High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

Adaptive Scalable Texture Compression

J. Nystadl, A. Lassen', A. PomianowskiZ, S. Ellis' and T. Olson'

TARM

2AMD

Abstract

We describe a fixed-rate, lossy texture compression system that is designed to offer an unusual degree of flexibility
and to support a very wide range of use cases, while providing better image quality than most formats in common
use today. The system supports both 2D and 3D textures, at both standard and high dynamic range, at bit rates
ranging from eight bits per pixel down to less than one bit per pixel in very fine steps. At any bit rate, texels can
have from one to four color components. The system’s flexibility results from a number of novel features. Color
spaces and weights are represented using an encoding scheme that allows flexible allocation of bits between
different types of information. The system uses bilinear interpolation to derive color space coordinates for a texel
from sparse samples, and uses a procedural partition function to map texels to color spaces.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Texture

1. Introduction

Textures are a fundamental computational primitive in mod-
ern 3D graphics [AMHHOS], and are heavily used in modern
applications. Because of this, texture accesses often make up
a large fraction of graphics accelerator memory bandwidth,
which is frequently the limiting factor in system perfor-
mance and power dissipation. Texture access bandwidth can
be reduced by rendering from compressed textures, as intro-
duced by Knittel et al [KSKS96], Beers et al [BAC96], and
Torborg and Kajiya [TK96]. The technique has been widely
adopted, and there is great interest in improved texture com-
pression methods, especially for mobile devices [AMSO03].

Textures play many different roles in graphics applica-
tions; texture data may represent surface properties (includ-
ing specular and diffuse reflectance, opacity, surface orienta-
tion and height), illumination (both in the environment and
at the surface), density, or other physical properties, some-
times as 3D textures. Each of these use cases has character-
istic requirements for number of color channels (i.e. number
of values per texel), dynamic range, and quality.

Many compressed texture formats have been developed,
but few address more than a small subset of the use cases
described above. Most support only one or two bit rates, and
one or two choices of number of color components. Table 1
shows how a number of common formats fit into the space of
format parameters. There are many gaps, and no single for-

(© The Eurographics Association 2012.

DOI: 10.2312/EGGH/HPG12/105-114

channels 2 bpp 4 bpp 8 bpp
1 - RGTC uncompressed
2 - - RGTC
3 S3TC
PVRTC PVRTC BC7
ETC1 BC6H
4 PVRTC S3TC DXT5
PVRTC BC7

Table 1: Common compressed texture formats grouped by
bit rate and channel count.

mat covers very much of the space; support for low bit rates,
low numbers of channels, and HDR is especially limited.

In this paper we describe ASTC, a new format that at-
tempts to address the widest possible range of use cases and
to provide unprecedented flexibility for applications. ASTC
supports bit rates ranging from 8bpp down to less than 1bpp
in very fine steps, providing a high degree of control over
the speed vs quality tradeoff. At any bit rate, texels can have
from one to four color components. High dynamic range tex-
els are supported for one, three, or four component textures,
and the format can encode 3D as well as 2D textures.

In addition to offering exceptional flexibility, ASTC pro-
vides a substantial improvement in visual quality compared
to most other formats in common use. It outperforms S3TC

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGGH/HPG12/105-114

106 Nystad et al. / Adaptive Scalable Texture Compression

and PVRTC by as much as two dB (PSNR) at comparable
bit rates, and is competitive with advanced formats such as
BPTC. The silicon cost of an ASTC decoder is higher than
that of other high-end formats such as BPTC, but is justified
by its exceptional flexibility and quality.

ASTC’s features are the result of several technical innova-
tions. The most fundamental of these is a low-level coding
scheme called bounded integer sequence encoding, which
allows sequences of data values to be represented using a
fractional number of bits per value. This makes it possi-
ble to allocate bits between different types of information
in a very flexible way without sacrificing coding efficiency.
Other novel features include the use of bilinear interpolation
to derive color weights for a texel from sparse samples, and
use of a procedural classification function to specify the par-
tition index that maps a texel to a color space.

In the next section we review related work, focussing on
fixed-rate, block-based compression systems intended for
use in hardware graphics accelerators. We then describe
ASTC and explain how it differs from other block-based
compression formats. The last section of the paper presents
performance results and quality comparisons against a num-
ber of well-known formats.

