
● Hi.  My name is Carl S. Marshall and I work in the Reality Labs Research at Meta. I 
transitioned to Reality Labs Research at Meta during this course submission from 
Intel Labs.  The course slides were created during my employment at Intel 
Corporation and this content is accredited to Intel.  

● This course is a collaboration of Intel Labs, Unity Labs, and Unity.  I would like to 
thank all of the speakers for helping make this course possible. Please feel free to 
reach out to me or the team via email for any comments/questions:  
csmarshall@fb.com, deepak.s.vembar@intel.com, sujoy.ganguly@unity3d.com, 
florent@unity3d.com













Super Resolution Image - https://research.facebook.com/publications/neural-
supersampling-for-real-time-rendering/
Viking Village images – Credit Unity Labs, Stylization – Credit Intel Labs





FlyingThings3D and Monkaa datasets: https://lmb.informatik.uni-
freiburg.de/resources/datasets/SceneFlowDatasets.en.html
COCO dataset: https://cocodataset.org/#home
Supervisely Person dataset: https://supervise.ly/explore/projects/supervisely-person-
dataset-23304/datasets
Carvana dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
ReCoNet: Gao, Chang & Gu, Derun & Zhang, Fangjun & Yu, Yizhou. (2018). ReCoNet: 
Real-Time Coherent Video Style Transfer Network. 637-653. 10.1007/978-3-030-20876-
9_40. 

Slide data - Credit to Intel Labs



Viking Village Asset (Left video) – Credit Unity Technologies
● BikeQuick1_30REV (Right video)– Credit Intel
● Styles: Viking->Edtaonisl, Bike -> Mosaic
● Resolution: 1080p at 30 FPS

Stylization of videos - Credit to Intel Labs
Thanks to Honnesh Rohmetra, while interning at Intel, for creating these stylized videos 
and the segmented stylized images on the next slide.



● Video: HorseScene1_60_REV (Intel)
● Styles: Person1 ->Edtaonisl, Person2 -> Composition, Background-> Starry night
● Resolution: 1080p at 30 FPS
● Instance Segmentation: CondInst trained on COCO dataset

Images Credit to Intel Labs





Hello, my name is Deepak Vembar and I am a research scientist at Intel Labs working on generative graphics 
and neural rendering. In this section, I will present a brief overview of some relevant work, applications and 
deployment/ pitfalls on implementing AI techniques in the graphics pipeline, both offline and real-time. 





The application of ML to rendering has increased – both in the actual applications and deployments to 
fundamental research into the new field as evidenced by past SGGRAPH papers. 
some aspect of the content generation, editing pipeline are seeing increased use of ML for recommendation 
systems – anything to improve artist and animator productivity
Similarly, we are seeing increased examples of ML in production rendering both for cinematic and real-time 
content – denoisers and super resolution being tangible examples

This advance has resulted in improved visual quality at similar power envelopes and enabled new 
experiences and effects such as high-resolution high fps gaming. For artists, having a ML system that 
generates a rough draft has resulted in increased productivity.
These applications are supported by changes in the software and hardware ecosystems that enable high 
fidelity, low latency usages across the entire graphics and rendering spectrum.

Despite the advances, the field is still nascent. There are challenges in acquiring the datasets that could 
generalize to different types of content, variations in network and models that are deployed as well as 
challenges in meeting performance and power thresholds across different deployment systems. 



Let us look at an example of training a denoising network. Let us assume that we are looking to deployed 
published research into solving a problem that we have – so we have an architecture of the network and 
perhaps some trained weights. The datasets may or may not be released depending on licensing and rights. 

Generally speaking, the training can be divided into 
- Data collection – Unlike computer vision, we can use the renderer to generate the buffers and images 

that we need to train the network. These buffers can be directly generated through the rendering 
pipeline (depth/ normal/ albedo/ motion vectors), or can be obtained as a by product of it (temporal 
data, 3D meshes). Usualyy data has to be pre-processed (cropping, rotation etc) so as to have a good 
representation of all content that the network is expected to resolve. 

- Network - this is a critical part of the process and determines what data needs to be collected to train 
the network as well as the performance and output. There are different types of networks , and 
depending on their performance, may or may not be suitable for the application. Accuracy and 
performance of the network are the defining factors in selecting it. 

- Results – the output of performing inference with trained weights of an optimized network. 

Note that this is only during training. The network has to be deployed as a part of the application and 
rendering (inference step) to do anything useful.  Deployments could be done with the training framework 
(Pytorch/ Tensorflow) in case performance is not a bottleneck, or have to be included in the rendering 
pipeline using existing APIs and graphics frameworks (DirectX, Vulkan, Renderman etc)

Image courtesy: Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings
Steve Bako*, Thijs Vogels*, Brian McWilliams, Mark Meyer, Jan Novák,
Alex Harvill, Pradeep Sen, Tony DeRose, and Fabrice Rousselle
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017), vol. 36, no. 4

http://www.ece.ucsb.edu/~sbako/
https://tvogels.nl/
https://www.inf.ethz.ch/personal/mcbrian/
http://graphics.pixar.com/people/mmeyer/
https://jannovak.info/
https://graphics.pixar.com/library/indexAuthorAlex_Harvill.html
http://www.ece.ucsb.edu/~psen/
http://graphics.pixar.com/people/derose/
http://www.zurich.disneyresearch.com/~fabricer/


Let us look at examples of using ML to augment the content creation process. Let us take the case of 
creating or customizing an avatar for integration into a game
We see an example of using generative networks (GANs) to generate high resolution images of people’s 
faces. 
This  generated image can be used to generate a 3G textured mesh, using just the image generated as input. 
We could use another network that learns and mimics the motion of humans so that we can integrate this 
with the generated 3D face mesh and make the character move.
Finally, we could generate different outdoor scenes for integration as backdrops into the game content. 

Thse are just exemplar usages, and while it still takes effort to deploy this in a system, we expect that it will 
soon be possible to do so – enabling customization and democratization of content without having much 
knowledge of content creation pipelines to do so. 
References:
ProgressiveGAN - https://arxiv.org/abs/1710.10196
AvatarMe - https://arxiv.org/abs/2003.13845
Animation - https://dl.acm.org/doi/abs/10.1145/3386569.3392450
GauGAN - https://arxiv.org/abs/1903.07291

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/2003.13845
https://dl.acm.org/doi/abs/10.1145/3386569.3392450
https://arxiv.org/abs/1903.07291


WE also see ML augmenting the rendering pipeline. By augmenting, we mean aiding the rendering engine to 
generate visuals – better quality at same power, reduced rendering times, or even new ways to generate the 
content from traditional 3D models/ pixels based ways. 

