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Abstract
Nowadays, there are multiple available range scanning technologies which can capture extremely detailed models of real-
world surfaces. The result of such process is usually a set of point clouds which can contain billions of points. While these point
clouds can be used and processed offline for a variety of purposes (such as surface reconstruction and offline rendering) it is
unfeasible to interactively visualize the raw point data. The most common approach is to use a hierarchical representation to
render varying-size oriented splats, but this method also has its limitations as usually a single color is encoded for each point
sample. Some authors have proposed the use of color-textured splats, but these either have been designed for offline rendering
or do not address the efficient encoding of image datasets into textures. In this work, we propose extending point clouds by
encoding their color information into textures and using a pruning and scaling rendering algorithm to achieve interactive
rendering. Our approach can be combined with hierarchical point-based representations to allow for real-time rendering of
massive point clouds in commodity hardware.

CCS Concepts
•Computing methodologies → Rendering; Texturing; Point-based models; Image-based rendering;

1. Introduction

State-of-the-art Lidar equipment can acquire more than one million
samples per second and several billion points per scan [CACB17].
The high resolution and extremely accurate depth measurements
of terrestrial Lidar scanners make them very suitable for digitizing
buildings and sites in archaeology, cultural heritage and architec-
ture applications. Unfortunately, the resulting high-resolution point
clouds do not fit in main memory and cannot be rendered without
resorting to out-of-core acceleration techniques only available in
high-end point-based rendering tools [MRVVM∗15].

Acceleration techniques commonly include the use of GPU for
splat rendering [PJW12], visibility culling [RL00,KTB07], and hi-
erarchical representations to quickly retrieve suitable points at dif-
ferent levels of details [RL00, GM04, GEM∗13, RDD15, DRD18].
Although these methods do scale well with huge point datasets,
maintaining an ideal one-sample per pixel ratio during interactive
navigation is extremely challenging due to the out-of-core nature of
these algorithms. When exploring buildings and urban models (in
contrast to e.g. a single digitized statue), fast camera movements
during navigation might require loading a substantial amount of
point data from disk/network, which adds latency and often results
in some frames showing point splats covering large screen regions.
Since most point-based rendering approaches store a single color
per point sample, high-frequency color details (which are key in

many urban models) are not reproduced until all the required point
data has been moved to main memory.

In this paper we present a hierarchical point-based rendering
method that employs textured splats at varying resolution as ren-
dering primitive. The use of textured splats is not new, but existing
approaches using color textures [SSLK13, BLMD18] do not target
real-time rendering, but the off-line creation of high-quality views
for image-based localization.

The key ingredient of our approach is a representation of the
color data for each individual scan. Combined with a hierarchical
representation of the point cloud geometry, our approach allows
for efficient and scalable rendering of point clouds through textured
splats. The major benefit of textured splats is that they allow render-
ing frames with much less (and larger) primitives while still main-
taining high-quality images and preserving high-resolution image
details. As a consequence, textured splats allow for more aggres-
sive level-of-detail simplification with little impact on image qual-
ity. Since texture coordinates can be computed directly from point
sample coordinates, our approach can be combined with most hi-
erarchical point-based rendering approaches. The texture encoding
assumes high-resolution 3D scans are available from a few scanner
locations (a typical situation when acquiring buildings with terres-
trial Lidar equipment).

The rest of the paper is organized as follows. Section 2 reviews
previous work on point-based rendering. Section 3 describes our
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approach, detailing the encoding of color data through panoramic
images suitable for textured splats. We present results with a mas-
sive Lidar point cloud in Section 4 and discuss future research av-
enues in Section 5.

2. Previous Work

Point-based representations have been gaining popularity in recent
years due to a variety of reasons. For example, they offer more
flexibility for representing surfaces, in comparison with meshes,
and they are also the natural output of both Lidar and Structure-
from-Motion based scanning technologies. One of the first ren-
dering approaches for point clouds was proposed by Zwicker et
al. [ZPVBG01]. It consists on rendering one oriented surface splat
for each point. The overlapping of the splats, along with a carefully
designed anti-aliasing scheme, guarantees a hole free visualization.
Rosenthal and Linsen [RL08] introduced an alternative approach
that renders the point cloud first and then filters the resulting color,
depth and normal channels to fill any holes left. The result is reli-
able enough that edge detection algorithms can extract silhouettes
and feature lines.