2. Related Work

Most texture compression formats in use today follow the
block-based paradigm introduced by Delp and Mitchell
[DM79] and later generalized in various ways [FNK94]. In
these approaches, the image is divided into fixed-size blocks,
and each block is encoded (lossily) as a fixed-length bit vec-
tor. The bit rate is given by the ratio of vector length to
number of texels per block. The block-based paradigm has
the advantage that any texel can be decoded using a con-
stant number of memory references and a constant amount
of computation. It is the basis of the majority of texture
compression formats in use today, including S3TC [INH99],
ETC1 [SAMO5], and BPTC [Ope10].

In formats of this type, resolving a texture reference re-
quires dividing the texture coordinates by the block width
and height; the quotients indicate which block contains the
desired value, and the remainders give its offset within the
block. Block dimensions are usually chosen to be powers of
two, making the division and remainder computations triv-
ial, and blocks are typically square. Exceptions include the
POOMA format [AMSO03], which uses 3x2 blocks, PACK-
MAN [SAMO04] (2x4), and PVRTC 2bpp [Fen03] (8x4).

PVRTC [Fen03] is a fixed-rate format, but is not block-
based in the conventional sense. Texels are reconstructed
by upsampling two low-resolution images and interpolating
between them using a per-texel interpolation weight. It is
less prone to block artifacts than block-based systems, but
it tends to blur details, and the overlapping blocks make en-
coding a global optimization problem.

2.1. Block Contents

Compression systems using the block-based paradigm store
three basic types of information in the bit vector encoding of
each block of texels:

color space: A set of colors from which the colors assigned
to texels in the block may be chosen.

color specifiers: A set of data values used to associate indi-
vidual texels with points in the block’s color space.

control information: Additional bits used to select be-
tween multiple color spaces, specifier types, or associ-
ation methods, or to supply any additional parameters
needed.

In early work [DM79, CDF*86], the color space consists
of two grey values or colors. Color specifiers consist of one
bit per texel, which is used to select one of the two colors.
The simplicity of the scheme and the lack of control infor-
mation allow the bit rate to be very low (2bpp), but make it
impossible to represent smooth gradients across a block. The
S3TC system of Iourcha et al [INH99] extends this idea by
specifying two RGB colors A and B explicitly, and inferring
two others equally spaced along the line segment AB. The
color space for this format consists of a discrete set of four
colors, and color association is done by using a two-bit-per-
texel index to select one of the four.

The PACKMAN format of Strom and Akenine-Moller
[SAMO04] introduces a color space consisting of a single
RGB base color modified by the addition of four different
luminance offsets. The resulting colors are associated with
specific texels using a two-bit-per-texel index. The four off-
sets are chosen from a table of four-vectors, indexed by four
bits of per-block control information.

A number of formats have been derived from the basic
PACKMAN scheme. Improved PACKMAN (iPACKMAN)
[SAMOS] combines two adjacent PACKMAN-style blocks
into a single 4x4 block, and provides the option of us-
ing differential coding to specify the color spaces for the
two sub-blocks. The sub-blocks can be either horizontally
or vertically oriented, which can be seen as a form of parti-
tioning (see below). iPACKMAN has been standardized as
ETCI1 [Khr05], and is widely supported on mobile devices.
The most recent version of PACKMAN is ETC2 [SP07],
which introduces new color space options to handle blocks
that contain large chrominance variations. ETC2 provides
excellent quality and represents the state of the art for RGB
compression of natural image textures at 4bpp.

The most complex block-based formats in commercial
use today are the BPTC [Opel0] formats, BC6H and BC7.
BC7 is used to compress conventional low dynamic range
(LDR) textures, while BCOH supports high dynamic range
images. The formats offer a large number of modes speci-
fying different color space representations and color assign-
ment schemes. BPTC introduces the concept of partitions;
each texel in a block is assigned to one of two or three parti-

(© The Eurographics Association 2012.

Nystad et al. / Adaptive Scalable Texture Compression 107

tions, each of which has its own color space. Control infor-
mation in the block selects a table that maps a texel position
to a partition index, which in turn selects a color space. As in
S3TC, color spaces consist of pairs of color endpoints, and
per-texel weights are used to interpolate between endpoints
in the selected color space. The per-texel weights can have
two to four bits per texel depending on color mode.

2.2. The Bit Allocation Problem

One of the fundamental problems that must be solved in de-
signing a compressed texture format is that of how to di-
vide the available bits between the three kinds of informa-
tion that the block must store: color space(s), color speci-
fiers, and control information. Color spaces and specifiers
typically consist of sequences of values in some fixed range;
for ease of decoding, each value is usually stored in an in-
teger number of bits. However, this imposes a coarse granu-
larity on the allocation of bits between colors and specifiers.
For example, in BC7 the number of bits devoted to color
weights must be two, three, or four bits per weight, i.e. 32,
48, or 64. This limits the options for how many bits can be
used for color space and control information.