Image denoising has been an interesting use case where past heuristic methods are being replaced by DL 
based methods, just because the quality  is comparable to high spp rendering. 
For real-tome rendering, we are seeing DLSS which applies AA  and super resolution  to a low resolution 
frame to upscale it to a high res frame. 
IN addition to traditional rendering, we are seeing neural rendering – the idea of encoding a scene and its 
contents (lighting, materials, models) into a latent space representation that can be rendering using a neural 
renderer. The neural renderer could be used to generate the scene entirely, or only parts of the scene that 
are computationally expensive – e.g: GI, multi bounce lighting etc.  

References:
Image Denoising - https://studios.disneyresearch.com/2018/07/30/denoising-with-kernel-prediction-and-
asymmetric-loss-functions/
Scene relighting - ha
Compositional Neural Scene representation - https://jannovak.info/publications/CNSR/CNSR.pdf
DLSS - https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

https://studios.disneyresearch.com/2018/07/30/denoising-with-kernel-prediction-and-asymmetric-loss-functions/
https://arxiv.org/abs/2012.03927
https://jannovak.info/publications/CNSR/CNSR.pdf
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/




Let us dive deeper into content generation example – here we look at animating a 3D person model and 
capturing the expressiveness of the facial features to be replicated in an avatar. 

Past application of mocap required a highly trained animator to clean up, categorize and apply the motion 
captured data to a 3D skeleton that was rigged into the 3D body mesh. 
Similarly, capturing and transmission of facial animations to the face was cumbersome. Facial expressions 
could be captured by marker based or markerless systems, often captured using cameras mounted close to 
the face. 

Recent advances have made it possible to use NNs to ease both parts of this process, including for example, 
driving facial animations just through spoken audio from the person that is used to generate visually 
realistic facial animations in the avatar. 

Motion capture suit image - https://neuronmocap.com/content/mocap-101-what-motion-capture 
S. McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews and K. Mitchell, "Synthetic Prior Design for Real-
Time Face Tracking," 2016 Fourth International Conference on 3D Vision (3DV), 2016, pp. 639-648, doi: 
10.1109/3DV.2016.72.



PFNN provides a way to use mocap data to drive character animation in real-time games, that is conditioned 
on the locomotion, type of gait, terrain and user control of the character. Training dataset is captured and 
annotated mocap data of actors performing different actions in a controlled setting. This data is 
characterized to extract the phase and use to train a network that uses terrain model as input. Performance 
of the model during inference is pretty light and results in real-time driving of character animation. 

Phase-functioned neural networks for character control : ACM Transactions on GraphicsVolume 36Issue 
4July 2017 Article No.: 42pp 1–13https://doi.org/10.1145/3072959.3073663

https://dl.acm.org/toc/tog/2017/36/4
https://dl.acm.org/toc/tog/2017/36/4
https://doi.org/10.1145/3072959.3073663


The network is a simple 3 layer network, where the training weights are cyclically changed based on the 
phase of the motion ( hence phase functioned). 
Given the use case of integrating into games, the performance of the network is critical – often the 
computation of the next skeleton position is in ms.
While the initial training was limited to lower extremities of the person, recent work has resulted in 
capturing whole body motion as well as challenging use cases such as quadruped locomotion into game 
content. 
Deployments include games such as Ubisoft’s Assasins creed, as well as demos. 

Phase-functioned neural networks for character control : ACM Transactions on GraphicsVolume 36Issue 
4July 2017 Article No.: 42pp 1–13https://doi.org/10.1145/3072959.3073663

https://dl.acm.org/toc/tog/2017/36/4
https://dl.acm.org/toc/tog/2017/36/4
https://doi.org/10.1145/3072959.3073663


Facial expression is important when having virtual conversations – especially in physically distant 
environments
Zoom does provide video, but limited ability to change viewpoints independent of camera capture. 
VR provides the ability for users to have shared presence in a virtual environment, but facial expressions are 
hard to convey with an HMD that blocks external augmentation of the space with cameras/ sensors. 



An example of using DL to solve this issue in an end to end system is the codec avatars work from 
Facebook.
Here there are 2 networks that need to be trained – one for view dependent rendering of face and 
animations, and another for translating limited camera input from HMD of the user’s face to a 3D model. 
Training dataset is captured using a multi camera capture system under fixed lighting conditions
A VAE is used for both networks. 
The encoder translates the input texture and mesh into a latent representation for the view dependent 
rendering
The encoder correlated the captures view with the synthetic virtual camera to simulate the full face view –
essentially translating from warped camera images to the animated avatar

Deep appearance models for face rendering’
Stephen Lombardi , Jason Saragih, Tomas Simon, Yaser Sheikh
ACM Transactions on GraphicsVolume 37Issue 4August 2018 Article No.: 68pp 1–
13https://doi.org/10.1145/3197517.3201401

https://dl.acm.org/toc/tog/2018/37/4
https://dl.acm.org/toc/tog/2018/37/4
https://doi.org/10.1145/3197517.3201401


To capture the images from the HMD, cameras are placed and built into the HMD that capture the eye 
movements as well as the lower part of the face of the user.
Unlike the synthetic virtual camera images, the real camera also captures the background. 
The decoder network at the other participant uses the latent space representation and the view dependent 
term to re-render the talking head of the user with real facial animations. 

Deep appearance models for face rendering’
Stephen Lombardi , Jason Saragih, Tomas Simon, Yaser Sheikh
ACM Transactions on GraphicsVolume 37Issue 4August 2018 Article No.: 68pp 1–
13https://doi.org/10.1145/3197517.3201401

https://dl.acm.org/toc/tog/2018/37/4
https://dl.acm.org/toc/tog/2018/37/4
https://doi.org/10.1145/3197517.3201401


The final outcome is that the user in a shared virtual environment can see the head motions and facial 
expressions of each other, leading to better presense
Note that the talk head avatar is only lit by the same light source as what was captured. However newer 
work has looked at relighting the captured face mode, as well as driving this with just audio input (spoked 
words). 

Deep appearance models for face rendering’
Stephen Lombardi , Jason Saragih, Tomas Simon, Yaser Sheikh
ACM Transactions on GraphicsVolume 37Issue 4August 2018 Article No.: 68pp 1–
13https://doi.org/10.1145/3197517.3201401

https://stephenlombardi.github.io/projects/deepappearancemodels/ 

https://dl.acm.org/toc/tog/2018/37/4
https://dl.acm.org/toc/tog/2018/37/4
https://doi.org/10.1145/3197517.3201401


Image to image translation has been used across multiple field to stylize or change from one image content 
domain to another. ]
Examples include sketches to images, recoloring b&W images as well as semantic maps to photorealistic 
images for autonomous driving. 
Network used include adversarial networks as well as traditional CNNs – all with the intent of generating 
high resolution images as output
Temporal consistency is also important for videos, so that this are not artifacts during the rendering 
process. 

