
 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

Unity Labs // Intel Labs

Machine Learning in Real-time

Unity Labs - Barracuda team

Florent Guinier

Unity Labs

2

Mission: Explore how real-time 3D (RT3D) will be created and played in the
future.

Area of interest:

● RT3D authoring
● AI, deep learning
● Computer Visualization
● XR
● Storytelling

Barracuda

3

Lightweight inference library

Cross platform

CPU and GPU

Delivered as Unity package

Source is available on github

Why do we do it?
We believe the ML and RT3D communities are extremely powerful together!

https://github.com/Unity-Technologies/barracuda-release

Agenda

4

● Real-time ML/DL inference use cases for RT3D (9 mins)

● Barracuda pipeline (5 mins)

● Optimizations (15 mins)

● Practical example (8 mins)

 Bonus slides: ONNX & ONNX Runtime

Real-time inference for RT3D

5

● Medium computational intensity

● High computational intensity

– CPU

– Complex architecture

– Small input size

– Better suited GPU

– Convolution

– Large input size

Real-time inference for RT3D

6

● Medium computational intensity
– Decision making / agent behavior

– Animation synthesis

Medium computational intensity

7

Decision making / agent behavior

8

Medium computational intensity
Animation authoring

https://docs.google.com/file/d/1Y_IPfkBcT1JiLcYrraTdUyb6TPLUJzCW/preview

Real-time inference for RT3D

9

● High computational intensity
– Super resolution

– Style transfer

– XR object detection, tracking & segmentation

– XR pose estimation

High computational intensity

10

NVidia DLSS

No DLSS

Super resolution

High computational intensity

11

Denoising

12

High computational intensity
Style transfer

High computational intensity

13

XR tracking & segmentation

High computational intensity

14

XR object detection / tracking

High computational intensity

15

XR object tracking

- Texture upscaling/generation
- Baked lighting denoising
- Smart authoring
- And much more!

At loading or authoring time

16

Terrain Authoring

At loading or authoring time

17

...

Python Unity Editor Runtime

Barracuda pipeline

18

Barracuda pipeline

19

TensorFlow

PyTorch

...

Keras

Python

Barracuda pipeline

20

ONNX
TensorFlow

PyTorch

...

Keras

Python

Barracuda pipeline

21

ONNX
Barracuda IR

&
Optimizations

TensorFlow

PyTorch

...

Keras

Unity Editor
import

Python

Barracuda pipeline

22

ONNX
Barracuda IR

&
Optimizations

Barracuda
Worker

TensorFlow

PyTorch

...

Keras

Unity Editor
import

Barracuda
runtime

Python

Barracuda pipeline

23

ONNX
Barracuda IR

&
Optimizations

Barracuda
Worker

TensorFlow

PyTorch

...

Keras

Unity
Compute

Unity Burst
HPC#

DirectML

Unity Editor
import

Barracuda
runtime SSE

AVX

NEON

DXIL

GLSL

METAL

SPIR-V

BackendsPython

Unity Pixel

Optimizations

24

● Graph simplification/reordering
import time, backend agnostic

● Subgraph kernel/layout selection
Import time, backend specific

● Online
runtime, kernels implementation

Graph simplification

25

— Fold constant sub-networks

— Fuse linear operations

— Remove Transpose ops

— Fuse activations

Input

MatMul

Relu

Constants

MatMul MatMul

Convolution

Transpose

Transpose

Output

Constants

Reduce

Graph simplification

26

— Fold constant sub-networks

Input

MatMul

Relu

Constants

MatMul MatMul

Convolution

Transpose

Transpose

Output

Constants

Reduce

Graph simplification

27

— Fuse linear operations

Input

MatMul

Relu

Constants

MatMul

Convolution

Transpose

Transpose

Output

Constants

Reduce

Graph simplification

28

— Remove Transpose ops

Input

MatMul

Relu

Constants

Convolution

Transpose

Transpose

Output

Constants

Reduce

Graph simplification

29

— Fuse activations

Input

MatMul

Relu

Constants

Convolution

Output

Constants

Reduce

Graph simplification

30

— Fuse activations

Input

MatMul

Constants

Output

Constants

Reduce

Convolution+Relu

Graph simplification

31

Input

MatMul

Constants

Output

Constants

Reduce

Convolution+Relu

Graph simplification

32

Input

MatMul

Relu

Constants

MatMul MatMul

Convolution

Transpose

Transpose

Output

Constants

Reduce

Input

MatMul

Constants

Output

Constants

Reduce

Convolution+Relu

Graph simplification

33

Subgraph kernel/layout selection

34

We can select best the kernels in advance for given hardware and model.