The bit allocation problem becomes easier if it is possible
to represent values using a fractional number of bits. Wen-
nersten and Strom [WS09] describe a 2bpp format in which
color specifiers take on values in the range [0..2]. Values are
grouped into pairs, and three bits are used to specify one of
eight combinations of values at a rate of 1.5 bits per index. In
the POOMA format [AMSO03], groups of three color speci-
fiers in the range [0..2] (which can take on 27 values) are
described by 32-bit codes at a rate of 1.67 bits per symbol.

3. The ASTC Compressed Texture Format

Our compressed texture format is called ASTC, for ‘adaptive
scalable texture compression’. It is scalable in the sense that
a single hardware design scales across a very wide range of
bit rates, and adaptive in the sense that most information
is specified on a per-block or per-partition basis. The only
global properties of an ASTC image are its dimensionality
(2D or 3D) and its bit rate; this allows the encoder to adapt
to local variations in statistics within a single image.

ASTC follows the standard block-based paradigm and
shares many features with the formats described in the pre-
vious section. Images are partitioned into fixed-size blocks,
which are encoded as vectors of 128 bits. As in S3TC, color
spaces are specified by pairs of points that define line seg-
ments in color space. As in BPTC, texels are assigned to
partitions associated with color spaces, and per-texel color
weights interpolate between color endpoints.

3.1. Bit Rates

The most obviously unusal feature of ASTC is that it sup-
ports a very large number of block sizes and hence bit rates.

(© The Eurographics Association 2012.

2D block size bit rate 3D block size bit rate
4x4 8.00 bpp || 3x3x3 4.74 bpp
5x4 6.40 bpp || 4x3x3 3.56 bpp
5%5 512bpp || 4x4x3 2.67 bpp
6x5 427 bpp || 4x4x4 2.00 bpp
6x6 3.56 bpp || Sx4x4 1.60 bpp
8x5 320bpp || Sx5x4 1.28 bpp
8x6 2.67bpp || Sx5x5 1.02 bpp
10x5 2.56 bpp || 6x5%5 0.85 bpp
10x6 2.13bpp || 6x6%5 0.71 bpp
8x8 2.00 bpp || 6x6x6 0.59 bpp
10x8 1.60 bpp

10x10 1.28 bpp

12x10 1.07 bpp

12x12 0.89 bpp

Table 2: ASTC supported block sizes and bit rates. All block
sizes are compressed to vectors of 128 bits, resulting in the
bit rates shown.

Blocks are not required to be square, and block dimensions
are not required to be powers of two. Table 2 shows the set
of supported block dimensions and the associated bit rates.

The hardware cost of supporting this large number of
block sizes is dominated by the cost of the quotient and re-
mainder operations needed to map a texel address to a block
and an offset within the block. Since most of our block sizes
are not powers of two, these computations are nontrivial.
However, all of the block sizes can be expressed as products
of three, five, and powers of two. This fact can be exploited
to simplify the address computation logic.

ASTC’s large blocks may cause it to produce smaller
memory bandwidth savings than bit rate alone would sug-
gest, since at silhouette edges the texture cache will fetch
more unused texels than a format with smaller block sizes.
However, such overfetch effects are likely to be dominated
by cache line size rather than by texture block size, so we
expect any effect to be subtle.

3.2. Bounded Integer Sequence Encoding

A key feature of ASTC is that both color space and color
specifier values are represented using a fractional number of
bits. This gives the encoder great flexibility in deciding how
accurately to encode each type of information. The method
is called bounded integer sequence encoding, because it op-
erates on sequences of integers lying in a restricted range.

Bounded integer sequence encoding (BISE) addresses the
following abstract problem: Given sequences of equiproba-
ble values in the range 0 to N — 1, find an encoding that al-
lows the ith value to be extracted in constant time with min-
imal hardware, allows the same hardware to be used with
many different ranges of values, and is storage-efficient. A
simple solution that meets the first two requirements is to en-
code sequences as packed bit strings of binary numbers. This

108 Nystad et al. / Adaptive Scalable Texture Compression

scheme is storage-efficient when N is a power of two, since
the number of bits of information in a single value (logyN) is
exactly the number of bits used by the encoding; that occurs
when values are represented by an integer number of bits.

