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Figure 1: The shapes from the categories of chairs and tables are ranked according to their Schelling frequencies.

Abstract
The concept of “Schelling points” on 3D shapes has been explored for points on the surface of a 3D mesh. In this paper,
we introduce the notion of “Schelling meshes” which extends the Schelling concept to 3D meshes as a whole themselves. We
collect Schelling-based data for meshes where participants are given a group of shapes and asked to choose those with the
aim of matching with what they expect others to choose. We analyze the data by computing the Schelling frequency of each
shape and characterizing the qualitative features that make a shape “Schelling”. We show that the Schelling frequencies can
be learned and demonstrate Schelling-guided shape applications.

CCS Concepts
• Computing methodologies → Perception; Mesh models;

1. Introduction
“Schelling points” are choices that are selected by people when
they choose to match others’ selections with no communication
beforehand [Sch81]. The notion of Schelling points on 3D meshes
have been studied [CSPF12], where Schelling points are points on
the surfaces of meshes that people expect will be selected by others.
In this paper, we extend this notion from points on the surfaces of
3D meshes to the meshes themselves. Instead of selecting among
points on a mesh, people will select meshes among a set of meshes.
We use the term “Schelling meshes” to describe the meshes that are
selected this way. We believe that the notion of Schelling meshes
can be another tool for 3D shape analysis.

This paper explores the ideas introduced in the unpublished
poster in this topic [PL17]. The contributions of this paper are:
• We introduce the Schelling concept for meshes as a whole.
• We collect data for the notion of Schelling meshes by applying

the Schelling concept of asking people to choose answers that

they expect others will choose. For the case of 3D meshes, we
provide participants with groups of 3D shapes and ask them to
choose any number of shapes from each group with the goal of
matching the selections made by other participants. We define
the “Schelling frequency” of a shape to be how often it is chosen
in a Schelling sense according to collected data.

• We explore the characteristics (i.e. qualitative features and quan-
titative shape descriptors) that make a shape more “Schelling”.

• We show that the notion of Schelling meshes can be learned and
learn a function to predict Schelling scores for new meshes.

• We demonstrate applications with the Schelling-guided visual-
ization and Schelling-guided search of 3D shapes.

2. Related Work
Mesh Saliency. There has been much work in computing the vi-
sual saliency of meshes, originating with “Mesh Saliency” [LVJ05].
A recent survey [LLS∗16] describes visual mesh saliency methods
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and their applications. In addition to visual saliency, a recent work
introduces the idea of computing tactile salient information for a
mesh [LDS∗16]. In this paper, we also compute a kind of saliency
in the Schelling aspect of meshes. The work that introduces the idea
of computing Schelling points on mesh surfaces [CSPF12] has in-
spired our work. In contrast to considering the Schelling concept of
mesh points, we consider the Schelling concept of the meshes as a
whole themselves.

Crowdsourcing. There has been work in applying crowdsourcing
to collect data from humans to solve various graphics problems.
This approach has been used to compute a style similarity function
for clip art [GAGH14], fonts [OLAH14], and 3D models [LHLF15,
LKS15]. In this paper, we use crowdsourcing to collect data on how
humans select Schelling meshes.

Shape Analysis. The analysis of 3D models is a well studied area
and there has been work in many different problems [XKHK17].
For example, there is work in computing 3D shape distributions
[OFCD01] and shape diameter functions [GSCO07]. This paper
explores various aspects of the “Schelling Meshes” problem.

3. Collecting Schelling Meshes Data
In this section, we describe the processes of collecting data to study
Schelling meshes. We collected 169 3D models from online sources
(e.g. ShapeNet [CFG∗15]). These include everyday objects: chairs,
tables, lamps, and a variety of abstract shapes. To display a 3D
shape on a 2D screen, we generated a repeatedly rotating view of
each shape: each full rotation takes three seconds followed by a
pause of half a second. We choose this representation rather than
multiple images as we believe this makes it easier to visualize a 3D
shape as a whole.

The Schelling concept as applied to 3D shapes requires humans
to analyze a shape relative to other shapes. For the case of find-
ing Schelling points on mesh surfaces [CSPF12], the participants
selected some number of points on a mesh surface given many
possible points to select from. Analogous to this but for meshes
as a whole, we show participants many possible shapes to select
from and ask them to select some number of them. Each partic-
ipant makes this selection based on the Schelling concept: to try
to match other participants’ responses based on what he/she thinks
others will choose. We decided to let the participants choose from
each group of shapes that belong to the same shape category (e.g.
chairs). It is possible to mix the categories but separating them is
already interesting for us to study the concept of Schelling meshes.
For each group of shapes, the order of the shapes is randomized
each time it appears as a question for a participant.