To optimally render a point cloud using surface splatting, it is
necessary to perform a sub-sampling process first. The algorithm
of Wu and Kobbelt [WK04] applies this transformation taking into
account the particular geometrical properties of circular and ellip-
tical splats. A global optimization scheme computes the minimum
set of splats necessary to cover the surface completely, ensuring
that the approximation error is below a threshold provided by the
user.

Point clouds resulting from scans cannot be rendered instantly,
since many algorithms assume a certain point density or the avail-
ability of a correct normal computed at each point. Wimmer and
Scheiblauer [WS06] proposed a technique for massive point model
visualization by combining two data structures. First, a memory op-
timized version of sequential point trees allows rendering point sets
sequentially on the GPU. Second, nested octrees are used to achieve
an out-of-core solution. The combined result allows for the direct
exploration of a point cloud, without the need for post-processing.

Preiner et al. [PJW12] proposed another visualization method
based on splats interactively generated on the GPU. It relies on a
fast GPU-based algorithm for estimated tangent planes and they
claim they are able to process point clouds of about 10 million
points. However, nowadays technology can easily acquire point
clouds with one or two order of magnitude more points. For this
reason, hierarchical rendering and visibility culling techniques are
needed. Katz et al. [KTB07] present their HPR operator which is
able to determine the visibility of points, to avoid rendering oc-
cluded ones.

However, most authors have focused on out-of-core hierarchi-
cal approaches for rendering. QSplat, introduced by Rusinkiewicz
and Levoy [RL00], starts by pre-computing a bounding sphere tree
which is stored out-of-core. This structure is used at run time to
produce points at different levels of details as well as to perform
visibility queries. Follow-up approaches focus on further exploiting
GPU capabilities for hierarchical point rendering. Layered point
clouds [GM04], consist on rendering by refining multi-resolution

blocks guided by the contribution of each point measured as their
projected size. Finally, Goswami et al. [GEM∗13] explore using
multi-way kd-trees as the hierarchical structure for managing the
point cloud information.

Nevertheless, all of the previous approaches are designed to ac-
curately reproduce the geometric properties of point clouds at ren-
der time, but do not take into account other properties such as color.
When points representing lower levels of detail are rendered as
splats, they are rendered with uniform properties across the sur-
face of the splat (e.g. with an uniform color), even if the original
signal had a higher frequency. Because of this, there is also a fam-
ily of image-based rendering approaches which exploit the implicit
2.5D structure of point clouds that have been captured using Li-
dar technology. Benedetto et al. [DBGBR∗14] propose exploring
virtual environments by moving between specific points where a
panoramic view has been generated. When moving between points,
a pre-computed video sequence is played emulating the motion.
More recently, Comino et al. [CACB17] proposed converting point
clouds to 360-degree panoramas encoding properties such as ge-
ometry, normals and color. These are fed into tessellation shaders
which generate the scene geometry to allow interactive inspection.
However, tessellation is fixed at a certain level and is not refined for
closer views. This means that part of the geometric information is
lost.

A few recent works do use textured splats [SSLK13, BLMD18]
but to the best of our knowledge these approaches do not pursue
real-time rendering but the generation of high-quality views. Sib-
bing et al. [SSLK13] present different point-based rendering tech-
niques for terrestrial laser scan data. Their major goal is not real-
time point-based rendering, but the creation of high-quality views
for image-based localization. The authors combine point data from
a few laser scan locations with large collections of registered im-
ages to create new views from which local image features can be
extracted and matched to those of the query image. Since local fea-
ture extractors used for correspondences (e.g., SIFT) are only toler-
ant to small perspective changes, new views substantially improve
3D localization results. Their main contribution is the use of image
completion techniques to fill holes and better preserve color gradi-
ents.