BISE extends the above solution by adding almost per-
fectly efficient storage when N is 3x2" or 5x2". For N > 4,
this has the effect of introducing two new optimal value
ranges in between each successive pair of powers of two. In
the former case, the two most significant bits of each value
specify a trit or trinary digit, which can take on values 0, 1,
and 2. Similarly, in the latter case, the three most significant
bits of a value are considered a quint or base-5 digit. For ex-
ample, if N = 12, values are represented using one trit and
two bits: X = 2% + 52! +b020.

To encode a sequence of values that is represented us-
ing trits, we partition the sequence into groups of five val-
ues, padding the last group with zeros if necessary. Con-
ceptually, each group can be represented as the bit string
t4B4t3 B3ty Byt B11gBg, where the t; are two-bit representa-
tions of trits, and the B; are the remaining bits of each
value. Since five trits can take on 3° = 243 values, they
can be stored in eight bits. Similarly, sequences based on
quints can be represented as goB>q1B1qoBy, and since three
quints can take on 125 values, they can be stored in seven
bits. The compressed groups remain interleaved with the
bit sequences; if the trit string is compressed to an eight-
bit value 7, then the compressed group of five values is
T17)B4T6.5)B3T[41B2113.2)B11j1.0)- The analogous interleav-
ing for quint groups is Qjg.5)8204.318102.0) Bo-

The encoding and interleaving scheme for the trit and
quint groups has the special property that it preserves trailing
zeros in the compressed trit and quint strings. In the trit case,
for example, if the last group of five values was padded with
two zeros (so that #4B4 and t3B3 are known to be zero), then
in the compressed string it is also the case that 7j7B4 and
Tjs.5)B3 are zero; and since the values are known, they do
not have to be stored. At decode time, any references to bits
beyond the end of the stored bitstring can be satisfied with
zeros, and the decoding process will work correctly. Thus
the encoding scheme remains efficient even if the length of
the value sequence is not a multiple of three or five.

The encoding scheme described above represents n trits
with [%”] bits, and n quints with [%"] bits. As sequence
length increases, the encoding rates approach asymptotic
limits of 1.6 bits per trit and 2.333 bits per quint, which is
very close to the information-theoretic bounds of log>(3) ~
1.585 bits per trit and log, (5) /= 2.322 bits per quint.

3.3. Partitions

Every texel in an ASTC block is assigned to one of up to
four partitions, each of which has its own color space. Which
partition a texel belongs to is determined by a function that
maps texel position to an integer in the range zero to three.

This use of partition functions is similar to BPTC, but where
BPTC’s function is stored as tables, ASTC’s is computed
from the partition count and the partition ID. Pseudocode
for the classification function is available as supplemental
material.

The function takes as input the ten-bit partition ID, the
number of desired partitions (two to four), and the coordi-
nates of the texel within the block. It appends the partition
count minus one to the partition ID, and uses the result to
seed a procedural pseudorandom number generator. The 32-
bit result is split into fields and used to produce four-bit co-
efficients for four planar functions of position in the block.
The functions are evaluated at the desired texel location, and
the resulting values are masked to extract the six least signif-
icant bits. This converts the planes into sawtooth functions
of random frequency and orientation. The masked values are
compared, and the index of the function which produced the
largest value is returned as the partition index for the texel.
The resulting partition patterns tend to consist of coherent
regions with piecewise linear boundaries.

The partition function is designed to have very low sili-
con cost. It uses no tables, and all operations are performed
on quantities of 32 bits or less. All multiplications are per-
formed on four-bit quantities and so are inexpensive. All
shifts are by constant values, so they require no logic. The
result is that the silicon area is a small constant, rather than
being proportional to the number of partition patterns as in
BPTC. This makes it possible to implement a large set of
partition patterns in a relatively small number of gates.

A disadvantage of our procedural partition function is that
about 50% of the generated patterns are useless for one rea-
son or another: they are redundant, or return constants, or
are too fragmented to be useful. Thus, about one bit of the
ten-bit partition ID is wasted. Adopting BPTC’s table-based
approach for ASTC would allow one bit of partition ID to be
used for other purposes. However, we believe that the stor-
age cost of the tables would be prohibitive, due to ASTC’s
much larger block size and the need to support both 2D and
3D partition functions.

3.4. Color Spaces

ASTC follows BPTC, S3TC, and PVRTC in using color
spaces consisting of pairs of color endpoints. Texel colors
are determined by a per-texel weight that interpolates be-
tween the endpoints, as will be described in the next section.

