EUROGRAPHICS 2019/ W. Jakob and E. Puppo Tutorial

libigl: Prototyping Geometry Processing Research in C++

Daniele Panozzo' and Alec Jacobson?

INew York University
2University of Toronto

Abstract

Modern geometry processing algorithms depend on an ever-growing toolbox of fundamental sub-routines and data structures.
Prototyping from scratch requires much time building basic tools rather than focusing on the novel research idea. Many existing
code libraries have unsatisfactory APIs and the time spent implementing sub-routines is often replaced with time spent learning
complex, templated object hierarchies or memory layouts. Libigl is a C++ library of geometry processing algorithms designed
for and by researchers. Its wide functionality includes construction of common sparse discrete differential geometry operators
(such as the cotangent Laplacian), simple facet- and edge-based topology data structures, mesh-viewing utilities for OpenGL
and GLSL, and many core functions for matrix manipulation which make Eigen feel a lot more like MATLAB. Libigl places
extreme importance on ease of use and experimentation. To this end, algorithms are directly exposed as functions taking simple
matrix types as inputs and outputs. Libigl is a "header only"library and compiles on Windows, Mac, and Linux. In this course,
we will walk through an introduction of libigl via readymade examples spanning the gamut of geometry processing applications
and tasks. Attendees will be able to follow along on their laptops. We will explain the core functionality of libigl, how to piece
together complex algorithms from library functions, and how to interface to libigl from Python and MATLAB. We will highlight
some of libigl’s most powerul features: including mesh booleans, quad remeshing, parameterization, and shape deformation.
We will conclude with live coding sessions demonstrating libigl’s effectiveness and ease-of-use.

1. Introduction

We introduce libigl with a series of self-contained examples. The
purpose of each example is to showcase a feature of libigl while
applying it to a practical problem in geometry processing. We will
present the basic concepts of libigl and introduce a simple mesh
viewer that allows to visualize a surface mesh and its attributes. All
the tutorial examples are cross-platform and can be compiled on
MacOSX, Linux and Windows.

2. libigl design principles
libigl is based on 4 main design principles:

1. No complex data types. We mostly use matrices and vectors.
This greatly favors code reusability and forces the function au-
thors to expose all the parameters used by the algorithm.

2. Minimal dependencies. We use external libraries only when nec-
essary and we wrap them in a small set of functions.

3. Header-only. It is straight forward to use our library since it is
only one additional include directory in your project. (if you are
worried about compilation speed, it is also possible to build the
library as a static library).

4. Function encapsulation. Every function (including its full imple-
mentation) is contained in a pair of .h/.cpp files with the same
name of the function.

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

3. Downloading libigl

libigl can be downloaded from our github repository or cloned
with git: git clone https://github.com/libigl/libigl.git. The core li-
bigl functionality only depends on the C++ Standard Library and
Eigen.

4. Course Notes and Documentation

The course notes are attached in the additional material in html
format, and can be viewed online at the url https://1libigl.
github.io/tutorial/.

5. Geometry Processing Courses

The course continues beyond the lecture via two open
source graduate-level courses on geometry processing based
on libigl (https://github.com/alecjacobson/
geometry-processing) and (https://github.com/
danielepanozzo/gp).

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

DOI: 10.2312/egt.20191037



https://libigl.github.io/tutorial/
https://libigl.github.io/tutorial/
https://github.com/alecjacobson/geometry-processing
https://github.com/alecjacobson/geometry-processing
https://github.com/danielepanozzo/gp
https://github.com/danielepanozzo/gp
https://doi.org/10.2312/egt.20191037


