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Unity Labs
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Mission: Explore how real-time 3D (RT3D) will be created and played in the 
future.

Area of interest:

● RT3D authoring
● AI, deep learning
● Computer Visualization
● XR
● Storytelling



Barracuda
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Lightweight inference library

Cross platform

CPU and GPU

Delivered as Unity package

Source is available on github

Why do we do it?
We believe the ML and RT3D communities are extremely powerful together!

https://github.com/Unity-Technologies/barracuda-release


Agenda
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● Real-time ML/DL inference use cases for RT3D (9 mins)

● Barracuda pipeline (5 mins)

● Optimizations (15 mins)

● Practical example (8 mins)

         Bonus slides: ONNX & ONNX Runtime



Real-time inference for RT3D
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● Medium computational intensity

● High computational intensity

– CPU

– Complex architecture

– Small input size

– Better suited GPU

– Convolution

– Large input size



Real-time inference for RT3D
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● Medium computational intensity
– Decision making / agent behavior

– Animation synthesis



Medium computational intensity
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Decision making / agent behavior
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Medium computational intensity
Animation authoring

https://docs.google.com/file/d/1Y_IPfkBcT1JiLcYrraTdUyb6TPLUJzCW/preview


Real-time inference for RT3D
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● High computational intensity
– Super resolution

– Style transfer

– XR object detection, tracking & segmentation

– XR pose estimation



High computational intensity
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NVidia DLSS

No DLSS

Super resolution



High computational intensity
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Denoising
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High computational intensity
Style transfer



High computational intensity
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XR tracking & segmentation



High computational intensity
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XR object detection / tracking



High computational intensity
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XR object tracking



- Texture upscaling/generation
- Baked lighting denoising
- Smart authoring
- And much more!

At loading or authoring time
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Terrain Authoring

At loading or authoring time
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...

Python Unity Editor Runtime

Barracuda pipeline
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Barracuda pipeline

19

TensorFlow

PyTorch

...

Keras

Python



Barracuda pipeline
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ONNX
TensorFlow

PyTorch

...

Keras

Python



Barracuda pipeline
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ONNX
Barracuda IR

& 
Optimizations

TensorFlow

PyTorch

...

Keras

Unity Editor 
import

Python



Barracuda pipeline
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Barracuda pipeline

23

ONNX
Barracuda IR

& 
Optimizations

Barracuda 
Worker

TensorFlow

PyTorch

...

Keras

Unity 
Compute

Unity Burst
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DirectML

Unity Editor 
import

Barracuda 
runtime SSE

AVX

NEON

DXIL
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METAL

SPIR-V

BackendsPython
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Optimizations
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● Graph simplification/reordering
import time, backend agnostic

● Subgraph kernel/layout selection
Import time, backend specific

● Online
runtime, kernels implementation



Graph simplification
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— Fold constant sub-networks

— Fuse linear operations

— Remove Transpose ops

— Fuse activations

Input

MatMul

Relu

Constants

MatMul MatMul

Convolution

Transpose

Transpose

Output

Constants

Reduce



Graph simplification
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— Fold constant sub-networks
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Graph simplification
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— Fuse linear operations
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Graph simplification
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— Remove Transpose ops
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Graph simplification
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— Fuse activations
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Graph simplification

30

— Fuse activations

Input

MatMul
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Output

Constants
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Convolution+Relu



Graph simplification
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Convolution+Relu



Graph simplification
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Input

MatMul

Relu

Constants

MatMul MatMul

Convolution

Transpose

Transpose

Output

Constants

Reduce

Input

MatMul

Constants

Output

Constants

Reduce

Convolution+Relu



Graph simplification
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Subgraph kernel/layout selection
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We can select best the kernels in advance for given hardware and model.

● Reduce scheduling cost
● Allow to prebake temporary data structure

For best performance some kernel require specific memory layout.

● Up to Barracuda 3: internal memory layout can be select for graph.
● Upcoming: automatic subgraph memory layout per backend/hardware.



Optimizations : online
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Convolution and Dense/MatMul are often responsible

for most of the latency at inference.

— Deserve high amount of optimization love!

— Hardware and backend dependant.



Parallel Block Matrix-Multiply

• Block size and inner loop are determined based on the 
architecture

• Parallelized on the leading dimension

Optimization: online
CPU – Matrix Multiply

C = A * B

A

B

C

N

M

K

K
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Optimization: online
CPU - Convolution

Typically, convolution are implemented via the im2col algorithm + 
a MatMul
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2x2 kernel
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MatMul
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Optimization: online
CPU - Convolution

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

im2col algorithm:

1 2 4 5 10 11 13 14

Input tensor : [H*W, C]

C

W

H

2x2 kernel is slid along the input image.
These values are flattened and concatenated to 
form the matrix on the right
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Optimization: online
CPU - Convolution

im2col algorithm:

Input tensor : [H*W, C]

C

W

H
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Optimization: online
CPU - Convolution

im2col algorithm:

Input tensor : [H*W, C]

C

W

H
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Optimization: online
CPU - Convolution

im2col algorithm:

Input tensor : [H*W, C]

C

W

H
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Optimization: online
CPU - Convolution
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Optimization: online
CPU - Convolution

1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

4 5 7 8 13 14 16 16
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im2col algorithm introduces 
a KxK memory overhead!