ASTC provides sixteen modes for specifying color end-
point pairs; ten describe LDR color spaces, and the remain-
ing six describe HDR spaces. Each is designed so that all
values are expressed as integers in a common range, so that
they can be encoded efficiently using BISE. For LDR color
modes, color endpoints are represented by fixed-point val-
ues in the range [0..1], dequantized to eight bits after extrac-
tion from the BISE encoding. For the HDR modes, values

(© The Eurographics Association 2012.

Nystad et al. / Adaptive Scalable Texture Compression 109

are dequantized to eight bits and then processed in mode-
dependent ways to produce 12-bit unsigned floating point
values with five bits of exponent and seven bits of mantissa.

The various modes make use of a number of basic encod-
ing methods, which we will explain here in order to simplify
the description of the modes:

independent The independent methods specify two k-bit
values directly.

base+offset These methods are variants of iPACKMAN’s
differential encoding scheme [SAMOS]. They specify two
values as a (k+ 1)-bit base and a (k — 1)-bit offset; the
base provides one value, and the offset added to the base
provides the other. This improves resolution when two
values are close together. One bit of the base value is
stored in the offset, converting them into k-bit integers.

base+scale The base+scale methods encode two RGB val-
ues using four numbers; the four-tuple (R, G, B, s) is inter-
preted as specifying the colors (R, G, B) and (sR,sG,sB).
This mode is useful when most of the color variation in a
partition is along the luminance axis.

The color modes themselves are classified by number of
values they specify: two, four, six, or eight. There are four
modes of each class.

two-value modes These modes represent luminance-only
(single channel) color spaces. Endpoints are specified ei-
ther directly or using the base+offset method. Two modes
represent LDR values. One of the two HDR modes simply
left-shifts the dequantized integers to form 12-bit values,
while the other uses a base+offset method, transferring
several bits from the second value to increase the resolu-
tion of the first.

four-value modes Four-value modes represent two and
three-channel color spaces. Two modes specify LDR
luminance and alpha as independent values or as
base+offset. Two other modes specify two RGB endpoints
by the base+scale method, one as LDR and the other as
HDR. In the HDR mode, four bits taken from the values
specify a sub-mode which controls the distribution of six
more of the bits to the values (R, G, B, s), allowing the en-
coder to represent different components at different reso-
lutions.

six-value modes Six-value modes represent three and four-
channel color spaces. Two LDR modes specify pairs of
RGB colors using independent values or base+offset.
A third LDR mode specifies two RGB colors using
base+scale, and interprets the last two values as indepen-
dent alphas. The last mode specifies two HDR RGB end-
points. Five bits taken from the values define a sub-mode
that is used to shift bits between components.

eight-value modes Eight-value modes specify four-channel
RGBA color spaces. Two modes specify LDR colors us-
ing independent values or base+offset. The other two
specify HDR RGB endpoints as in the six-value mode,
and add two alpha values. One mode provides normalized

(© The Eurographics Association 2012.

(LDR) alpha, supporting the common case where an HDR
image has alpha values in the range [0, 1]. The other mode
provides HDR alpha, with a sub-mode bit to select either
independent or base+offset conversion.

It is worth reiterating that color spaces are specified on
per-partition basis. Choosing a mode for one block places
no resriction on modes for other blocks. The encoder is free
to (and often does) encode one partition as LDR, while an-
other in the same block is encoded as HDR. The color space
encoding does impose one restriction: color modes within
a single block can differ by at most two in number of val-
ues, e.g., two-value modes can be combined with four-value
modes, but not with six- or eight-value modes. This reduces
the number of bits needed to specify the color modes, at the
cost of disallowing some infrequently used mode combina-
tions.

3.5. Color Weights

As in several other block-based formats, texel colors in
ASTC are specified by per-texel values that are used to inter-
polate between color endpoints. We refer to these values as
color weights. Unlike most similar formats, ASTC allows
color weights to be specified at lower resolution than the
block dimensions. Consider the 2D case with a block size
of MxN. Color weights are specified as an array of size pxgq,
where p < M and ¢ < N. To derive a weight for a given texel,
its position within the block is scaled to the dimensions of
the weight array, and the weight at that position is obtained
by bilinear interpolation. The 3D case is similar, except that
we use simplex interpolation (see e.g. Gustavson [Gus05])
rather than trilinear. Simplex interpolation in 3D requires the
same number of color weight values (four) and arithmetic
operations as bilinear interpolation, while trilinear interpo-
lation would require twice as many of each.

