
EUROGRAPHICS 2022/ J. Hasic and B. Sauvage Poster

Stroke based Painterly Inbetweening

Nicolas Barroso1†, Amélie Fondevilla2, David Vanderhaeghe1

1. IRIT, Université de Toulouse, CNRS, UT3, INP, Toulouse, France.
2. Les fées spéciales, Montpellier, France.

Abstract
Creating a 2D animation with visible strokes is a tedious and time consuming task for an artist. Computer aided animation
usually focus on cartoon stylized rendering, or is built from an automatic process as 3D animations stylization, loosing the
painterly look and feel of hand made animation. We propose to simplify the creation of stroke-based animations: from a set of
key frames, our methods automatically generates intermediate frames to depict the animation. Each intermediate frame looks
as it could have been drawn by an artist, using the same high level stroke based representation as key frame, and in succession
they display the subtle temporal incoherence usually found in hand-made animations.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Animation;

1. Introduction

We present an automatic paint method to create 2D animations in
a painterly style. Our approach focuses on the automatic creation
of intermediate frames given a set of key frames. We target profes-
sional animator artists, hence we need to provide fine control over
each frame, even those computed automatically. The artist draw key
frames using tablet with a paint simulation software. Our approach
generates intermediate frames using the same stroke representation
as in stroke based rendering [VC12], rather than keeping only the
pixels representation of the frames.

Our work is close to Chen et. al. [CZBB20] that builds strokes
of intermediate frames by rigid transformation of the strokes of key
frames. We share the same approach, but in our case, the strokes’
transformation are guided by an underlying motion field that gives
the expected motion.

The main contributions of our method are:
• the extrapolation of 3D rendered motion field to obtain a 2D mo-

tion field suitable for stroke propagation ,
• a frame generator that leverage advected strokes from up to two

key frames to produce intermediate frames.

2. Overview

Key frames refer to frame drawn, by the artist, and intermediate
frames are automatically rendered by our approach. The animation
workflow is as follow: the artist draws two or more key frames
which convey the example style and appearance to reproduce. The

† E-mail: nicolas.barroso@irit.fr

artist also provides a motion field that encompass the animation
motion. Our approach generates intermediate frames taking key
frames and motion, one frame after the other. At any time, the artist
can decide that frame do not corresponds to his wishes and mod-
ify or redraw it, this introduce a new key frame in the animation.
Intermediate frames are updated to take into account this new key
frame. Intermediate frames are surrounded by two key frames, one
before and one after along the timeline.

Key frames and intermediate frames are defined by an ordered
list of strokes. A stroke is defined by a curve represented as a poly-
line, and a set of parameters, i.e. the quantity and color of paint on
the virtual tool and the pressure of the tool on the canvas along the
curve. The final image is obtained by rendering the strokes with a
paint simulator.

3. Propagation

Our method needs a motion field for each frame of the animation
as input. This motion field can come from different sources, for
instance it can be handcrafted by the artist or computed from a
video. In practice, for the examples shown here, we start from a
simple 3D animation capturing the motion to convey and render a
motion field using Blender [Com18].

For each frame, the motion field contains two motion vectors for
each pixel of the image, one vector to next frame position of this
pixel and one vector to previous frame position. Since the motion
vectors are zeros outside of the animated object’s surface, we ex-
tend the motion information for background pixels to let the artist
paint over the background as well. To this end we compute bi-
harmonic weights as describe by Baster et. al. [BBA09]. The main

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/egp.20221010 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/egp.20221010

N. Barroso & A. Fondevilla & D. Vanderhaeghe / Stroke based Painterly Inbetweening

step of the algorithm is to build a triangular 2D mesh over the image
plane with evenly distributed vertices. Each vertex over a surface is
assigned the underlying motion vector and becomes a seed point
to the interpolation. The motion vector of vertices falling on back-
ground pixels are computed using bi-harmonic weight computed
for each vertices according to the seeds. Finally, the motion vector
of each pixels of the image plane is computed using barycentric
interpolation from the motion field of the triangular mesh.

We compute an advected stroke for each strokes of a key frame.
An advected stroke captures both key frame content, i.e. the curve,
color, and pressure variation, and the motion information, i.e. the
motion fields from stroke time to intermediate frame time. As stated
before, the stroke’s curve is described by a poly-line. The advected
curve is computed by moving each poly-line vertex according to
the underlying motion field.