In the same spirit, Bui et al. [BLMD18] also target the cre-
ation of high-quality images from co-registered high-resolution
photographs. They use these photographs to train a deep neural
network for super-resolution. The proposed network takes a splat
rendering image as input and generates the corresponding high-
quality image, which can be used for higher recognition rates in
image-based localization. Unfortunately, the generator network is
quite deep (up to 80 layers) and cannot be used to render all frames
in real-time. For real-time navigation, they suggest to do super-
resolution on several synthetic views selected manually, and use
these views as textures for textured splats, but no further details are
provided. None of these approaches do consider level-of-details nor
the amount of memory required for storing the image datasets.

Arikan et al. [APS∗14] also address the problem of rendering
points clouds accompanied by a set of high-resolution photographs.
Their approach generates meshes by rendering point-based depth
maps from the image cameras. Each of the meshes is textured by
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Figure 1: Stretch-invariant polar capped color map for a given point cloud.

all the input images. Since meshes overlap, for each screen pixel
the algorithm has to decide which fragment should be shown.

In our approach, we combine the panorama representation pro-
posed by Comino et al. [CACB17] with an adaptive splat rendering
algorithm, achieving both color and geometry accuracy. We employ
a very simple, but effective, hierarchical representation, although
our approach could be combined with any of the pre-existing hier-
archical out-of-core rendering schemes.

3. Our Approach

3.1. Representation of point locations and color data

We consider that a given scene S has been scanned from n dif-
ferent locations s1, ...,sk, ...,sn yielding point clouds C1, ..,Ck, ..Cn.
We also assume that there is an available set of geometric transfor-
mation matrices resulting from the 3D registration of these point
clouds.

A spherical representation P of a point cloud Ck, generated
from sk, is always a valid discrete representation of Ck because
occlusions in P are identical to occlusions in Ck. Comino et
al. [CACB17] propose to represent a point cloud using three im-
ages (color, normal and depth maps) where each pixel represents
the cylindrical plane-chart projection of a point. This projection is
similar to the one used by terrestrial Lidar scanners to determine the
ray direction of the infrared pulses used for depth measurements.
However, the biggest flaw of this projection is that the sample den-
sity is not uniform across the unit sphere.

Let ψ, θ represent latitude/longitude angles on a unit sphere. Fol-
lowing Snyder et al. [SM01], we propose storing the color infor-
mation associated to each point cloud Ck by generating one stretch-
invariant polar capped map. This map has the advantage of mini-
mizing the distortion across every region of the unit sphere, obtain-
ing a more uniform sample density. In particular, we use a plane-
chart cylindrical projection for points whose spherical coordinate
ψ is in the range of [−π/4,π/4] and two azimuthal equidistant po-
lar caps, one for points with ψ ∈ [−π/2,−π/4) and another one
for points with ψ ∈ (π/4,π/2], as shown in Figure 1. One polar
capped map tk is generated for each scan location sk, which is used
as texture for point cloud Ck. Hence, a total of n texture maps are
computed.

We define a forward map from texture coordinates (s, t) to 3D

points on the unit sphere as follows. Let ub be 6s−0.5, vb be t−0.5

and rb =
√

u2
b + v2

b. For the bottom cap (s ≤ 1/6), the direction
(x,y,z) encoded by a texel (s, t) is given by


x = (ub/rb)sin(πrb/2)
y = (vb/rb)sin(πrb/2)
z =−cos(πrb/2)

(1)

Similarly, for the top cap (1/6 < s ≤ 2/6) we define ut = 6s−
1.5, vt = t− 0.5 and rt =

√
u2

t + v2
t , and get the direction (x,y,z)

by


x = (ut/rt)sin(πrt/2)
y = (vt/rt)sin(πrt/2)
z = cos(πrt/2)

(2)

Finally, for the band across the Equator (s > 2/6), we set ψ =
tπ/2−π/4, θ = (1.5s−0.5)2π and get the direction using a simple
equirectangular projection:


x = cos(ψ)cos(θ)
y = cos(ψ)sin(θ)
z = sin(ψ)

(3)

Given a 3D point p ∈Ck, we can compute its texture coordinates
by using the inverse mapping. Let (x̄, ȳ, z̄) be the vector obtained
by normalizing the vector from sk to p, and let ψ be arcsin(z̄). The
texture coordinates for P can be computed as follows.

