
Tetrahedral Interpolation on Regular Grids
Róbert Bán

rob.ban@inf.elte.hu
Gábor Valasek

valasek@inf.elte.hu
Eötvös Loránd University, Budapest, Hungary

Abstract
This work proposes the use of barycentric interpolation on enclos-
ing simplices of sample points to infer a reconstructed function
from discrete data. In particular, we compare the results of trilin-
ear and tetrahedral interpolation over regular 3D grids of second
order spherical harmonics (SH) light probes. In general, tetrahe-
dral interpolation only requires four data samples per query in con-
trast to the 8 samples necessary for trilinear interpolation, at the
expense of a more expensive weight computation. Our tetrahedral
implementation subdivides the cubical cells into six tetrahedra and
uses the barycentric coordinates of the query position as weights to
blend the probe data. We show that barycentric coordinates can
be calculated efficiently in shaders for our particular tetrahedral
decomposition of the cube, resulting only in simple arithmetic and
conditional move operations.

1. Introduction
In computer graphics, multivariate function representation are of-
ten represented as regular 3D grids of samples. There are several
techniques to reconstruct a continuous function from the stored
data. The standard method is trilinear interpolation that uses 8
samples and 7 linear interpolations to compute a filtered value.
An alternative approach is to subdivide the regular grid cells into
tetrahedra and use the barycentric coordinates of the query po-
sition to weight the data of the vertices of the smallest enclosing
tetrahedron. Kasson et al. [1] proposed a similar solution for color
conversion. The main advantage compared to trilinear interpo-
lation is the reduced memory bandwidth. The contribution of
our work is two-fold: (i) we propose to use the method in light
probe interpolation and (ii) we present an efficient algorithm for
the barycentric weight calculation.

2. Barycentric interpolation
Barycentric interpolation on an n-dimensional simplex is a linear combination of the vertices where
the weights sum to 1. We can compare this to tensor interpolation which is defined on an n-cube as
a tensor product of linear interpolations – also called bilinear and trilinear interpolation in 2 and 3
dimensions, respectively.
For barycentric interpolation, the cube is subdivided into a disjoint union of simplices. This subdivision
is not unique. We decided to use the one shown in the figure in 3D so that we can use a simplified
barycentric weight computation algorithm.
Note that while barycentric and tensor interpolations yield different results, one is not necessarily
better than the other. Nevertheless, while both produce C∞ reconstructed functions within their
domains (i.e. tetrahedra and boxes), in general, the continuity of the inferred signal is only C0 along
the connections of these domains and a tetrahedral decomposition results in more of these boundaries.

3. The algorithm
To compute the barycentric coordinates of a query point, first we have to identify which tetrahedron contains it, then compute the
barycentric coordinates with respect to the vertices of that tetrahedron. The calculations are done in normalized cell coordinates
(x = (x, y, z) ∈ [0, 1]3). The enclosing tetrahedron can be found by ordering the coordinates, since the six tetrahedra are

z ≤ y ≤ x, y ≤ z < x, z < x ≤ y, x ≤ z < y, y < x ≤ z, x < y < z. (1)

Let us derive the weights for the first tetrahedron, highlighted with red in the figure. The vertices are A000, A111, A100, and A110, where
the coordinates of Aijk is [i, j, k]T ∈ {0, 1}3. The two equations defining the weights are[

x y z
]T = w0

[
0 0 0

]T + w1
[
1 1 1

]T + w2
[
1 0 0

]T + w3
[
1 1 0

]T , and (2)
1 = w0 + w1 + w2 + w3. (3)

The solution is w0 = 1 − x, w1 = z, w2 = x − y, w3 = y − z. The weights in the remaining five tetrahedra can be calculated similarly
but we can write this more concisely. Let a ≤ b ≤ c, where a = min(x, y, z), c = max(x, y, z) and b the remaining coordinate. Then

w0 = 1− c, w1 = a, w2 = c− b, w3 = b− a. (4)

The vertices are in a similar order: A000 and A111 are always the first two, w2 corresponds to the remaining vertex closer to A000 and
w3 to the vertex closer to A111.
Our GLSL implementation is shown on the left. The function returns the barycentric weights and the 3D indices of the unknown vertices
of the enclosing tetrahedron. The compiled code only uses conditional moves instead of branches, making it optimal for GPUs.

4. Results

AMD RX 5700 NVIDIA 2080
scal./samp. 1 4 10 20 1 4 10 20

nearest 0.21 0.27 0.29 0.55 0.37 0.44 0.52 0.64
trilinear 0.73 0.99 2.30 4.42 0.50 0.79 1.40 2.37
tetrahedral 0.58 0.72 1.13 2.25 0.69 0.81 1.05 1.58

We compared trilinear and barycentric interpolation of light probes.
Probes represent irradiance as second order SH functions containing
3× 9 = 27 scalars. The bunny figure shows 8 random colored probes
with trilinear (left) and tetrahedral (right) interpolation. The table
on the right compares nearest point sampling, manual trilinear inter-
polation, and tetrahedral interpolation of 2 million root searches on
a 3D function represented by polynomials consisting of 1, 4, 10, and 20 scalars per sample in IEEE binary32 format, in 3D textures. The
numbers are in milliseconds.
On both architectures, tetrahedral interpolation increases performance considerably for larger sample footprints. It even retains this gain
compared to hardware accelerated trilinear interpolation from about 20 scalars per sample.

5. Conclusion
In summary, this work justifies the use of tetrahedral interpolation in probe light blending and provides an optimized algorithm for the
weight calculations. We showed qualitative comparisons in 2D and 3D tests.

[1] James M. Kasson, Wil Plouffe, and Sigfredo I. Nin. Tetrahedral interpolation technique for color space conversion. In Ricardo J. Motta and
Hapet A. Berberian, editors, Device-Independent Color Imaging and Imaging Systems Integration, volume 1909, pages 127 – 138. International
Society for Optics and Photonics, SPIE, 1993.

Acknowledgement EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies – The Project is
supported by the Hungarian Government and co-financed by the European Social Fund.
Supported by the ÚNKP-20-3 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National
Research, Development and Innovation Fund.
We would like to thank Visual Concepts for providing the AMD GPU used in the tests.


