Introduction

We pose landmark detection as an image translation problem. We capture two sets of unpaired marked (with paint) I^M_{real} and unmarked videos I^U_{real}.

We then use a generative adversarial network and cyclic consistency to predict deformations of landmark templates that simulate markers on unmarked images until these images are indistinguishable from ground-truth marked images.

Our novel method does not rely on manually labeled priors, is temporally consistent, and image class agnostic.

Related Works

Off-the-shelf landmark detection methods suffer inconsistencies due to ambiguity in manual landmark annotation as well as temporal imperfections of frame-to-frame labeling, as landmarks are difficult to define precisely [1, 2].

As a result, landmark detection models suffer from temporal jitters, which have been addressed by a boundary-focused approach [1] as well as optical flow [2].

Method: Generative Landmarks

We train a landmark deformation network that takes-in unmarked images and predicts landmark deformations, learning from the marked images in an unsupervised fashion. Rather than predicting these landmarks directly, we use a template with predefined spatial landmarks.

The network intrinsically predicts landmark deformations that are applied as offsets to the template and rendered onto the unmarked images.

References