This method of specifying color weights makes it possi-
ble to trade off spatial resolution of the weight array against
precision of the weights and/or the color space. For example,
very smooth gradients can be obtained even in large blocks
by specifying the weights as a 2x2 grid and interpolating
them across the block.

Once per-texel color weights have been computed, they
are dequantized to the logical range [0..1] and used to inter-
polate between color endpoints. For LDR endpoints, interpo-
lation is linear. For HDR endpoints, interpolating the 12-bit
floating point values as if they were integers (as is done in
BC6H) would give a piecewise linear approximation to log-
arithmic interpolation. ASTC also uses a piecewise linear
approximation, but divides each exponent range into three
linear segments in order to obtain a smoother curve. Values
are interpolated with a slope of 3/4 for mantissas in the range
0..0.25, a slope of 1 for mantissas in the range 0.25..0.75,
and a slope of 5/4 for those in the range 0.75..1.

110 Nystad et al. / Adaptive Scalable Texture Compression

3.6. Decode Process

The bit vector encoding an ASTC block is divided into seven
major sections. Space does not permit a detailed description
of the bit layout of each section, but we will describe the
information that each contains, and explain the decode pro-
cess. The sections are:

index mode The index mode is stored in the first eleven
bits of the block. It specifies the dimensions of the color
weight array and the range of values color weights can
take on.

partition count The partition count (minus one) is stored in
a two-bit field following the index mode.

partition ID If the partition count is greater than one, the
partition count bits are followed by a ten-bit partition ID
that, together with the partition count, specifies the parti-
tion pattern as described in section 3.3.

fixed color mode data If there is only one partition, the
partition count is followed by four bits which specify
which of the sixteen color modes (see section 3.4) is used
for the block. If there are multiple partitions, the partition
ID is followed by six bits which specify how many color
values are needed to describe the color spaces for the par-
titions, and how many extra color mode bits are needed to
fully specify the color modes for each partition.

color endpoint values The fixed color mode data is fol-
lowed by a variable-length bit string containing the BISE
encoding of the values needed to specify the color end-
points for each color space.

extra color mode bits Any extra bits needed to describe the
color modes are stored just before the color weights.

color weights The remainder of the block contains the
BISE encoding of the color weight array in raster order.
The encoding is stored in bit-reversed order, beginning at
the end of the block and extending toward the other data
items.

Two things are noteworthy about the block layout. First,
the encoding of the color weights begins in a fixed location,
and the encoding of the color endpoint values begins at one
of only two locations. This makes it easier to route the bits
that encode the desired values to the BISE decoding logic.
Second, there is no explicit encoding of the range of values
that the color endpoint values can take on; only the number
of values is specified. The range of the values is inferred
from the amount of space available to hold them. The size
of all other data in the block can be calculated; subtracting
it from 128 gives the number of bits available to store color
endpoints. The color endpoint values are always stored using
the largest range of values that will fit into those bits.

The process of decoding a texel from a 2D block is as
follows: First, the index mode is unpacked to determine the
size of the color weight array and the range of values weights
can take on. This is sufficient to determine the length of the
color weight BISE bit string, and hence the position of the
extra color mode data, if there is any. The texel coordinates

are rescaled to the dimensions of the color weight array, and
processed to determine which color weights are needed to
perform bilinear interpolation. The appropriate sections of
the color weight bit string are decoded as described in 3.2,
and the color weight for the texel is computed.

Second, the partition count is examined. If there is more
than one partition, the partition ID, partition count, and texel
coordinates are sent to the partition function generator de-
scribed in section 3.3, and the partition index of the texel is
determined. The partition count also determines the location
and format of the fixed color mode data.

Third, the fixed color mode data are interpreted to deter-
mine how many color values are needed to specify the color
endpoints, how many extra color mode bits are present, and
how many bits are available to store the color endpoint val-
ues. From this, the range of values each color endpoint value
can take on is computed.

Fourth, the texel’s partition index is used to determine
which color endpoint pair is used for the texel, and the color
mode for that pair is determined. If there is only one par-
tition, the mode is specified directly. Otherwise, the fixed
and extra color mode bits are used to recover the mode and
the number of values used to specity the color endpoints for
each partition. This information is used to locate the appro-
priate values in the color endpoint bit string, the values are
extracted, and the endpoints are recovered.

Finally, the color endpoint values are interpolated using
the color weight as specified by the color mode for the par-
tition, and the resulting color is returned.