We use a crowdsourcing platform (Amazon Mechanical Turk)
to collect data. Each question shows all of our shapes for a shape
category. Each shape has a selection box for the participant to indi-
cate choosing it or not, and each selection box is independent from
the others. Participants were first given written instructions: “For
each question, your task is to choose from a selection of shapes.
Other participants will be given the same task. You should choose
shapes that will most likely match with their selections. Note that
you will not be able to communicate with other participants, and
this is intentional.” They were also told to choose at least one shape
per question. Each HIT (Human Intelligence Task or set of ques-
tions on Mechanical Turk) has four questions, one for each of our

Figure 2: The whole set of data is randomly sampled 10 times,
each time with half of the participants. The y-axis includes each
shape (from top to bottom) from the set of abstract shapes, chairs,
lamps, and tables.

shape categories. We have 49 shapes of chairs, 33 tables, 49 lamps,
and 38 “abstract” shapes. At the end of each HIT, we include an
optional text box and asked participants to provide “a few words
describing why you selected the shapes that you did.”

Since the user selections are subjective and there are no right or
wrong answers, we decided to not have any control questions to
filter out potentially bad users. In the instructions, we tried to en-
courage users to carefully work on the questions by specifying to
users that: “If you randomly choose your answers, your HIT re-
sponses will not be taken, and you will not be paid.” Furthermore,
the users are only allowed to work on our HITs if their acceptance
rate of previous HITs they have done is at least 80%. A participant
takes about 1 to 5 minutes for each HIT and we paid $0.10 for each
HIT. We collected data for 102 participants.

Checking for Data Consistency. We wish to see whether the
collected data is consistent. Since the data is subjective, there is
no right or wrong answer to compare against. Hence we check
the consistency within the collected data. The main idea is to split
the whole set of data into different groups and check whether the
groups have similar distributions.

For each of the 169 shapes, the whole set of data consists of
whether each of the 102 participants selected it. We randomly sam-
ple from this 10 times, where each time we randomly pick half (or
51) of the participant responses. As half of the responses still give
us information about all shapes, this gives 10 vectors of 169 val-
ues. Figure 2 shows a visual representation. We can see that there
is much correspondence in the horizontal rows, where some rows
are mostly blue and light blue and some rows are mostly yellow
and orange. This means that across the 10 vectors, the distributions
of the values are similar. Quantitatively, we perform a two-sample
Kolmogorov-Smirnov test for each pair (from 10) of 169 values,
and find that the p-value is not less than 0.05 in each case. This
provides evidence that these 10 vectors come from the same distri-
bution and that there is consistency in the whole set of data.

4. Results and Analysis
Schelling Frequencies. We define the concept of Schelling fre-
quency of a shape to be how likely it will be selected in a Schelling
sense. Although the Schelling concept is a relative concept, we
compute the Schelling frequency for each shape in order to give
a score for every shape. For each shape, the Schelling frequency
is the number of participants who selected it divided by the total
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Figure 3: The shapes from the categories of lamps and abstract shapes are ranked according to their Schelling frequencies.

number of participants. Figures 1 and 3 show plots of all shapes we
used in each shape category on a 1D line of Schelling frequency.

We describe the patterns that we observe in the plots. For chairs,
the shapes that stand out more or look more unique have higher
Schelling frequencies. In contrast, the more normal-looking chairs
are all clustered into one big group near the left side of the 1D
line. For tables and lamps, similarly, the shapes that stand out
have higher Schelling frequencies, while the more normal-looking
shapes are mostly clustered on the left side. For abstract shapes,
the shapes with rings or holes and the statue shapes have higher
Schelling frequencies, while those with lower Schelling frequen-
cies tend to be blobs or just some unknown shapes.

Participant Descriptions of Selected Meshes. We try to under-
stand the characteristics of Schelling Meshes from the user text
descriptions. 46 total participants gave comments. 18 participants
mentioned they made selections based on appeal, aesthetics, or
beauty. One example user comment is: “I basically selected items
that I liked and items which I thought other people would like as
well.” 16 users said they selected shapes that stand out, are differ-
ent, or catchy. For example, one user commented: “I selected the
shapes that are unusual and different from others.” A few partici-
pants said they chose familiar shapes. For example, one user com-
mented: “I hope that most of the other participants have also gone
for similar designs as they are common and easy to remember.”

Correlation with Qualitative Features. For shapes that tend to be
Schelling frequent, some characteristics that we observe that were
also mentioned by participants are that they “stand out” from the
other shapes, are unique, or are visually appealing. We collect data
to test whether these features are related to being “Schelling.” We
use the same setup on Amazon Mechanical Turk as described in
Section 3, but with different participants. For each of the above
three features, we ask users to provide a Likert score on a 1-5 scale.
We collected data for 15 users and paid $0.10 per HIT. Table 1
shows the results of correlating between the scores for each fea-
ture and the Schelling frequencies for the shapes in each category.

