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Abstract

Distractions can cause students to miss out on critical information in educational Virtual Reality (VR) environments. Our
work uses generalized features (angular velocities, positional velocities, pupil diameter, and eye openness) extracted from VR
headset sensor data (head-tracking, hand-tracking, and eye-tracking) to train a deep CNN-LSTM classifier to detect distractors
in our educational VR environment. We present preliminary results demonstrating a 94.93% accuracy for our classifier, an
improvement in both the accuracy and generality of features used over two recent approaches. We believe that our work can be
used to improve educational VR by providing a more accurate and generalizable approach for distractor detection.

CCS Concepts

e Computing methodologies — Machine learning; * Human-centered computing — Virtual reality;

1. Introduction and Related Works

Consumer-level VR displays with varied sensing (head-tracking,
eye-tracking, facial-tracking, and hand-tracking) such as the Meta
Quest Pro are more common and affordable than ever, making it
appealing for educational Virtual Reality (VR). Much work has
evaluated what can be revealed about a person’s physio-cognitive
state through sensor data. Notable examples include measuring
cognitive load with eye tracking [FNC19], disengagement with
eye tracking [SDSB*16], emotional engagement with electroder-
mal activity [VCR™ 18], attention with eye tracking and facial ther-
mal imaging [AKN*19], stress levels with cardiovascular activ-
ity [MHGP16], and attention with facial tracking and eye track-
ing [BSN*20]. Other works have trained classifiers on eye tracker
data to detect distracted driving (SVM, 81.1% accuracy) [LIB13],
lapses in focus (SVM, 80.6% accuracy) [YKM12], and student at-
tention (XGBoost, 77% accuracy) [VDA*19]. Much research in
this area focuses on using 2D desktop interfaces or webcams. Ex-
ternal sensors for these can either require a user’s face be visible,
cannot be worn together with a headset, or impose restrictions on
user movements to avoid noisy data [JWM™12], and can make it
difficult to use them or existing datasets for VR studies; however,
current consumer-level VR headsets have integrated sensors that
VR researchers have used to detect emotion [XEAZ*21], iden-
tify users [AKB22], authenticate users [LNS*20], predict learning
gains [MMDR20], predict user interaction [DJPZ*21], and pre-
dict cybersickness [IDQ21]. Of these, the study on cybersickness
showed that deep learning can offer modest improvements to accu-
racy [IDQ21] compared to traditional machine learning methods.

Limited research has been done on classifying distraction in ed-
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ucational VR. Moore et al. [MMDR20] trained an SVM classifier
with an accuracy of 86.7% to predict student performance levels
in a VR training environment. Asish et al. [AHKB21] trained a
CNN-LSTM classifier with an accuracy of 87.2% for detecting dis-
traction in educational VR based on raw gaze and motion metrics.
Limitations included overall detection per session rather than nar-
rower per-event detection, learning with timestamps across these
multi-event sessions with fixed distractor timing, absolute pupil po-
sitions, and upsampling by repeating data to balance class distribu-
tion. Training classifiers on such information can cause them to
learn user-related or task-related features, such as fit position of a
headset to a head shape or timing of interactions, which results in
poor generalizability due to the model overfitting [KJ13].

Our work differs from prior approaches by studying event-based
distractors that involve acknowledgement, extracting generalized
features from gaze position, and improving on the prior deep learn-
ing classifier. We consider a deep learning approach to predict dis-
tractor presence based on VR headset sensor (head, hand, and eye)
data collected during an educational VR experience. Students took
a field trip to a virtual oil rig to learn about devices used in drilling
operations. We collected and labelled data from 37 participants
to train a deep learning model that detects distractors. Our work
makes the following contributions:

1. Our approach uses generalized features extracted from VR
headset sensor data (head, hand, and eye tracking) to train a
deep CNN-LSTM classifier to detect distractors in an educa-
tional Virtual Reality (VR) environment.

2. Preliminary results that demonstrate a 94.93% accuracy for our
classifier.
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POINT & CLICK

Please point your wand at
the helicopter and cliek an

Figure 1: Left: A student looks at the correct object the teacher is pointing at (a gaze trail is shown here but is not visible to the student).
Right: The teacher points and a student’s gaze drifts towards the wrong object due to a distraction prompt on their in-game mobile device.