4. Implementation

ASTC is intended to be a practical replacement for all of the
formats shown in Table 1. In order to verify that it is suitable
for mobile device silicon, we have implemented a decoder
in synthesizable RTL, and a software codec that is used to
encode images and to validate the hardware decoder.

The hardware decoder design is based on that of our
BPTC decoder. ASTC and BPTC have the same encoded
block size (128 bits), and both support 4x4 blocks, so they
impose the same requirements on cache architecture and can
share some addressing logic. Currently the ASTC decoder
is approximately twice the area of the BPTC decoder, so it
is large by current standards. However, we feel that its large
number of bit rates, flexible number of color components,
support for low-bit-rate HDR and 3D, and exceptional qual-
ity at low bit rates more than justifies the additional cost.

Building a fast encoder for ASTC is challenging due to the
large search space. Our encoder is structured as a branch-
and-bound search over the full set of partition functions,
color weight array sizes, and color modes. For a given par-
tition and color mode, we identify a dominant axis and per-
form a limited search to select endpoints on that axis. This

(© The Eurographics Association 2012.

Nystad et al. / Adaptive Scalable Texture Compression 111

search is done for each possible number of components,
and the ones yielding the lowest MSE for the block are se-
lected. This algorithm produces very good results, but can
take hours for large images, so it is too slow for practical use
in a content development pipeline.

To address the speed problem, the encoder offers four
‘fast’ modes that trade quality for speed to varying degrees.
These modes make use of a number of heuristics:

e The initial lower bound for the branch-and-bound search
is set based on bit rate and speed mode. When an encoding
is found at achieves the bound, further search is skipped.

e The encoder searches partition counts in increasing order.
If the best two-partition encoding does not improve sig-
nificantly on the one-partition encoding, the faster modes
do not consider three- and four-partition encodings, since
they are unlikely to provide further benefit.

e In the fastest modes, the encoder tests only the most com-
monly used index modes.

e The encoder orders the search over partition patterns so
that ‘good’ partitions are visited early. It does this by
performing a few cycles of k-means clustering (for k €
{2,3,4}) on the block color values, labeling each texel
with its cluster number, and computing a match score be-
tween this labelling and each of the partition patterns.
Patterns are then searched in order of descending match
score.

We ran the encoder in single-threaded mode on a 2.97
GHz Xeon server. On the 24 images of the ‘Kodak’ set (size
512 x768), average running times range from 300 seconds
in exhaustive mode down to 0.8 seconds in the fastest mode,
with a loss of about 2.5 dB in quality. The intermediate mode
averages 12 seconds with very little quality loss. The imple-
mentation supports multithreading and gets good speedup at
up to eight threads.

5. Evaluation

Space does not permit a detailed evaluation of the full range
of use cases that ASTC supports, so we will focus on 2D
RGB textures at low and high dynamic range. We compare
ASTC to the leading alternatives at each bit rate:

e At 2bpp we compare ASTC to PVRTC 2bpp, com-
pressed using Imagination Technologies’ PVRTexTool,
SDK build 2.10@905358.

e At 4bpp, we compare ASTC 6x6 (at 3.56 bpp) to PVRTC
4bpp, S3TC (compressed with AMD’s The Compres-
sonator 1.50.1731), and ETC2 (using a compressor pro-
vided by Jacob Strom).

o At 8bpp, we compare ASTC to BC7 for LDR and to
BC6H for HDR, using the ‘zohc’ and ‘avpclc’ codecs dis-
tributed by NVIDIA [NVI].

In all cases, we used the highest quality settings provided,
with colors equally weighted. For LDR images, we follow

(© The Eurographics Association 2012.

——ASTC 8x8 ——PVRTC 2bpp

kodim01
kodim02
kodim03
kodim04
kodim05
kodim06
kodim07
kodim08
kodim09
kodim10
kodim11
kodim12
kodim13
kodim14
kodim15
kodim16
kodim17
kodim18
kodim19
kodim20
kodim21
kodim22
kodim23
kodim24

Figure 1: LDR comparison (dB PSNR) at 2 bpp.