Image-to-Image Translation with Conditional Adversarial Networks
Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A
CVPR, 2017

Photographic Image Synthesis with Cascaded Refinement Networks
Qifeng Chen and Vladlen Koltun
International Conference on Computer Vision (ICCV), 2017 (Selected for full oral presentation)

https://openaccess.thecvf.com/content_CVPR_2019/papers/Park_Semantic_Image_Synthesis_With_Spatial
ly-Adaptive_Normalization_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially
-Adaptive_Normalization_CVPR_2019_paper.html 

http://www.stanford.edu/~cqf/
http://vladlen.info/
http://iccv2017.thecvf.com/


An example of democratizing content generation is GauGAN which is used to generate high resolution 
photorealistic images using a GAN 
Similar to image to image networks, the output is conditioned on the various categories in the semantic 
map’
In addition, the output is also conditioned by the style type of the reference image – e.g: you could generate 
all outputs to simulate images captured at sunset with the orange tinge to the generated images, without 
changing the content of the images itself. 

https://openaccess.thecvf.com/content_CVPR_2019/papers/Park_Semantic_Image_Synthesis_With_Spatial
ly-Adaptive_Normalization_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially
-Adaptive_Normalization_CVPR_2019_paper.html 



This is achieved by introduction od spatially adaptive denormalization blocks. The network is similar to prior 
work on pix2pixHD
Training dataset uses a variety of open source images of diverse scenes – hence it is able to generate across 
multiple different indoor and outdoor environments
The output is only limited by the semantic categories that can be generated via the input. 

https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially
-Adaptive_Normalization_CVPR_2019_paper.html





Post processing effects are used in both rasterization and ray tracing pipelines to simulate effects such as 
anti aliasing, motion blur, depth of field etc. 
WE have examples of deep CNNs being used to replace the traditional methods with DL based techniques
Inputs to the network are the buffers generated as a part of the rendering – albedo, normal, depth, motion 
vectors

Deep Shading: Convolutional Neural Networks for Screen Space Shading
O Nalbach, E Arabadzhiyska, D Mehta, HP Seidel, T Ritschel
Computer Graphics Forum 36 (4), 65-78



In Deep Shading example, the network is au shaped CNN with the network being retrained to perform 
different effects. 
The network could also be used to perform combined effects  - eg: depth of field with motion blur using the 
same network architecture
Performance in the past was in the tens of ms, 

Deep Shading: Convolutional Neural Networks for Screen Space Shading
O Nalbach, E Arabadzhiyska, D Mehta, HP Seidel, T Ritschel
Computer Graphics Forum 36 (4), 65-78



Here are examples of style transferred videos. Both full frame, segmented and for 3D content. Compared to 
video segmentation, given we can get pixel precise segmentation and depth maps for rendered content, it is 
far easier to integrate this directly as a post processing effect in the rendering of a frame. 



Gaming is moving to high resolution high fps experiences – 4K @60fps
This is hard to render and meet performance limitations across all systems
IN addition to traditional rasterization, we are seeing use of ray tracing for GI, reflections, caustics. Doing this 
every frame is computationally intensive
Along with known methods, we need to explore other techniques to bridge the performance gap. 



An example of using DL techniques if DLSS – applying AA and super resolution using a DL network to 
upsample low res images to high res images
The renderer has to input a low res rendered image to the network. The output is a high res image with 
same or better quality at a fraction of the cost and time needed to render the hish res image
Note the higher fps from the upsampled content. 

https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/



The latest iteration uses an auto encoder with past frames as well as motion vectors as input to maintain 
temporal consistency. 
Ground truth during training is highly sampled anti aliased images
Input is 1080p images (color and MV) and output is 4K image

https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/



The performance is obtained through async compute using Tensorcores – rendering and DL happen 
independently
Quality comparisons show almost indistinguishable differences – at improved frame rates and performance
In the past the network had to be retrained for each game content, but now a single network can be 
deployed across multiple games. 
While the technique itself is promising, the adoption within game engines as a plugin deployment 
mechanism enables it to reach across different systems with minimal overhead.  



So what is Intel Open Image Denoise? It is a library for denoising ray traced images, which are most 
commonly rendered with Monte Carlo path tracing. It can denoise final frames and baked lightmaps as well. 
To achieve this, it uses a collection of high-quality machine learning based denoising filters, which are 
suitable for both preview and offline rendering. One of the key features that makes Open Image Denoise 
quite powerful is its very simple C/C++ API, which makes integrating the library into rendering applications 
suprisingly easy. And last but not least, the library is completely open source and is available under the 
permissive Apache 2.0 license, which makes it even easier to adopt and customize.



So why should we use Monte Carlo path tracing for rendering images? The answer is that it can capture the 
wide variety of effects of light transport that other rendering algorithms typically end up becoming 
overburdened by. Each pixel is taking a random sample of the scene and over the course of many samples 
per pixel it converges to an accurate image. But, unfortunately, full convergence can be quite slow, resulting 
in noisy images. Fully converged final frame production quality renders can often take hours or even days 
on today's hardware, which is detrimental to the artistic process. A potential solution to this problem is 
using denoising algorithms. The question then becomes: can we get something as good as this ground truth 
image here, done with 32 thousand samples per pixel, but on a much smaller budget?



That is, can we do it with orders of magnitude less samples? Here is a raw render with only 16 samples per 
pixel next to ground truth.



And the answer is yes, with Intel Open Image Denoise we can efficiently get much better estimates of the 
final resulting image in a fraction of the rendering time needed for a fully converged image. And when used 
on higher sample counts, say around 1,000 samples per pixel, we can get results virtually indistinguishable 
from the ground truth, but much faster.



More recent usages for content generation include
- photo-realistic mesh and texture generation using Multiview images 
- Cinematic relighting and appearance capture for movies and animations
- Speeding up ray tracing using DL for adaptive denoising and importance sampling 
- As well as improving the photo realism of games with a network applies to the full frame buffer

These are just research applications, but the promise to improve output is evident

























Introduction to challenges of train on real world data and the 
way synthetic data can help.
Methods that bridge the gap between models train on 
synthetic data and their real world performance.
Burdens those methods place on the simulation environment 
and content.
The tools we have developed to aid in create synthetic data.
Finally I will present a set of environments and tools for 
researchers to use to study and close the sim to real gap.