For the bottom cap (ψ≤−π/4), r = 2πarccos(z̄) and

{
s = (x̄r/sin(πr/2)+0.5)/6
t = (ȳr/sin(πr/2)+0.5)/6

(4)
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Similarly, for the top cap (ψ > π/4)

{
s = (x̄r/sin(πr/2)+1.5)/6
t = (ȳr/sin(πr/2)+0.5)/6

(5)

Finally, for the Equator (−π/4 < ψ <= π/4) we set θ =
arctan(ȳ, x̄) and get the texture coordinates using

{
s = (θ/(2π)+0.5)/1.5
t = (ψ+π/4)/(2π)

(6)

As opposed to Comino et al. [CACB17], where both geometry
and color data is encoded in texture maps, we propose storing ge-
ometry as regular (x,y,z) data and use a texture map only for color
data. A first advantage is that keeping the original point coordinates
we avoid the precision loss due to using 16 bits to encode depth in
an image format such as PNG. On the other hand, storing color in-
formation as texture maps we are able to greatly reduce the disk
memory footprint. Lossy image compression formats can be used
to achieve further compression, since usually color compression
artifacts are tolerable. Note that texture coordinates are not stored
since they can be computed directly from the point coordinates at
run time, which in turn makes our approach orthogonal to hierar-
chical arrangements of point samples.

Another advantage of using textures to store color data is that
users can use image processing software to edit them (e.g. remov-
ing advertising from a building facade photograph). Otherwise, it is
a rather tedious task to edit the color directly in the point cloud. The
biggest advantage of using this approach though is that we are no
longer constrained to using a single color across a splat rendering
primitive. The fragment shader can compute different texture coor-
dinates for each fragment generated by the splat, greatly improving
the rendering results.

Besides RGB color data, the texture might also include an al-
pha mask indicating the existence of a sample along the scanning
direction associated to each pixel. This is specially convenient in
outdoor scenes for which some scanning directions have no depth
measurement. The alpha channel allows to trim the shape of large
splats to match the shape of the underlying point samples.

3.2. Hierarchical Rendering

Many of the existing hierarchical rendering algorithms for point
clouds are based on traversing out-of-core hierarchical structures.
The level of detail for a point is usually chosen by determining
its contribution measured by its screen-projected area. Neverthe-
less, interactively exploring large areas potentially means loading
and unloading a large number of points from disk to GPU. In this
scenario, rendering a different element (raw point or higher level
representative) for each screen pixel can become too expensive.

We design our algorithm taking inspiration from the field of
botanical rendering. Rendering leaves in botanical trees is strongly
connected to rendering points. Both elements are unorganised, ren-
dered in large amounts, and greatly impact the realism of a scene.

Figure 2: Renders of a point cloud using simple splats (left) and
our method (right). We are using a tenth of the original points, in-
creasing the splatting radius to fill the holes. Regular splats appear
completely flat and the high frequency detail is lost. Our method
assigns a texture coordinate to each fragment and thus we are able
to reproduce the high frequency features for both color (rows 1
through 3) and normal data.
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There is a family of methods [CHPR07, NPDD11] which aim at
reducing the rendering cost of leaves by pruning part of them and
scaling the rest to preserve the overall appearance.