As expected, there are positive and significant correlations in most
cases. The abstracts category has a small negative correlation for
“stand-out”, as shapes that were selected more often in a Schelling
sense are more normal for the abstracts category.

Correlations Schelling Frequency
between Chairs Tables Lamps Abstracts
Stand-out 0.584 0.635 0.302 -0.103
Unique 0.439 0.634 0.242 0.130
Visually Appealing 0.151 0.370 0.499 0.601

Table 1: Correlations between some qualitative features and
Schelling frequencies. The values are Pearson correlation coeffi-
cients and bolded values indicate that the corresponding p-value is
less than 0.05 which means the correlation is significant.

Comparison with 3D Shape Descriptors. We compute for each
shape the histogram of some common 3D shape descriptors: D2
shape distribution [OFCD01], gaussian curvature and mean curva-
ture [SMS∗03], and shape diameter function [GSCO07]. We plot
each of these versus the shapes in Schelling order, and we visually
observe no clear correlation between each descriptor and Schelling
frequency.

5. Learning and Predicting Schelling Scores
We learn a function to predict Schelling scores for new shapes, such
that we do not need to collect Schelling-based data in general. We
use the term “Schelling score” to denote a predicted Schelling value
from the learned function, as opposed to “Schelling frequency”
which is computed directly from the collected data. The function
is a multi-layer neural network, with a 3D shape as input (or mul-
tiple views of depth images of the shape) and its Schelling score as
output. We perform data augmentation by having 100 training sam-
ples per shape, by randomly picking the multiple depth images for
each sample. For each shape category, we take all samples and per-
form 10-fold cross-validation to predict a Schelling score for each
sample. We then correlate between the set of Schelling scores and
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Schelling frequencies. The correlation coefficient for chairs is 0.82,
tables is 0.77, lamps is 0.71, and abstract shapes is 0.91. These high
values show that the notion of Schelling meshes can be learned.

Prediction with 3D Shape Descriptors. We also learn a func-
tion to take as input 3D shape descriptors and compute as output
the shape’s Schelling score. The shape descriptors are the same as
above: D2 shape distribution, gaussian curvature and mean curva-
ture, and shape diameter function. Each of these gives us a his-
togram and they are concatenated into a single vector. The function
is a multi-layer neural network and each shape provides only one
training sample. We perform 10-fold cross validation as above. The
correlation coefficients are small negative values for all four shape
categories. As we do not intend that a simple set of geometric de-
scriptors can predict Schelling scores, the results are as expected
and show that the concept of Schelling meshes is complex.

6. Applications
We demonstrate the potential uses of the concept of Schelling
meshes in some Schelling-based applications.

Schelling-based Visualization. The Schelling concept can be
used to visualize a set of shapes. For example, the plots in Fig-
ures 1 and 3 show two major clusters in the furniture shapes, with
shapes that stand out placed in the middle or right side of the spec-
trum and shapes that are more common placed in a large group on
the left side. Note that it would otherwise be difficult to place the
shapes this way, as for example common shape descriptors such as
shape distribution or curvature would not have the same effect. An
example setting where this kind of visualization would be useful is
for outlier or anomaly detection.

Schelling-based Shape Search. The Schelling concept can be
used for search and retrieval applications of 3D model datasets.
The idea is to use the Schelling frequency as a distance metric such
that the distance between two shapes is the difference between their
Schelling frequencies. Figure 4 shows an example with a query
chair that is a bit unusual. The first row shows the top-5 search
results based on Schelling frequency and they are chairs that may
be different in shape but are similar in their unusualness. The search
results with the other 3D shape descriptors are very different, and
mostly return chairs that are more similar in shape and more normal
than the query.

7. Discussion
In this paper, we introduce the notion of Schelling meshes where
the “Schelling points” are the “meshes” themselves and we study
various aspects of this problem. We hope that this paper will inspire
more work and more applications of this notion.

One limitation in the data collection is that we currently have
four shape categories. Future work can include more categories and
more shapes in each category. We can also mix the shapes in all
the categories, although the abstract shapes are somewhat mixed
already. Mixing the categories may make it more complex to study
the characteristics of Schelling meshes, but it can be more general.

Furthermore, the context of the set of shapes in each question is
important. The number of shapes and the variety of shapes within a
set that users pick from may affect the computed Schelling frequen-
cies. It would be a good future direction to study this dependency.

Figure 4: Schelling-based Shape Search. An example of searching
with a query shape (shown on left). The rows correspond to search-
ing with: Schelling frequency, histograms of gaussian curvature,
mean curvature, D2 distribution, and shape diameter function. In
each case, the top-5 closest shapes are shown.
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