters from
photos of woven cloth with similar ideas to the ones mentioned
above. This would ease the digitization of real-world whole cloth-
ing even further.
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7. Conclusion

We have shown that fitting procedural yarn models using only a
reference image is possible for at least some parameters. For these
parameters, the fitting process is reasonably fast and the results are
visually nearly indistinguishable from the reference image.

We believe that our work is a proof of concept that image based
fitting approaches for procedural yarn models can work. While our
current methods were neither able to fit all parameters nor to cross
the domain gap between virtual and real images, we propose ideas
to improve upon our current approach.
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