In order to build these systems we need to train them on massive amounts of 
labelled data. That is examples from the paired with labels on what you 
information want to extract from those examples.
For vision based systems the current method of getting data is to capture 
images from real world and then label it. 
The entire process is manual and labor intensive, making it expensive and 
time consuming. 
As a result there is not always sufficient data and the sample set that we may 
have can be biased. 
Finally there are situations where we can get the real world data that we need 
due to privacy and compliance issues.



In order to build these systems we need to train them on massive amounts of 
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● Eliminating the annotation iteration cycles - you can always trust the 
annotations

● Eliminating the long wait for more data. It allows you to test many 
hypothesis quickly

● Eliminating edge cases you only find after deployment since you can 
just retrain with more data that includes those edge cases.



● Though synthetic data has many advantages it 
presents one key challenge. How to ensure the model 
that is train in the simulated domain performs well on 
real world data

● Two related methods have been proposed in the 
literature around bridging this gap, called Domain 
Randomization and Meta-Learning





























Shader Graph randomizer
https://youtu.be/qwfZ9gh_BUc

Wall randomizer
https://youtu.be/kXs_vpquJCg

Full playlist: https://youtube.com/playlist?list=PL-
0JKmA4rKK59eQ8XPtsh2YAzrYX-HgLp

https://youtu.be/qwfZ9gh_BUc
https://youtu.be/kXs_vpquJCg
https://youtube.com/playlist?list=PL-0JKmA4rKK59eQ8XPtsh2YAzrYX-HgLp








































Subject: Machine Learning in real-time in the context of a real-time 3D engine.



https://unity.com/labs

Publications: https://unity.com/publications

Unity Labs is a part of Unity which mission is to explore how: 
Realtime 3D scene authoring, 
AI, deep learning, 
computer visualization, 
VR, AR 
and storytelling 
will evolve in the next decade to radically transform how realtime 3D 
applications will be created and experienced.

https://unity.com/labs
https://unity.com/publications


Unity Barracuda is a lightweight Neural Networks inference library for Unity.

It is crossplatform
It can run Neural Networks both on GPU and CPU

Delivered as an Unity package with source available.

Why do we do that?
● We think ML and RT3D communities can achieve awesome things 

together!

https://github.com/Unity-Technologies/barracuda-release




● Let’s take a look at some use cases (there are a lot more, and list the list 
keep growing!):

● Two groups: 
○ Medium computational intensity.

■ Ideal for CPU inference
● Low latency to interact with other system (physics or 

gameplay for example)
● Complexe and/or branching architectures
● Recurrent networks
● Small input size

○ High computational intensity. 
■ Better suited for GPU inference

● Often driven by convolutional networks
● Large input size



● 1st group: Low latency, medium computational intensity. Ideal for CPU 
inference.



● 1st group: Low latency, medium computational intensity. Ideal for CPU 
inference.

■ Decision making / agent behavior
What if AI could be improved using RL (or ML in general). An 
example is Unity ML-Agents, delivered as an open-source 
project. It enables both:
● Developer can easily train behavior ranging from 

clumsy to superhuman performance.
● Researchers to access RT3D engine environment 

to do experiments.
● ML Agent 2.0 added:

○ Cooperative behaviors
○ Variable amount of observations
○ Task parameterization (helping toward 

model genericity)
● Github repo
● Various training settings:

○ Broad range of task can be handled (from 
match 3 to parallel parking)

https://blogs.unity3d.com/2021/05/05/ml-agents-v2-0-release-now-supports-training-complex-cooperative-behaviors/
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/ML-Agents-Overview.md


● 1st group: Low latency, medium computational intensity. Ideal for CPU 
inference.

■ Animation authoring
A NN can be trained to understand natural pose to drive a 
skeletal mesh. This can both improve animation fidelity and 
greatly lower authoring cost!
● Some great advances have been done in that regard at 

Unity Labs and we expect to see a lot of this in the 
future.

● Animation authoring can be seen as an example of the 
broader area of augmented artistry at authoring time. 
In fact Real-time inference take a new meaning when 
you think of it as tool allowing faster iteration for RT3D 
content generation! 
After all AI can even generate music!



● 2nd group: High computational intensity. Better suited for GPU inference.



● 2nd group: High computational intensity. Better suited for GPU inference.
■ Super resolution

Super resolution have proven to be a superior anti-aliasing and 
upsampling technique in various use-case.
● We see super resolution as an essential element to 

address the either increasing target resolution of the 
displays in the coming future.

● Many engine have already integrated DLSS from 
NVidia, including Unity (example above).



● 2nd group: High computational intensity. Better suited for GPU inference.
■ Denoising

● Pathtracing is expensive by nature. AI help bring it 
closer to real-time performance using denoising.

● Unity 2022.2 will include AI based denoiser on HDRP 
denoiser via:
○ Intel OIDN https://www.openimagedenoise.org/
○ NVidia optix https://developer.nvidia.com/optix-

denoiser

https://www.openimagedenoise.org/


● 2nd group: High computational intensity. Better suited for GPU inference.
■ Style transfer

Style transfer techniques could lead to emergent gameplays 
and artistic direction at a fraction of the cost deeply stylized 
rendering have at the moment.
We will latter in this presentation dive in more details at at a use 
case/research we did at Unity Labs in regard to style transfer.



● 2nd group: High computational intensity. Better suited for GPU inference.
■ XR

DL excel in object detection, tracking, segmentation and 
pose estimation thanks to the great history of computer vision 
research. Providing the device have access to a camera those 
techniques can be used in many creative way.

It is important to note that performance might be a challenge as 
XR use cases are often linked to low power hardware 
(However it is sometimes acceptable to split inference on a few 
frames).

Demo from Keijiro Takahashi https://twitter.com/i/status/1420742114942406659

https://twitter.com/i/status/1420742114942406659
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Demo from Keijiro Takahashi https://twitter.com/_kzr/status/1415331937623834629

https://twitter.com/_kzr/status/1415331937623834629


● 2nd group: High computational intensity. Better suited for GPU inference.
■ XR

DL excel in object detection, tracking, segmentation and 
pose estimation thanks to the great history of computer vision 
research. Providing the device have access to a camera those 
techniques can be used in many creative way.

It is important to note that performance might be a challenge as 
XR use cases are often linked to low power hardware 
(However it is sometimes acceptable to split inference on a few 
frames).

Demo from Keijiro Takahashi https://twitter.com/i/status/1386626393723703297

https://twitter.com/i/status/1386626393723703297


● Fast in engine inference does not limit itself to on device inference, loading or 
authoring time offer great opportunities too !