● Reduce scheduling cost
● Allow to prebake temporary data structure

For best performance some kernel require specific memory layout.

● Up to Barracuda 3: internal memory layout can be select for graph.
● Upcoming: automatic subgraph memory layout per backend/hardware.

Optimizations : online

35

Convolution and Dense/MatMul are often responsible

for most of the latency at inference.

— Deserve high amount of optimization love!

— Hardware and backend dependant.

Parallel Block Matrix-Multiply

• Block size and inner loop are determined based on the
architecture

• Parallelized on the leading dimension

Optimization: online
CPU – Matrix Multiply

C = A * B

A

B

C

N

M

K

K

36

Optimization: online
CPU - Convolution

Typically, convolution are implemented via the im2col algorithm +
a MatMul

1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

4 5 7 8 13 14 16 16

5 6 8 9 14 15 17 18

10 11 12

13 14 15

16 17 18

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1 2 3

4 5 6

7 8 9

**

2x2 kernel

im2col
MatMul

37

Optimization: online
CPU - Convolution

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

im2col algorithm:

1 2 4 5 10 11 13 14

Input tensor : [H*W, C]

C

W

H

2x2 kernel is slid along the input image.
These values are flattened and concatenated to
form the matrix on the right

38

Optimization: online
CPU - Convolution

im2col algorithm:

Input tensor : [H*W, C]

C

W

H

39

1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

Optimization: online
CPU - Convolution

im2col algorithm:

Input tensor : [H*W, C]

C

W

H

40

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

4 5 7 8 13 14 16 16

Optimization: online
CPU - Convolution

im2col algorithm:

Input tensor : [H*W, C]

C

W

H

41

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

4 5 7 8 13 14 16 16

5 6 8 9 14 15 17 18

Optimization: online
CPU - Convolution

1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

4 5 7 8 13 14 16 16

5 6 8 9 14 15 17 18

KxK

*

10 11 12

13 14 15

16 17 18

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1 2 3

4 5 6

7 8 9

KxK*C

F

im2col algorithm:

* KxK*C
im2col

MatMul

42

Optimization: online
CPU - Convolution

1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

4 5 7 8 13 14 16 16

5 6 8 9 14 15 17 18

10 11 12

13 14 15

16 17 18

1 2 3

4 5 6

7 8 9

im2col algorithm introduces
a KxK memory overhead!

2,4,6,8: repeated 2 times
5: repeated 4 times

KxK kernel

43

Optimizations - online

44

CPU - Convolutions

● We use a custom variation of the im2col algorithm:
– Fast

– Very good peak memory

We implement convolution as a KxK matrix multiplications which
reduces memory consumption by KxK times comparing to
standard im2col algorithm.

Our approach trades fraction of performance for significant
memory use

Optimization: online

KxK independent matrix multiplication

CPU - Convolution

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

1

5

1

5

F

C**

C

W

H

45

Optimization: online

KxK independent matrix multiplication

CPU - Convolution

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

2

6

2

6

F

C**

C

W

H

46

Optimization: online

KxK independent matrix multiplication

CPU - Convolution

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

3

7

3

7

F

C**

C

W

H

47

Optimization: online

KxK independent matrix multiplication

CPU - Convolution

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18
1 2 3

4 5 6

7 8 9

4

8

4

8

F

C**

C

W

H

48

Optimizations : online

49

C# is compiled via Burst to highly optimized vectorized assembly code.

