EUROGRAPHICS 2021/ J. Bittner and M. Waldner

Poster

Tetrahedral Interpolation on Regular Grids

Robert Ban

and Gébor Valasek

Eo6tvos Lorand University, Hungary
{rob.ban,valasek } @inf.elte.hu

Ol

Figure 1: Comparison of trilinear (left) and tetrahedral (middle) interpolation between eight spatially fit second order spherical harmonics (SH) probes
arranged in a cube around the Stanford bunny. The same region is zoomed in on left and center, to show the visual difference. The absolute difference image
(right) is amplified 10-fold. Note how the contribution of the individual probes is different in the two methods, as further illustrated in Figure 3.

Abstract

This work proposes the use of barycentric interpolation on enclosing simplices of sample points to infer a reconstructed function

from discrete data. In particular, we compare the results of trilinear and tetrahedral interpolation over regular 3D grids of
second order spherical harmonics (SH) light probes. In general, tetrahedral interpolation only requires four data samples per
query in contrast to the 8 samples necessary for trilinear interpolation, at the expense of a more expensive weight computation.
Our tetrahedral implementation subdivides the cubical cells into six tetrahedra and uses the barycentric coordinates of the
query position as weights to blend the probe data. We show that barycentric coordinates can be calculated efficiently in shaders
for our particular tetrahedral decomposition of the cube, resulting only in simple arithmetic and conditional move operations.

CCS Concepts

* Computing methodologies — Rendering; Shape modeling; * Mathematics of computing — Continuous functions;

1. Introduction

In computer graphics, multivariate function representation are often
represented as regular 3D grids of samples. There are several tech-
niques to reconstruct a continuous function from the stored data.
The standard method is trilinear interpolation that uses 8 samples
and 7 linear interpolations to compute a filtered value.

An alternative approach is to subdivide the regular grid cells into
tetrahedra and use the barycentric coordinates of the query position
to weight the data of the vertices of the smallest enclosing tetrahe-
dron. Kasson et al. [KPN93] proposed a similar solution for color
conversion. The main advantage compared to trilinear interpolation
is the reduced memory bandwidth. The contribution of our work is
two-fold: (i) we propose to use the method in light probe interpo-
lation and (ii) we present an efficient algorithm for the barycentric
weight calculation.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/egp.20211031

2. Barycentric interpolation

Barycentric interpolation on an n-dimensional simplex is a linear
combination of the vertices where the weights sum to 1. We can
compare this to tensor interpolation which is defined on an n-cube
as a tensor product of linear interpolations — also called bilinear and
trilinear interpolation in 2 and 3 dimensions, respectively.

For barycentric interpolation, the cube is subdivided into a dis-
joint union of simplices. This subdivision is not unique. We decided
to use the one shown in Figure 2 in 3D so that we can use a simpli-
fied barycentric weight computation algorithm (see Section 3).

Note that while barycentric and tensor interpolations yield dif-
ferent results, see Figure 3, one is not necessarily better than the
other. Nevertheless, while both produce C* reconstructed func-
tions within their domains (i.e. tetrahedra and boxes), in general,
the continuity of the inferred signal is only c? along the connec-
tions of these domains and a tetrahedral decomposition results in
more of these boundaries.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-8266-7444
https://orcid.org/0000-0002-0007-8647
https://doi.org/10.2312/egp.20211031

14 R. Bdn, G. Valasek / Tetrahedral Interpolation on Regular Grids

Ar1o

Figure 2: Cube decomposed into six congruent tetrahedra.

3. The algorithm

To compute the barycentric coordinates of a query point, first we
have to identify which tetrahedron contains it, then compute the
barycentric coordinates with respect to the vertices of that tetra-
hedron. The calculations are done in normalized cell coordinates
(x=(x,y,2) €0, 1]3). The enclosing tetrahedron can be found by
ordering the coordinates, since the six tetrahedra are (see Figure 2)

z<y<ux, y<z<ux, 7<x<y,

x<z<y, y<x<z x<y<z (H

Let us derive the weights for the first tetrahedron, highlighted
with red in Figure 2. The vertices are Aggg, A111, A100, and Aq1g,
where the coordinates of A; j is [Lj,k]T € {0, 1}3. The two equa-
tions defining the weights are

0 1 1 1

X
y| =wo |0 +wy |1]| +w2 |O] +w3 |1],and 2)
Z 0 1 0 0

I =wo+w; +wy+ws. 3)

The solution is wy =1 —x, wy =z, wp =x—y, w3 =y —2z The
weights in the remaining five tetrahedra can be calculated similarly
but we can write this more concisely. Let a < b < ¢, where a =
min(x,y,z), ¢ = max(x,y,z) and b the remaining coordinate. Then

wo=1-—c, w| =a, wy =c—b, wi=b—a. (4)

The vertices are in a similar order: Aggg and Ay are always the
first two, wy corresponds to the remaining vertex closer to Aggg and
ws to the vertex closer to Ajqj.