● So far we have focused on on-device real-time inference. However a lot can 
be achieved if one look at the broader capabilities of in engine inference at 
loading or authoring time! 
○ Textures: A lot of tools are already leveraging ML to generate or 

upscale textures, this is quite interesting imho! In fact one can also 
think of ML as a compression/decompression methods! For example 
with sin networks.

○ Baked lighting is traditionally an offline process, however the recent 
hardware and software improvement around both ray tracing and ML 
denoising have bringed us to interactive iteration speeds if not more!

○ AI assisted content authoring for faster workflow. On the right are 
two examples showing AI smartly placing furniture inside a room, for a 
very fast workflow. Much more AI assisted authoring workflow can be 
thought off!



○ AI assisted content authoring for faster workflow:
Continuing in the direction of ML assisted authoring here is an 
example of terrain authoring directly from the ML-Artistry world building 
team at Unity Labs. As you can see ML can drastically improve 
iteration time, allowing to generate high quality content in a fraction of 
the time.

● Finally : We hope these use cases illustrate well why we think native in 
engine inference can help bridge the gap between ML and RT3D 
communities. A lot can be achieved with both working hand in hand.



Now that we have taken a look at how powerful in engine inference can be 
let’s take a look at how to achieve it.

The flow is the following:
○ NN is trained in library of choice, PyTorch, Tensorflow, etc.
○ NN is frozen/exported to an ONNX file
○ file is dropped into Unity editor.
○ At runtime the Barracuda model can be loaded and scheduled

Let’s dive a bit further.

https://onnx.ai/
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● Now that we have taken a look at how powerful in engine inference can 
be let’s take a look at how to achieve it.

The flow is the following:
○ NN is trained in library of choice, PyTorch, TF, etc.
○ NN is frozen/exported to an ONNX file

■ Open format to represent NN.
● Defines a common set of DL operators: such as 

convolutions, activations, etc
■ Active community, well maintained and updated.

● Many popular ML frameworks export to it (Pytorch, 
TF, etc).

⇒ See bonus slide for more on ONNX and how to export 
to it:

Short story: It is often easy, sometime a one 
liner.

https://onnx.ai/


● Now that we have taken a look at how powerful in engine inference can 
be let’s take a look at how to achieve it.

The flow is the following:
○ NN is trained in library of choice, PyTorch, TF, etc.
○ NN is frozen/exported to an ONNX file (more on this latter)
○ ONNX file is dropped into Unity editor, witch:

■ Translates to Barracuda internal representation (IR)
● A bit different from ONNX in term of granularity 

sometime for performance reasons sometime for 
legacy reasons, also we don’t support all of the 
ops, import problem will be reported to the user 
here.

■ Applies offline optimizations (more on that latter)

■ After import (and actually at any point) user code can alter 
the Barracuda IR representation, ie add or remove layers, 
change weights or even build model from scratch.

This can be useful when python and app code are 
not expecting the same inputs because of 
normalisation or color space format for exemple.



● Now that we have taken a look at how powerful in engine inference can 
be let’s take a look at how to achieve it.

The flow is the following:
○ NN is trained in library of choice, PyTorch, TF, etc.
○ NN is frozen/exported to an ONNX file
○ ONNX file is dropped into Unity editor
○ At runtime the Barracuda model can be loaded and 

scheduled:
■ Loading and scheduling of network is left to the 

application code for flexibility reasons. For example it can 
be really useful to split network inference in a smart way 
knowing performance profile of the various layer on target 
hardware.

■ However Barracuda take care of all internal states, 
memory and asynchronous behavior.

■ General idea is that you can load and schedule a network 
in a few line of code but can also deep dive and take 
control if your are looking for optimal inference



performance for your application.



● Now that we have taken a look at how powerful in engine inference can 
be let’s take a look at how to achieve it.

The flow is the following:
○ NN is trained in library of choice, PyTorch, TF, etc.
○ NN is frozen/exported to an ONNX file
○ ONNX file is dropped into Unity editor
○ At runtime the Barracuda model can be loaded and 

scheduled:
■ About the backend:

■ CPU using the Burst compiler + job system → 
allow to compile to extremely optimized and 
scalable native code.

● Burst allow to use SIMD register and 
instruction from carefully written C# (a 
subset of C# to be exact).

■ GPU using Unity compute shaders system → 
HLSL based language cross compilated to any 
platform supporting compute shader.

● Barracuda support Metal, DX11, DX12 &



Vulkan. We are not actively supporting 
OpenGLES as driver quality is not as great 
as we would like on some devices in regard 
to compute shaders (we advice vulkan 
there), also WebGL does not supported 
compute shader.

● Compiler chain is currently based on FXC 
however DXC is currently being introduced 
to Unity (see 2021.2 beta).

■ This architecture also allows building against 
dedicated ML hardware acceleration API such as 
DirectML / CoreML / NNAPI.
Those backend are not currently shipped with 
Barracuda, we have however successfully 
experimented with all the three of them internally.

A note: DirectML requires DX12 and according to 
our stats DX11 is still insanely popular among 
RT3D developers.





Let’s take a toy example and see some examples of model level optimization (offline).

NOTE: This model would not be legit without at least a reshape especially between 
MatMul and convolution. 
It is omitted here for simplicity as it result in most case as a no-op.



NN often have branches which have constant input (i.e. the input of those branches 
don’t change at runtime), in those cases we compute those branches at import time 
and fold them to constants for inference to use.



The final goal is to be fully capped by the compute capabilities of our devices (in 
terms of FLOPS) however before that we also want to reduce the amount of 
operations we do for a given network. When possible we fused linear operations 
together, here the two matmul can be expressed as only one matrix multiplication.



The various framework and NN models can be expressed in terms of various memory 
layout (more on this latter).
Going from one memory layout to another can lead to extra transpose being included 
in the model, resulting in undesired memory shuffling. 

When possible we detect those cases and merge or wipe the transposes out of 
the model for extra performance.
In this example:
Relu is element wise and thus not impacted by the removal of the transposes.
Reduce axis(ies) will need to be updated at import time to keep the expected 
behavior.



In general memory access is way slower and power hungry than any on-chip 
operation, so want to avoid unnecessary load-store operations.
This includes fusing activations and simple linear operations such as ScaleBias 
when possible.

Here the Relu bandwidth is saved as the Relu will be applied in-place along the 
Convolution.



This would be the optimized model as described by Barracuda IR.



Repacked for readability



This seems much better however actual gain from graph simplification vary quite a lot:

In the end if all depend on the network and use cases:
● If 95% of the time was spend in the convolution, optimized model is not gonna 

be much faster (max 5%).
● In practice we have seen various gain: from negligible to very good.