Optimizations : online

50

CPU backend is by design heavily threaded (and thus asynchronous)

Optimizations : online

51

GPU - Convolution

● GPUs have awesome raw power, however they differ greatly:
– On-chip memory VS DDR (dedicated VS mobile)

– Scalar register? (dedicated VS mobile)

– On-chip memory bandwidth VS FLOPS ratio

– Number of threads to saturate GPU (and/or to hide latency efficiently)

– …

● This mean many implementations, all of them carefully crafted for a specific purpose.

https://github.com/Unity-Technologies/barracuda-release/tree/76077c0b2de7254b4f559a398a622cda072e7bf5/Barracuda/Runtime/Core/Resources/Barracuda

Optimizations : online

52

GPU - Tidbits

● Dedicated GPUs often have a warp size of 64 (or 32).
- Map nicely to convolutions with multiple of 64 kernels, hence the popularity of

those sizes.
● First/last convolution of the NN with large input and 3 or 4 channels?

- Different algo + probably harder to reach great GPU utilization
● For 3x3 kernel winograd is a generally a win

- For larger kernel size it is harder because of LDS constraint

Tensor Memory layout

Memory layout is critical for performance bound applications.

Optimizations - online

53

NHWC [1,1,2,4]

C0
W0

C0
W1

C1
W0

C1
W1

C2
W0

C2
W1

C3
W0

C3
W1NCHW [1,4,1,2]

NCHWC2 [1,2,1,2,2]

C0
W0

C1
W0

C2
W0

C3
W0

C0
W1

C1
W1

C2
W1

C3
W1

C0
W0

C1
W0

C0
W1

C1
W1

C2
W0

C3
W0

C2
W1

C3
W1

Tensor Memory layout

– HW/kernels combination have different preferred memory layouts

– Issues:

– Memory shuffling around operator is suboptimal

– Can’t alter model weights as they are shared to all worker/backend

– Solution:

– Subgraph meta-data defined by backend optimisation pass.

– Reoptimize the graph around the added memory shuffling.

Optimizations - online

54

Practical example

55

Style transfer

Goal: 30fps on desktop and console (PS4Pro)

Style transfer

56

Previous work : Research from Unity Labs Grenoble team

Style transfer

57

Initial exploration and plan

Style transfer

58

Book of dead with style transfer early tests

 1080p 960x540 720x408

Style transfer

59

Some nice bugs/learning

● Models was hallucinating weird colors.
- Model was trained with sRGB color space while we were feeding it in linear.
- We converted to/from sRGB before/after the NN to avoid retraining it.

→ Check python texture import code!

● Initially, model was trained with point filtering Upsample creating artifacts.
- Retraining would take too long.
- We ended up forcing bilinear interpolation at inference while iterating.

→ Try to uncouple iterations from NN training!

Style transfer

60

Final architecture

Style transfer

61

With temporal reprojection on PS4Pro

Practical example - Style transfer

62

63

Thanks for listening!

We hope the ML and RT3D communities will achieve
great things together!

Thanks to

64

The Barracuda team

- Alexandre Ribard
- Aurimas Petrovas
- Tracy Sharpe
- Mantas Puida
- Renaldas Zioma
- Florent Guinier

The Grenoble Style transfer team

- Kenneth Vanhoey
- Thomas Deliot
- Adele Saint-Denis

Bonus slides

66

ONNX

67

— Gaining traction inside of the ML/DL ecosystem

– Easy to find exporters for the most popular frameworks

– Well maintained and updated

— Easy to read and ingest into custom ML implementation

– Encapsulates both network structure and weights in a single file

ONNX

68

— From pytorch

ONNX

69

— From TensorFlow

First export tf model to .pb

Then using tf2onnx (pip install tf2onnx) convert the .pb to ONNX

ONNX

70

— From Keras

First you need keras2onnx (pip install keras2onnx)

Then it is quite similar to the pytorch exporter

ONNX Runtime

71

— ONNX Runtime follow closely the ONNX specifications. We use it
as a reference implementation for our integration tests.

— Support various execution context:

– CPU

– GPU (Cuda)

– DirectML

– and more!

Great to compare inference speed against our own
implementations.