4. Generation

The stroke generation consists in creating the set of stroke of an
intermediate frame given the advected strokes. To do so, we make
three straightforward assumptions:

1. The more an intermediate frame is close in time to key frame,
the more it should look like this key frame.

2. An intermediate frame should reflect the content of the key
frames before and after it.

3. The intermediate frame should have been done by hand, or at
least look likes a hand made drawing.

We propose to generate the strokes of an intermediate frame as
follow:

We select a subset of the advected strokes from the two key
frames. To go from key frame A at time ta to key frame B at
time tb = ta +N we progressively select advected strokes gener-
ated from key frame B while deselecting stroke generated from key
frame A. To ensure a complete representation of the animated ob-
ject, we choose to have at least the advected strokes from one of
the key frame fully selected at each intermediate frame. To this
end we define a selection ratio for intermediate frame at time ta + i
as min

(
1, 2(N−i)

N

)
. Selected advected strokes generated from key

frame A is 100% for intermediate frames from time ta to ta +N/2,
and decrease to 0% at time tb. The ratio of advected strokes from
key frame B is computed similarly, but reversed in time. We design
this selection scheme to ensure correct coverage in the intermediate
frames.

We use a strategy that randomizes the list of advected strokes
once for all, then selects the strokes according to the ratio follow-
ing the list order. When rendering the intermediate frame, the stroke
drawing order always follows the order in the key frames: We as-
sign a scalar value as draw time between 0 and 1 to each of the
strokes of a key frame, according to the drawing order of the artist.
The selected strokes of both key frames are sorted by this draw time
before rendering.

5. Implementation

Our C++/OpenGL prototype use Radium Engine [MRB∗21] as
main rendering engine. We use our own implementation of the paint

simulator presented by Baxter et. al. [CBWG10]. This paint simu-
lator compute bi-directional paint exchanges between the brush and
the canvas, on the GPU. Strokes advection is done on the GPU us-
ing compute shader. We extract motion fields through Blender AOV
rendering [Com18], we use triangle lib in python [She96,R∗20] and
our implementation of bi-harmonic weight interpolation to obtain
the interpolated motion field, as a pre-process.

6. Conclusion

The main limitation of the approach is about the complexity of the
motion we can depict. For instance, when two moving objects cross
each others on the same layer, some point of the poly-line of stroke
of one object will follow the other object motion. To solve this is-
sue, we think a better registration of each stroke with the underlying
motion field could be envisioned.

References
[BBA09] BAXTER W., BARLA P., ANJYO K.: N-way morphing for 2d

animation. Computer Animation and Virtual Worlds 20, 2-3 (2009), 79–
87. doi:10.1002/cav.310. 1

[CBWG10] CHU N., BAXTER W., WEI L.-Y., GOVINDARAJU N.:
Detail-preserving paint modeling for 3d brushes. In Proceedings of the
8th International Symposium on Non-Photorealistic Animation and Ren-
dering (New York, NY, USA, 2010), NPAR ’10, Association for Com-
puting Machinery, p. 27–34. doi:10.1145/1809939.1809943.
2

[Com18] COMMUNITY B. O.: Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amster-
dam, 2018. URL: http://www.blender.org. 1, 2

[CZBB20] CHEN J., ZHU X., BÉNARD P., BARLA P.: Stroke Synthe-
sis for Inbetweening of Rough Line Animations. In Pacific Graphics
Short Papers, Posters, and Work-in-Progress Papers (2020), Lee S.-h.,
Zollmann S., Okabe M., Wuensche B., (Eds.), The Eurographics Asso-
ciation. doi:10.2312/pg.20201233. 1

[MRB∗21] MOURGLIA C., ROUSSELLET V., BARTHE L., MEL-
LADO N., PAULIN M., VANDERHAEGHE D., ET AL.: Radium-
engine, July 2021. URL: https://storm-irit.github.io/
Radium-Engine/, doi:10.5281/zenodo.5101334. 2

[R∗20] RUFAT D., ET AL.: Triangle, 2020. URL: https://rufat.
be/triangle/. 2

[She96] SHEWCHUK J. R.: Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Applied Computational Geom-
etry: Towards Geometric Engineering, Lin M. C., Manocha D., (Eds.),
vol. 1148 of Lecture Notes in Computer Science. Springer-Verlag, May
1996, pp. 203–222. From the First ACM Workshop on Applied Compu-
tational Geometry. 2

[VC12] VANDERHAEGHE D., COLLOMOSSE J.: Stroke Based
Painterly Rendering. In Image and Video-Based Artistic Stylisation,
Rosin P., Collomosse J., (Eds.), vol. 42 of Computational Imaging
and Vision. Springer, London, 2012, pp. 3–21. doi:10.1007/
978-1-4471-4519-6_1. 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

24

https://doi.org/10.1002/cav.310
https://doi.org/10.1145/1809939.1809943
http://www.blender.org
https://doi.org/10.2312/pg.20201233
https://storm-irit.github.io/Radium-Engine/
https://storm-irit.github.io/Radium-Engine/
https://doi.org/10.5281/zenodo.5101334
https://rufat.be/triangle/
https://rufat.be/triangle/
https://doi.org/10.1007/978-1-4471-4519-6_1
https://doi.org/10.1007/978-1-4471-4519-6_1

