Tutorial: Tensor Approximation in Visualization and Computer Graphics

Renato Pajarola, Susanne K. Suter, and Roland Ruiters
Introduction

• Renato Pajarola
 ‣ Professor, Visualization and MultiMedia Lab, University of Zürich
• Susanne K. Suter
 ‣ Postdoc, Visualization and MultiMedia Lab, University of Zürich
• Roland Ruiters
 ‣ PhD Student, Computer Graphics Group, University of Bonn
Overview

- **Part 1:** Introduction of the TA framework
 - Tucker and CANDECOMP/PARAFAC (CP) tensor decompositions
 - Rank-reduced tensor approximations, ALS methods
 - Useful TA properties and features for data visualization
 - Frequency analysis and DCT equivalence

- **Part 2:** Applications of TA in scientific visualization
 - Implementation details of tensor decomposition and tensor reconstruction algorithms
 - Practical examples (MATLAB, vmmlib)
 - TA-based volume visualization

- **Part 3:** Applications of TA in rendering and graphics
 - Examples for multidimensional datasets in rendering and graphics applications
 - Influence of data organization, parametrization and error metric
 - Clustering and sparsity
 - Processing irregular and sparse input samples
Motivation

• Compact representation of large scale data sets important in many areas of scientific visualization and computer graphics

• Use a mathematical framework for the decomposition of the input data into bases and coefficients

• Key features of a compact data representation:
 ‣ effective decomposition
 ‣ good data reduction
 ‣ fast access and reconstruction

• Tensor approximation methods have shown to be a powerful and promising tool
Decomposition Bases

- Decompositions into bases and weight coefficients can either use a set of pre-defined fixed bases, or computed bases.
- Pre-defined bases are given a priori, often represent some form of frequency analysis, and the decomposition may be fast to compute.
 - e.g. Fourier, Discrete Cosine and Wavelet Transforms.
- Computed bases, learned from the input data, may provide a better data fit, approximation and fast reconstruction.
 - e.g. SVD, PCA and Tensor Decomposition.
Tensor Approximation – TA

- TA: Generalization of low rank SVD matrix approximation to higher order data collections
- Data analysis, bases computation via tensor decomposition followed by rank-reduced reconstruction and approximation
 - data reduction achieved through reduced bases dimensionality

\[\mathbf{A} = \mathbf{B} \times \mathbf{U}^{(1)} \times \mathbf{U}^{(2)} \times \mathbf{U}^{(3)} \]

Tucker tensor decomposition