Let’s see some examples on popular architectures.



From EfficientNet around 1% 
Up to MobileNet around 26% gain

Exact gain will for sure depend on the backend (CPU/GPU) and the device 
performance characteristics.

In that regard it is interesting to note that those simplification at the graph level are 
especially interesting on GPU where:
● bigger workload are needed to hide memory latency.
● dispatches have an inherent cost (as GPU occupancy won’t be perfect at end 

of dispatches, especially on linear models).



If one use the PrecompiledCompute backend on Barracuda:
● We select kernel by advance based on input shape, operator parameters and 

target hardware
● We prebake temporary data for example: updated kernel weights in the case 

of a winograd based convolution kernel.

Up to Barracuda 3 on GPU we offer the user with the ability to change the internal 
memory representation from NHWC to NCHW for performance purpose, this impact 
the full graph.

We are currently working on automating subgraph level optimization allowing to be 
more granular with those optimization and have if fully automatic based on target 
backend and hardware.



Once the NN is real time friendly in term of architecture, the last piece of the puzzle 
is online optimization

Here two examples (GPU inference)
MobileNet-v2 after offline optimization contain 68 layers

54 Convolution/DepthwiseConvolution
10 Add
2 Transpose
1 GlobalAvgPool2D
1 Reshape (noop)

=> 80% of them are convolution for 96% of total latency.

Shufflenet-v2-10 after offline optimization contain 182 layers
56 Convolution/DepthwiseConvolution
48 Transpose
26 StridedSlice
16 Concat
2 Reduce
1 MaxPool
1 Dense
32 Reshape (noop)
Dense 10%



=> 31% of them are convolution or dense for 64% of total latency.

⇒ Those optimization are however backend and hardware dependant, they thus 
require careful optimization.



Our CPU Matrix Multiplication is a block-wise MatMul. We follow pretty closely the 
work of GOTO and BLISS

One noteworthy thing is that it is parallelized on the leading dimension

Optimal block sizes is determined based on the device architecture
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Convolutions are typically done via the use of the im2col algorithm followed by a 
MatMul
Let’s go briefly over that algorithm and the potential drawbacks

In this example we are looking at at 3x3 input with 2 channels and two output features 
and a 2x2 kernel
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This is the result.
The 3x3x2 input is transformed into a 8x4 matrix which is multiplied by the 8x2 filter

In this case we went from :
● Input 3x3x2 => 18 floats 

To :
● become 8x4 => 32 floats

42



The draw back is a large memory overhead

Input size: H*W*C
im2col size : (H-K+1)*(W-K+1)*C*K*K (note: simplified considering 0 padding and 
stride of 1)

For 3x3x2 input, 2x2 kernels
Input size: 3*3*2 = 18
im2col size : (3-2+1)*(3-2+1)*2*2*2 = 32
→ 1.7x source data

However for a more common case 256x256x3 input, 3x3 kernels
Input size: 256*256*3 = 169608
im2col size : (256-3+1)*(256-3+1)*3*3*3 = 1741932
→ More than 10x source data
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It’s not only about raw speed, in RT3D inference means memory is on a tight budget. 
Thus our custom variation of im2col have very good peak memory properties.

It’s public along all of Barracuda, check it out! Code is available here: 
https://github.com/Unity-Technologies/barracuda-
release/blob/76077c0b2de7254b4f559a398a622cda072e7bf5/Barracuda/Runtime/Co
re/Backends/BarracudaBurstCPU.Ops.cs#L306

Let’s take a look at how it works.

https://github.com/Unity-Technologies/barracuda-release/blob/76077c0b2de7254b4f559a398a622cda072e7bf5/Barracuda/Runtime/Core/Backends/BarracudaBurstCPU.Ops.cs


We implement convolution as a KxK independent matrix multiplication.
For each filter index, we copy a strided version of the input. We flatten it on the spatial 
dim and get a H*W*C Matrix which we can then multiply with the C*F filter

flops im2col : (H-K+1)*(W-K+1)*K*K * C * F

flops our implementation : (H*K * C * F) * (K*K)

flop overhead  (H-K+1)*(W-K-1)/(H*W) ~ 1

Here is the pseudo code:

// We can solve convolution by iteratively accumulating

// matrix multiplication of X' and K' for each positon in kernel 
where:

//  X' is input X repeatedly shifted according to kernel position,

//  K' is slice of weights K according to kernel position.

//

// Pseudocode:
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//  X :: Input

//  T :: Temporary

//  K :: Kernel

//  O :: Output

//  foreach ky in kernelHeight:

//      foreach kx in kernelWidth:

//          Temporary = shift(Input, horizontal_shift = kx, 
vertical_shift = ky)

//          Temporary = pad(Temporary)

//          Temporary = stride(Temporary)

//          Output += Temporary * Kernel[dy, dx, :, :]

//

// Note for functions above that:

//  1) shift() can be implemented by copying data from n to T in a 
linear fashion.

//  2) stride() can be implemented by copying data every Nth pixel in 
a linear fashion.

//  3) pad() can be optimized for top and bottom of the tensor by 
writing 0s across the whole row.



Here you see we sample from the input strided to the left
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We iterate, each time striding in the weight direction
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Ect…
Finally, you can see we perform K*K matmuls

flops im2col : (H-K+1)*(W-K+1)*K*K * C * F

flops our implementation : (H*K * C * F) * (K*K)

flop overhead  (H-K+1)*(W-K-1)/(H*W) ~ 1
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On CPU we use Burst (see 
https://docs.unity3d.com/Packages/com.unity.burst@1.7/manual/index.html)

It is a compiler that translates from a subset of C# to highly optimized native code on all 
platform that Unity support using LLVM. It is released as a unity package.

Here you can see assembly for the MatrixMultiply job compiled for Intel X64 SSE4.



On top of Burst native code work is jobified: 

Here you can see the im2col job spawning many MatMul jobs, creating a job 
dependency chain for a given model.

⇒ Despite all of these optimization for heavy duty model CPU inference latency might 
not be enough for use case, this is where GPU backend come into play.

NOTE: Also if your device does not have unified memory if might be interesting to run 
on GPU if input is a texture or rendertarget.



● On-chip memory VS DDR (desktop VS mobile)
→ Group shared memory might get dedicated hardware on mobile. 
Depending on the case it might then not be a good idea to use this 
feature as it is might be backed by DDR and could rather trash the 
cache.
→ Also when using on-ship memory on dedicated GPU you will want 
have custom memory access pattern to avoid bank conflict, those 
pattern will likely require indexing math + could trash regular DDR 
cash even more if there is not dedicated shared memory.
→ The amount of on-ship memory is limited in size, influencing the 
choice of possible algorithms. For example our current winograd 
implementations are used up to 3x3 for spatial kernels.