Listing 1 shows our GLSL implementation. The function returns
the barycentric weights and the 3D indices of the unknown vertices
of the enclosing tetrahedron. The compiled code only uses condi-
tional moves instead of branches, making it optimal for GPUs.

Listing 1: Barycentric calculation implementation in GLSL

void barycentricWeight (vec3 r, out vecd bary,
out ivec3 vert2, out ivec3 vert3) {

vert2 = ivec3(0,0,0); vert3 = ivec3(1,1,1);
bvec3 ¢ = greaterThanEqual (r.xyz, r.yzx);
bool c_xy = c.x, c_yz = Cc.y, C_ZX = C.Z;
bool c_yx =!c.x, c_zy =!c.y, c_xz =!c.z;
bool cond; vec3 s;

#define ORDER(X,Y,Z)
cond = c_ ## X ## Y s& c_ ## Y ## z;
s = cond ? r.X ## Y ## Z : s;
vert2.X = cond ? 1 : vert2.X;

- -

Figure 3: Comparison of barycentric (top row) and bilinear (bottom row)
interpolation between four colors. The subfigures show the final result of
the process (left column) as well as the individual contribution (i.e. color

multiplied weight) of the top-left, top-right, and bottom-left data points in
red, green, blue, respectively on the second to fourth columns.

vert3.Z = cond ? 0 :
ORDER (x,Vy, z)
ORDER (z,y, X)
bary =

vert3.Z;

ORDER (%, Z,VY) ORDER (2, x,VY)

ORDER (y, z, X) ORDER (y, X, z)
vecd4(l - s.x, s.z, S.Xx — s.Y, S.Yy — s.z);

4. Results

We compared trilinear and barycentric interpolation of light probes.
Probes represent irradiance as second order SH functions contain-
ing 3 X 9 = 27 scalars. Figure 1 shows an example rendering of the
Stanford bunny.

The table below compares nearest point sampling, manual tri-
linear interpolation, and tetrahedral interpolation of 2 million root
searches on a 3D function represented by polynomials consisting
of 1, 4, 10, and 20 scalars per sample in IEEE binary32 format, in
3D textures. The numbers are in milliseconds.

AMD RX 5700 NVIDIA 2080
scalars per sample 1 4 10 20 1 4 10 20
nearest 0.21 0.27 0.29 0.55 0.37 0.44 0.52 0.64
trilinear 0.73 0.99 2.30 4.42 0.50 0.79 1.40 2.37
tetrahedral 0.58 0.72 113 2.25 0.69 0.81 1.05 1.58

On both architectures, tetrahedral interpolation increases perfor-
mance considerably for larger sample footprints. It even retains this
gain compared to hardware accelerated trilinear interpolation from
about 20 scalars per sample.

5. Conclusions

In summary, this work justifies the use of tetrahedral interpolation
in probe light blending and provides an optimized algorithm for the
weight calculations. We showed qualitative comparisons in 2D and
3D tests.

References

[KPN93] KASSON J. M., PLOUFFE W., NIN S. I.: Tetrahedral interpola-
tion technique for color space conversion. In Device-Independent Color
Imaging and Imaging Systems Integration (1993), Motta R. J., Berberian
H. A., (Eds.), vol. 1909, International Society for Optics and Photonics,
SPIE, pp. 127 -138. do1:10.1117/12.149035. 1

Acknowledgement EFop-3.6.3-VEKOP-16-2017-00001: Talent Management in Au-
tonomous Vehicle Control Technologies — The Project is supported by the Hungarian Government
and co-financed by the European Social Fund.

Supported by the UNKP-20-3 New National Excellence Program of the Ministry for Innovation and
Technology from the source of the National Research, Development and Innovation Fund.

We would like to thank Visual Concepts for providing the AMD GPU used in the tests.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://doi.org/10.1117/12.149035