When using any of these hierarchical point-based rendering al-
gorithms, some of the raw points are replaced by higher level rep-
resentatives. This would be the equivalent to pruning. Moreover,
if the resulting set of elements is not enough to generate enough
fragments to cover the whole surface, then we would upscale the
splats, which would be the equivalent to scaling. Nevertheless, us-
ing regular scaled splats yields poor results, as the splat properties
(color, normal) are constant across the splat surface (Figure 2, left
column). We propose using our point cloud representation, with as-
sociated color maps, as a tool to improve any of the existing hierar-
chical rendering approaches and to enable more aggressive pruning
of the cloud.

We propose drawing each point p ∈Ck as an oriented quad. The
fragment shader receives its interpolated position and the corre-
sponding position sk. Per-fragment texture coordinates are com-
puted using Equations 4-6. Texture coordinates can be used to re-
trieve fragment properties such as color and normals. The alpha
channel of the color texture can be used to discard fragments out-
side the silhouette of the model and the distance to the point center
can be used to generate circular or ellipsoidal splats. Figure 2 shows
a comparison of our algorithm against using flat splats. We can re-
cover high frequency color and normal detail rendering a smaller
number of samples with larger radii.

4. Results

In order to validate our method, we implemented a very simple hier-
archical rendering algorithm for point clouds. We start by generat-
ing a discretization of our scene using a uniform grid. The resulting
cells are stored out-of-core. We also produce multiple simplified
versions for each cell by decimating the number of points by a fac-
tor of 10 for each decreasing level of detail. These are kept in main
memory.

When interacting with the application, we traverse the cells over-
lapping the view frustum in front-to-back order (to benefit from
early depth culling) and we dynamically select the most appropri-
ate level of detail for each cell, based on the distance from the cell
center to the view point. We manually tune the scaling factors for
the points at each level of detail in order to achieve visually pleasing
results. Despite the use of textured splats already leads to highly-
detailed rendered images, when the interaction is stopped and the
view point is held still for a few seconds, we load from disk and
display the cells containing the original points.

For each point, we render a textured splat and we use the alpha
channel of the texture to preserve its original silhouette.

We have tested our algorithm on an Ubuntu Workstation with an
Intel Core i7-4790K CPU and a GeForce GTX 970. The test dataset
included 31 different 3D scans from a singular XIX century mar-
ket. This market has an extent of 5,214 m2 on a city block of about
15,876 m2. A Leica ScanStation P20 was used to digitize key parts
of the building. The raw dataset included 31 ASCII files containing
information on 3.487.095.733 points and requiring a total of 157.3

GB. For our tests we used the point clouds acquired from 4 dif-
ferent outdoor locations, amounting to roughly 150 million points.
We chose the outdoor scans to better illustrate the preservation of
fine silhouette details when large splats are trimmed with the alpha
mask. Using the interactive inspection mode, we achieve framer-
ates of up to 600 fps for far-away views and from 300 to 600 fps
for closer ones. See supplemental material for a video recorded in
real-time. When the interaction is stopped it can take several sec-
onds to load and display the finest level of detail. Fortunately, the
use of textured splats makes this last refinement less critical than
with classical single-colored splats.

Figure 3 shows multiple renders of this scene, with different res-
olution levels. Note that even for the level with the most aggres-
sive pruning (keeping one point out of one hundred samples) the
final render quality is good for areas with an approximately uni-
form sampling density.

A video showing a demo of the application can be found
in https://www.cs.upc.edu/~virtual/CEIG19/
video.mp4

5. Conclusions and future work

We have presented a technique for rendering massive point cloud
models using a multiresolution approach. Our method encodes
color information (and possibly other properties) in panoramic tex-
tures. This allows selecting a point cloud subset such that the num-
ber of points displayed is much smaller than the number of frag-
ments covered by the model. The scaling of these points eliminates
the holes that could occur between points, while the textures help to
represent the color information that would be lost when discarding
points for rendering. Consequently using our textured splats results
in a sharper image than that obtained by combining a greater num-
ber of simple splats.

A possible line of future work would be to research different
methods for splat generation. The way points are divided into clus-
ters for simplification affects the shape of the final splats. Because
of this, we plan to test other strategies for generating clusters com-
paring their effects in the visualization of the model.
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