● On-chip memory VS DDR (desktop VS mobile)
→ Scalar registers are a huge help on dedicated GPU to help with 
register pressure and occupancy however on mobile devices they will 
probably not exist.

● On-chip memory bandwidth VS FLOPS ratio
→ When designing your convolution algorithm you ideally want to align 
the bandwidth from your memory (on-ship if possible) with your inner 
loop in term of flops. AMD hardware usually have a ratio of 2 ALU per 
float of bandwidth, while NVidia have 4. This typically change the 



number of register you need to work with in the inner loop of 
convolution from 16 to 64.

● Number of threads to saturate GPU (and/or to hide latency efficiently)
→ Depending on your GPU the amount of hardware thread can vary 
from very few to thousands of threads! You thus need to design an 
algorithm that can go wide enough considering your kernel size, your 
input shape and your target hardware.

This mean a lot of convolution implementation, to cover the various use cases out 
there from the many models. Code is here https://github.com/Unity-
Technologies/barracuda-
release/tree/76077c0b2de7254b4f559a398a622cda072e7bf5/Barracuda/Runtime/Cor
e/Resources/Barracuda look for Conv*.compute.

https://github.com/Unity-Technologies/barracuda-release/tree/76077c0b2de7254b4f559a398a622cda072e7bf5/Barracuda/Runtime/Core/Resources/Barracuda


● Multiple of 64 kernels map nicely to desktop hardware and console, however 
for real time inference one might rather want a narrower network, requiring 
different tradeoffs for the algorithm.

● The first and last convolution of a network can often map to texture meaning 3 
or 4 channels, sometimes at very high resolution, again a different algorithm, 
can be thought of. 

● A note here: to avoid too much details in slide i have mixed up kernel and 
channel count, however having a low channel count vs a low kernel count is 
actually a different constraint for the algorithm, in the case of Barracuda we 
are a more flexible in term of channel than kernels count with current 
implementations.
○ That’s where understanding the hardware and the associated 

algorithms/kernel implementation start to be important to design fast 
model! A great example are the recently presented fully fused NN, a 
beauty!

→ Going forward we expect and hope to see more and more successful models 
that were designed in consideration or in conjunction with the hardware.



In general performance sensitive application are sensible to memory access pattern, 
as memory is slow compared to processing power.

The problem here is that for kernel implementations (themselves targeting a given 
hardware) will need a favored memory layout to be as fast as possible:
- For example in our tests NCHW is advantageous on dedicated GPU with on 

ship-memory compare to NHWC. 
- This is especially true at lower channel/kernel count, which you might 

require for real time performance reasons
- On the other hand GPU with TensorCore or API with NPU support such as 

NNAPI might prefer (or maybe only support!) channel last.
- On CPU you will likely prefer NCHWC8 to get the best of SIMD hardware.
- On GPU if using texture as input NCHWC4 could be interesting to leverage 

the texture cache (especially on mobile).



So we have seen the memory layout plays a crucial role in achieving the best 
performance. 

Thus the ideal would be to design a model from the ground up with target hardware in 
mind. However what if you target multiple platform or backend. Also the NN library out 
there each have their own choice of memory layout and in any case ONNX at the 
moment express the graph with convolution as NCHW.

So we want to select the best memory with the knowledge of the target 
hardware/backend and used operators, we thus alter/enrich the graph with meta-data 
to do so, adding memory shuffling to respect the graph initial behavior.

However those extra memory shuffling have a cost adding them around each critical 
operators is suboptimal, the idea is thus to reoptimize the graph moving/grouping and 
ideally removing those memory layout as much as possible at the subgraph level.



The goal was to take the existing research from Unity Labs Grenoble team and push 
it further, toward in real-time performance on desktop and console (PS4Pro). 30fps @ 
1080p



Initial perf where 40ms @ 720p on NVidia RTX2080.

This particular style transfer technique is unique in the sense that a single model is 
able to generalize to many different style. Also the style can be swapped at runtime!

https://unity-grenoble.github.io/website/publication/2019/07/05/publication-
styletransfer.html

https://unity-grenoble.github.io/website/publication/2019/07/05/publication-styletransfer.html


We looked at the model as well as performance on device (both desktop and PS4Pro 
thus) and discovered a few interesting things.

- Convolution performance could be improved (even if we had far from naive 
implementation already!):
- Start and stop of network.

- Model optim : Using strided convolutions to reduce input size 
as fast as possible.

- Implement faster kernel for low channels/kernels count.

- Residual part where width is 48 and does not map to hardware well.
- Model optim: Switch to 64 kernel but reduce number of layer.
- We need to implement faster kernel in general

- Weirdly however convolution performances were only around 56% of the 
time? That was very surprising!
- We had some inefficient code leading to the network being memory 

bound for a bunch of operators.
- Model optim: for training reason the model was doing texture 

normalization, however this could just be skipped in the context 
of the engine.

- At import time we needed more folding and fusing (offline 
optimization)



- Instance normalization needed to be improved (heavily used by 
model).

- However it appeared very quickly that even when all planned optim would be 
in, performance budget would be very tight. So we also started to look at :
- Applying Style transfer on downsampled target
- Do tiled inference and apply temporal reprojection other frames.

- Finally we would like to run this demo on some great content and wished to 
target the Book of the dead demo from Unity demo team as a base.

The lesson here is probably not new for the game dev community or any community 
that care about performance: Always profile the exact use case on device.



- After a bunch of iterations both on optimizations and visuals we discovered:

- Network was not reacting well at lower resolution especially on the 
high frequency content such as Book of the Dead. Look was very 
dreamy and not high quality enough.

- At lower resolution it was harder to occupy the GPUs making us lose 
some of the performance benefit we hoped for.

- As training the network is a long process, we could not try to train it at 
various resolutions to experiment if visual quality on downsampled 
input would be improved.

→ Downsampling before style transfer is not such a great idea 
finally, we need to run style transfer at 1080p

- Style transfer quality was needing the depth of the network much more 
than it was needing the width of it. And even with optimisations we 
probably could not afford 64 kernels in the residual part.

- Artistics feedback was that the style transfer was too heavy and would 
be tiring to the eyes, we needed a lighter effect.

→ What if we tried 32 kernels for residual part of network and 
same depth.



- Book of the Dead run well on PS4Pro @ 1080p 30fps, however frame 
time is already close to 33ms on some scenes.