2,4,6,8: repeated 2 times
5: repeated 4 times

KxK kernel
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Optimizations - online
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CPU - Convolutions

● We use a custom variation of the im2col algorithm:
– Fast

– Very good peak memory

We implement convolution as a KxK matrix multiplications which 
reduces memory consumption by KxK times comparing to 
standard im2col algorithm.

Our approach trades fraction of performance for significant 
memory use 



Optimization: online

KxK independent matrix multiplication

CPU - Convolution
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Optimization: online

KxK independent matrix multiplication

CPU - Convolution
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Optimization: online

KxK independent matrix multiplication

CPU - Convolution
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Optimization: online

KxK independent matrix multiplication

CPU - Convolution
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Optimizations : online
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C# is compiled via Burst to highly optimized vectorized assembly code.



Optimizations : online
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CPU backend is by design heavily threaded (and thus asynchronous)



Optimizations : online
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GPU - Convolution

● GPUs have awesome raw power, however they differ greatly:
– On-chip memory VS DDR (dedicated VS mobile)

– Scalar register? (dedicated VS mobile)

– On-chip memory bandwidth VS FLOPS ratio

– Number of threads to saturate GPU (and/or to hide latency efficiently)

– …

● This mean many implementations, all of them carefully crafted for a specific purpose.

https://github.com/Unity-Technologies/barracuda-release/tree/76077c0b2de7254b4f559a398a622cda072e7bf5/Barracuda/Runtime/Core/Resources/Barracuda


Optimizations : online
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GPU - Tidbits

● Dedicated GPUs often have a warp size of 64 (or 32). 
- Map nicely to convolutions with multiple of 64 kernels, hence the popularity of 

those sizes.
● First/last convolution of the NN with large input and 3 or 4 channels?

- Different algo + probably harder to reach great GPU utilization
● For 3x3 kernel winograd is a generally a win

- For larger kernel size it is harder because of LDS constraint



Tensor Memory layout

Memory layout is critical for performance bound applications. 

Optimizations - online

53

NHWC [1,1,2,4]

C0
W0

C0
W1

C1
W0

C1
W1

C2
W0

C2
W1

C3
W0

C3
W1NCHW [1,4,1,2]

NCHWC2 [1,2,1,2,2]

C0
W0

C1
W0

C2
W0

C3
W0

C0
W1

C1
W1

C2
W1

C3
W1

C0
W0

C1
W0

C0
W1

C1
W1

C2
W0

C3
W0

C2
W1

C3
W1



Tensor Memory layout

– HW/kernels combination have different preferred memory layouts

– Issues:

– Memory shuffling around operator is suboptimal

– Can’t alter model weights as they are shared to all worker/backend

– Solution: 

– Subgraph meta-data defined by backend optimisation pass.

– Reoptimize the graph around the added memory shuffling.

Optimizations - online
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Practical example
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Style transfer

Goal: 30fps on desktop and console (PS4Pro)



Style transfer
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Previous work : Research from Unity Labs Grenoble team 



Style transfer
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Initial exploration and plan



Style transfer
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Book of dead with style transfer early tests

    1080p          960x540     720x408



Style transfer
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Some nice bugs/learning

● Models was hallucinating weird colors. 
- Model was trained with sRGB color space while we were feeding it in linear.
- We converted to/from sRGB before/after the NN to avoid retraining it.

→ Check python texture import code!

● Initially, model was trained with point filtering Upsample creating artifacts. 
-  Retraining would take too long. 
- We ended up forcing bilinear interpolation at inference while iterating.

→ Try to uncouple iterations from NN training!



Style transfer
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Final architecture



Style transfer
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With temporal reprojection on PS4Pro



Practical example - Style transfer
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Thanks for listening!

We hope the ML and RT3D communities will achieve 
great things together!



Thanks to
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The Barracuda team

- Alexandre Ribard
- Aurimas Petrovas
- Tracy Sharpe
- Mantas Puida
- Renaldas Zioma
- Florent Guinier

The Grenoble Style transfer team

- Kenneth Vanhoey
- Thomas Deliot
- Adele Saint-Denis





Bonus slides
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ONNX
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— Gaining traction inside of the ML/DL ecosystem

– Easy to find exporters for the most popular frameworks

– Well maintained and updated 

— Easy to read and ingest into custom ML implementation

– Encapsulates both network structure and weights in a single file



ONNX
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— From pytorch



ONNX
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— From TensorFlow

First export tf model to .pb

Then using tf2onnx (pip install tf2onnx) convert the .pb to ONNX



ONNX
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— From Keras

First you need keras2onnx (pip install keras2onnx)

Then it is quite similar to the pytorch exporter



ONNX Runtime
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— ONNX Runtime follow closely the ONNX specifications. We use it 
as a reference implementation for our integration tests.

— Support various execution context:

– CPU

– GPU (Cuda)

– DirectML 

– and more!

Great to compare inference speed against our own 
implementations.