2. Environment

Virtual oil rig platforms have been used for training workers.
[SDA*16]. In our VR oil rig environment, students learn about
equipment on a virtual oil rig. Our pre-recorded teacher is a 3D
RGBD-based avatar composed from prerecorded color and depth
videos captured by a Kinect V2 at 30 FPS, similar to the imple-
mentation from Borst et al. [EBWC16,KYB19]. This teacher agent
points out and explains equipment used on oil rigs while the student
holds a virtual mobile device for general use and interactions.

3. Methods
3.1. Experiment Design

To support our experiment on distractors, the virtual mobile device
provides a way to experimentally simulate distractions in a con-
trolled manner, without easily being ignored, and with a standard
interaction tool that fits the theme. At critical moments during our
educational presentation while the teacher points out and explains
a device, the virtual mobile device presents a distractor by showing
a text message with accompanying vibration and sound effect, as
shown in Figure 1. Distractor occurrence was randomized by only
occurring in a randomized subset of teacher clips so as to reduce
student anticipation of distractors. We had two distractor levels:

e No Distractor: The teacher avatar points to a device and asks
the student to look. No distractor is presented.

e Distractor: One to two seconds before the teacher avatar points
at a device and asks the student to look, text on the mobile de-
vice prompts the student to interact with an object. The object is
highlighted and the student needs to point and click on it.

3.2. Subjects and Apparatus

Subjects were 31 male and 6 female students from a Computer Sci-
ence department, for 37 total subjects, with 28 undergraduate and 9

graduate students. Ages were from 18 to 40 years (median of 21).
9 subjects indicated prior experience of a VR field trip. 10 subjects
indicated substantial prior VR experience in the form of owning a
VR headset. In addition, 1 subject indicated knowledge of devices
used on the oil rig. The apparatus for the experiment included a
Vive Pro Eye headset, a Vive wand, a logitech R400 clicker, a large
Samsung TV, and a desktop with an Intel Core 19 10900K CPU
processor, GeForce 2080 graphics card, and 64GB of memory.

3.3. Data Collection Procedure

Subjects were given an overview before donning a VR headset. The
proctor assisted the subject with fitting the headset as needed and
confirmed that subjects saw clearly and were comfortable before
they were handed the Vive Wand Controller and lowered the head-
set’s headphones. For eye tracker calibration, the subject adjusted
the IPD using a calibration indicator and looked at 5 calibration
dots. The system calculated the offsets between each recorded gaze
point for each calibration dot and made appropriate adjustments. If
the offset was too large then the calibration process was repeated.
The proctor confirmed the resulting accuracy using a particle trail
that visualized tracked eye gaze ray while the subject looked at
spheres arranged in a grid. Subsequently, the particle trail was dis-
abled and the student received a tutorial by the pre-recorded teacher
avatar that introduced the oil rig and in-game controls.

After the tutorial, the subject experienced the main educational
presentation wherein a prerecorded teacher pointed out devices
used on the virtual oil rig and explained how they work. The presen-
tation included 6 areas. In each area, the teacher agent pointed out
and explained three devices. Distractions were timed to occur prior
to the pointing and explanation of a device. Only one of those times
involved a distractor occurring. The order of which device the dis-
tractor occurred at was randomized for each area to reduce student
anticipation of a distraction every time the teacher pointed. When
a distractor occurred, the student was expected to acknowledge it

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Adil Khokhar & Christoph W. Borst / Towards Improving Educational Virtual Reality by Classifying Distraction using Deep Learning 87

10
Pupil Diameter 0.03 -0.00 0.00 001 0.02 0.00 -0.01 -0.00 0.01 001

Eye Openness
0.8
Head Vel

Hand Vel.
0.6

Head Ang. Vel.

Head Yaw Vel
0.4
Head Pitch Vel.

Eye Ang. Vel.

- 02

Eye Yaw Vel

Eye Pitch Vel
ye Pitch Vel L o0

Hand Ang. Vel

001

004 -003 -0.01 009 006 015 006 010

Pupil Diameter
Eye Openness
Head Vel
Hand Vel
Head Ang. Vel.
Head Yaw Vel.
Head Pitch Vel.
Eye Yaw Vel.
Eye Pitch Vel
Hand Ang. Vel.