→ Finally we decided to run:
Book of the dead @1080p + style transfer @1080p on 

PC.
Viking village @1080p + tiled style transfer @1080/4 

with temporal reprojection on 4 frames on PS4Pro.



Bugs happens that’s for sure and NN are no stranger to that rule

Lessons here:

● When training a network in Python if one load images using some python 
packages they usually do not explicitly say what they will do about color 
space, need to check the code!
Some package do only sRGB, some others only linear! And worst some will 

select based on the file format or extension! This is definitely something one should 
pay attention when planning to use the model as an effect in a RT3D engine!

● Important to pick what you want to experiment and what you won’t in term of 
model training, you probably can’t do all of the training experiments you dream 
of. 
Also Iterating on the visual need to ideally be a fast process but training the 
model is a slow one.
It’s is good to try to uncouple both by taking all possible visual controls out of 
the network. 
For example we iterated with LUT tables after the network but ended up not 
using those in the end.



What we ended up using is a network where :
- Up and downsampling part have been changed to be more lightweight.
- Residual kernel width is 32.

Some perf numbers:
PC 
Book of the dead @1080p + style transfer @1080p
RTX 2080 → 23ms (6-9 ms rendering, 12ms inference). 
(Before was 40ms @ 720p, different model however!)

More details, videos and perf number on the associated blog post here (older version 
of Barracuda perf a bit lower) : 
https://blogs.unity3d.com/2020/11/25/real-time-style-transfer-in-unity-using-deep-
neural-networks/

Some very interesting observation: 
After both model and code optimization if performance are much improved we funnily 
ended up in a somewhat similar situation (percentage wise):
- Convolution are 59.9 % of the inference time (was 56.2%).
- Upsample are 8% (was 2.8%)

https://blogs.unity3d.com/2020/11/25/real-time-style-transfer-in-unity-using-deep-neural-networks/


- Instance normalization are 27% (was 20.7%)
- Broadcast are 4.5% (was 13.6%)
- Activation are 0% (was 6.7%)

Also there are plenty of great opportunity to further optimized this effect:
- Faster Instance normalizations

- kernel level 
- model level

- Convolution: 
- for this demo we didn’t harness the power of fp16!
- also we optimized for 64 kernels while final model is actually 32! Could 

be interesting to dig especially for hardware with a warp size of 32.
- Upsample 

- Kernel level optimization
- Could transposed convolution be used instead (or maybe merge 

upsample and conv at kernel level?)
- More operation fusing!

Finally this effect focus on changing the style at runtime? But what if we don’t need 
that feature, could we have a cheaper network?



(on the right: THIS IS A VIDEO, please check course video or the blog post below to 
watch it)

PS4Pro
Viking village @1080p + tiled style transfer @1080p/4 with temporal reprojection 
on 4 frames
28ms (10ms rendering, 14ms per frame for sliced inference + 4ms temporal 
reprojection).

The general idea here is to stylized a quarter of the screen every frame and 
temporarily reproject over 4 frames, this is however tricky as typically reprojection 
technique use the depth buffer to detect occlusion and disocclusion.
However style transfer don’t write to depth while still affecting the shape of the objects 
sometime almost as a volumetric effect. 
All credit to Thomas Deliot. 

More details in the blog post.
https://blogs.unity3d.com/2020/11/25/real-time-style-transfer-in-unity-using-deep-
neural-networks/

https://blogs.unity3d.com/2020/11/25/real-time-style-transfer-in-unity-using-deep-neural-networks/


Here we can see how the style can be dynamically changed at runtime (THIS IS A 
VIDEO, please check course video or the blog post below to watch it)

The trick here is to only evaluate the style evaluation part of the network once for 
each style and save the resulting embedding on disk, then just hot swap those weight 
in memory at runtime.

More details, videos and perf numbers on the associated blog post here: 
https://blogs.unity3d.com/2020/11/25/real-time-style-transfer-in-unity-using-deep-
neural-networks/

https://blogs.unity3d.com/2020/11/25/real-time-style-transfer-in-unity-using-deep-neural-networks/


Thanks for listening, we hope this was useful for you!

On behalf of the wonderful Barracuda team we hope that the ML and game dev 
communities will join forces and create amazing things together!

Have a great day!



https://github.com/Unity-Technologies/barracuda-release

https://github.com/Unity-Technologies/barracuda-release




Thank you for attending our course on Practical Machine Learning for Rendering.   It has 
been a great pleasure working with our collaborators at Unity and my colleagues at Intel.  In 
this section, I will provide a brief overview from each of the sessions of this course and a 
call to action at the end of this section.   









Resources:
• Machine learning frameworks: pytorch.org, tensorflow.org, keras.io
• Rendering engines: Unity.com, blender.org, pbrt.org, unrealengine.com

Tool Links:
• Intel® oneAPI Toolkit -

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html -
foundational base toolkit enables the building, testing, and optimizing of data-
centric applications across XPUs

• Intel® oneAPI Deep Neural Network Library -
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/o
nednn.html - Increase Deep Learning Framework Performance on CPUs and 
GPUs

• Intel® Distribution of OpenVINO™ Toolkit -
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html –

optimizing deep learning networks
• Intel® Graphics Performance Analyzers -

https://software.intel.com/content/www/us/en/develop/tools/graphics-performance-
analyzers.html

• NVIDIA® TensorRT™ - https://developer.nvidia.com/tensorrt
• NVIDIA® Nsight™ - https://developer.nvidia.com/tools-overview
• ONNX format - www.onnx.ai

Deployment:  

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onednn.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tools-overview
http://www.onnx.ai/


• Unity Barracuda: https://github.com/Unity-Technologies/barracuda-release
• Onnx Runtime: onnxruntime.ai
• DirectML: https://github.com/microsoft/DirectML

Datasets links:

• Turbosquid – www.turbosquid.com

• Unity Assets - https://assetstore.unity.com/

• Open 3D models - https://open3dmodel.com/

• Free3D – https://free3D.com

• Kaggle datasets - https://www.kaggle.com/datasets

• Disney - https://studios.disneyresearch.com/data-sets/

Lab links:

• Intel – https://www.intel.com/content/www/us/en/research/overview.html

• Unity – https://unity.com/labs

• Meta RL Research - https://research.facebook.com/research-areas/augmented-reality-
virtual-reality/

• Nvidia – https://www.nvidia.com/en-us/research/

• Disney – https://www.disneyresearch.com/ 

https://github.com/Unity-Technologies/barracuda-release
http://www.turbosquid.com/
https://assetstore.unity.com/
https://open3dmodel.com/
https://free3d.com/
https://www.kaggle.com/datasets
https://studios.disneyresearch.com/data-sets/