Figure 2: Correlation matrix with a heatmap indicating which fea-
tures are related to each other.

by completing the associated point-and-click task. If the student ig-
nored the distractor, then, at the end of the area, the teacher paused
and reminded the student to address outstanding prompts, remain-
ing paused until the student acknowledged the distractor. Refer to
Khokhar et. al [KB22] for more details.

We collected raw gaze data as reported from the Vive Pro Eye
device at 120hz. This included pupil diameter, eye openness, eye
wideness, 2d gaze position, a 3d gaze origin, a 3d gaze direc-
tion, and a bitmask. The bitmask consisted of 5-bits that indicated
whether the 2d gaze origin, 3d gaze origin, 3d gaze direction, pupil
diameter, and/or eye openness fields had an invalid reading for that
frame. We computed the angle between the subject’s eye gaze di-
rection and the direction from the center of the subject’s eye to
the teacher, to any pointed-at objects, to the phone, and to any dis-
traction objects. We also computed these angles using the subject’s
head gaze direction. Angles were calculated between two direction
vectors as 8 = 2 - atan2(||u — v||,||u+ v||) [DJPZ*21]. Finally, we
recorded the world-space positions of the phone, head, and hand in
the virtual environment.

3.4. Ground Truth Construction

We considered two classes representing our conditions for classi-
fication: distractor and no-distractor. We took a 5 second window
of data from the interval when the distractor was present when the
teacher pointed. Some people in the distractor interval may have
tried to ignore the distractor and not perform the required distractor
task, and we still label them as being in the distractor condition.
We also took a 5 second window of data from the interval where
there was no distractor during teacher pointing and labelled them
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Lay Type Output # Drop Activat
er Shape Param out ion
1 ConvliD | (11,32) 128 - ReLU
2 ConvliD | (11,64) 6208 - ReLU
3 ConvlD | (11,128) | 41088 - ReLU
4 MaxPool | (6, 128) 0 - -
5 Dropout (6, 128) 0 0.2 -
6 ConvlD | (6, 256) 229632 - ReLU
7 ConvlD | (6,512) 393728 - ReLU
8 MaxPool | (3,512) 0 - -
9 LSTM (128) 328192 - ReLU
10 Dropout | (3,512) 0 0.5 -
11 Flatten 1536 0 - -
12 Dense 512 786944 - ReLU
13 Dense 1024 525312 - ReLU
14 Dense 8 8200 - Softmax

Table 1: Architecture for Deep CNN-LSTM. Layers 1, 2, and 7
had a kernel size of 3. Layer 3 had a kernel size of 5. Layer 6 had
a kernel size of 7. Max pool layers are size 3 with stride of 2. The
LSTM layer had 128 units.
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Figure 3: Feature importance scores (x-axis) for selected features
(v-axis). The score describes the decrease in mean accuracy with a
random forest classifier when values for that feature are randomly
shuffled.

as having no distractor. Our dataset consisted of 230680 data points
with an equal distribution per class.

3.5. Data Pre-Processing

To narrow down features that were suitable for our dataset, we used
the chi-squared test to compare fields between the two conditions.
We then calculated the correlation matrix (Figure 2) and impor-
tance scores (Figure 3) for remaining features.

We avoided using gaze angles or differences directly because
they may be less generalizable than features like movement ve-
locities, for example, heights of positional data can be dependent
on participant height, or include task-dependent information such
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Name Accuracy | Loss

CNN (Zhao et al. [ZLC*17]) 77.73% 0.4562
CNN-LSTM (Asish et al. [AHKB21]) | 84.49% 0.4771
Deep CNN-LSTM (Ours) 90.39% 0.2754

Table 2: Accuracy and loss of each model in classifying distractor
presence.

Name Class Precision | Recall | F1-Score
CNN No Distr. 0.75 0.83 0.79
Distractor 0.81 0.72 0.76
CNN-LSTM No Distr. 0.83 0.86 0.85
Distractor 0.86 0.83 0.84
Deep CNN-LSTM | No Distr. 0.91 0.90 0.90
Distractor | 0.90 0.91 0.90

Table 3: Precision, recall, and F1-scores of each model in classi-
fying distractor presence.

as looking at a helicopter [KJ13, IDQ21]. Instead, we computed
velocities for each angle as inter-frame differences per time step.
We separated the 3d eye gaze and head gaze directions into yaw
and pitch using the arctangent of a y component divided by the x
component and the arctangent of a z component divided by the x
component, respectively. Invalid values in fields indicated by the
validation bitmask were replaced with linearly interpolated values
based on the last valid and next valid values. A moving average fil-
ter reduced noisy data by taking the average of 6 neighboring data
points for each field. Left and right eye openness values were aver-
aged to produce a combined eye openness value. The left and right
pupil diameter values were combined similarly. A base pupil di-
ameter value was then computed by averaging the combined pupil
diameter over each trial, the window of data that composed the lec-
ture, pointing, and associated distractor for that area. We subtracted
the pupil diameter value for that frame by the base pupil diameter
to obtain a standardized distance metric for the pupil diameter. Fi-
nally, we normalized the data through standardization as follows:

Dy — Davg
std.dev.

Dy =

3.6. Deep Learning Classifiers

We considered three deep learning approaches for model classi-
fication: 1D CNN, CNN-LSTM, and our Deep CNN-LSTM. We
used the Keras library to implement the models and the Tensor-
Flow backend to train them. For all models we used a batch size of
512. We split our dataset into training (80%) and test (20%) sets,
randomly choosing from 444 event windows (37 subjects X 6 areas
X 2 conditions), with the training set used to train the model and
the test set used to test classifier accuracy.

CNN: CNNs can classify raw time series data by extracting fea-
tures from a sequence of observations [ZLC*17]. We used a con-
volution kernel size of 3 and 128 filter maps for the CNN layer.

CNN-LSTM: The CNN-LSTM model is a hybrid of a con-
volutional neural network (CNN) and a long short-term memory
(LSTM) network. The CNN extracts spatial features from the input

data and the LSTM extracts temporal features and performed well
in prior work [AKB21].

Deep CNN-LSTM: This is our own architecture. See Table 1
for kernel size and filters for each CNN layer. The design of our
CNN network is inspired from the VGG16 network [SZ15]; how-
ever, differing from it, we remove the 5th convolutional layer and
change from 2d convolutions to 1d convolutions to classify time
series data. We also add the LSTM network from the CNN-LSTM
model to extract temporal features.

4. Results and Discussion

We evaluated the performance of our models using the F1 score,
precision, and recall for each class. The F1 score is a measure of
a test’s accuracy. It is the harmonic mean of precision and recall.
Precision is the ratio of correctly predicted positive observations
to the total predicted positive observations. Recall is the ratio of
correctly predicted positive observations to the all observations in
actual class. Results are shown in Table 2 and Table 3.

This suggests that our deep CNN-LSTM model is able to capture
the spatial and temporal features of gaze data better than LSTMs.
Limitations with our approach included the fact that we only used
a small subset of the data for training and testing, so we could not
explore unsupervised or self-supervised methods. This limited us
to classical unsupervised approaches, such as k-means, which per-
form poorly as distraction classifiers [AKB21]. Data were labelled
based on the condition provided but this does not guarantee that all
people were distracted or not distracted in those conditions. Further
consideration of this during labelling could increase classifier accu-
racy. Our gaze angles did not include a notion of depth. Finally, we
did not validate our model’s generalizability on data from an offline
environment.

5. Conclusion and Future Work

Our work presented an approach that improved the accuracy of
and generality of features for training our deep CNN-LSTM clas-
sifier for detecting distractors in educational VR when compared
to two recent approaches. Future work will consider validating the
model’s generalizability in an offline environment and will explore
additional sensing such as EEG, ECG, etc. We will collect addi-
tional data so we can explore applying recent advances in deep
learning approaches for anomaly detection, such as transformer-
based methods with attention mechanisms. These aggregate and
tokenize features into learnable embeddings that take advantage of
an attention mechanism to improve learning on spatiotemporal fea-
tures [VSP*17]. Variational auto-encoders are also used to detect
anomalies and can learn a latent space representation of features
to improve spatiotemporal learning [SBZ*22]. Adding modularity,
by using only signals that a user opts to share, can address privacy
concerns (e.g., machine unlearning [CZW*21]). This would work
with gatekeeping modules that prevent detection of user properties
by limiting features to those needed for an activity [DJHBJ21]. Fi-
nally, we would like to extend our work to include other types of
distraction such as cognitive distraction and emotional distraction.
We believe this will improve educational VR by providing a more
accurate and robust distraction classifier.
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