——ASTC 6x6 —PVRTC 4bpp DXT1 —ETC2

44
42
40
38
36
34
32
30

o o
3 g
EE
53
g2

kodim03
kodim04
kodim05
kodim06
kodim07
kodim08
kodim09
kodim10
kodim11
kodim12
kodim13
kodim14
kodim15
kodim16
kodim17
kodim18
kodim19
kodim20
kodim21
kodim22
kodim23
kodim24

Figure 2: LDR comparision (dB PSNR) at 3.56/4 bpp.

standard industry practice and measure quality in terms of
peak signal-to-noise ratio (PSNR), using the formula given
by Strom and Petterson [SPO7]. For HDR images, we use the
mPSNR metric of Munkberg et al [MCHAMOG6].

5.1. Low Dynamic Range Results

Figures 1-3 give PSNR scores in dB across the 24 images
in the well-known ‘Kodak’ test set [Kod]. At 2bpp, ASTC
outperforms PVRTC by 2.2 dB on average. At 3.56 bpp,
it improves on PVRTC and S3TC 4bpp modes by 1.5 and
1.9 dB respectively despite an 11% bit rate disadvantage. It
is generally believed (see e.g. Strom and Akhenine-Moller
[SAMOS5]) that a PSNR difference 0.25 dB is visible to most
observers, so these are very significant differences. ASTC
also outperforms ETC2 by 0.7 dB at the same bit rate disad-
vantage. As far as we know, no other fixed-rate format offers
comparable quality on natural images at 4bpp or below.

The BC7 format consistently outperforms ASTC’s 8bpp
mode by a small margin (an average of 0.5 dB on this
dataset). At 8bpp both ASTC and BC7 compressed images
have PSNR quality around 45 dB, and we find the quality
difference very difficult to detect visually.

Figure 4 shows example images from the 2bpp test. We
also include results for the ASTC 12x10 format at 1.07 bpp.
The top row image is very well suited to ASTC’s single-
channel luminance and base+scalar color modes. PVRTC

112 Nystad et al. / Adaptive Scalable Texture Compression

——ASTC 4x4 —BC7
51
49
47
45
43
a1

kodim01
kodim02
kodim03
kodim04
kodim05
kodim06
kodim07
kodim08
kodim09
kodim10
kodim11
kodim12
kodim13
kodim14
kodim15
kodim16
kodim17
kodim18
kodim19
kodim20
kodim21
kodim22
kodim23
kodim24

Figure 3: LDR comparison (dB PSNR) at 8 bpp.

blurs away detail at the right side of the image, and is un-
able to represent the smoothly shaded grays at upper cen-
ter. ASTC’s color weight interpolation allows it to handle
the smooth gray regions very well, though the 1.07bpp im-
age shows block artifacts as well as a chroma distortion at
lower center-right. The very difficult image in the middle
row shows characteristic failure modes for the three for-
mats; PVRTC shows blotching on the figure’s hat, and severe
blurring and quantization at lower center. ASTC at 1.07bpp
avoids the quanitzation, but blurs details and shows promi-
nent chrominance block artifacts. ASTC at 2bpp preserves
luminance detail fairly well, also at the cost of chrominance
blocking. The image in the third row has little luminance
variation and is generally smooth. PVRTC performs well ex-
cept for some stipple-pattern noise in the upper left corner,
while ASTC suffers from block artifacts at both bit rates.

Figure 5 shows the same images at a higher bit rate. On
the top row, S3TC and (to a lesser extent) ETC2 suffer
from color quantization artifacts. ASTC’s greyscale and lu-
minance color modes again allow it to capture the smooth
gradients very well. In the middle row, PVRTC shows mi-
nor blotching on the hat and in the smooth grey regions in
the upper half of the image, and some quantization in the
noisy regions at lower center. S3TC and ETC2 show minor
quantization artifacts; ASTC is able to preserve a little more
luminance detail, by giving up some color space resolution
in exchange for a high-resolution color weight array. On the
third row, PVRTC at 4bpp does very well except for minor
stipple noise. S3TC and ETC2 suffer from severe block ar-
tifacts. ASTC 6x6 also exhibits block artifacts but at some-
what lower contrast.

5.2. High Dynamic Range Textures

Table 3 presents mPSNR results for some of the images used
by Munkberg et al [MCHAMO6], measured across the ex-
posure ranges reported in their paper. For comparison, we
also present results for BC6H. On average, BC6H is slightly
ahead on this dataset, but the differences are small in relative
terms.

Figure 6 compares ASTC and BC6H 8bpp encodings on

Image ASTC BC6H difference
Starfield 51.3 50.2 1.1
Bonita 47.7 471 0.6
Desk 40.5 42.6 2.1
Memorial 43.4 44.4 -1.0
Cathedral 39.7 40.8 -1.1
BigFogMap 51.1 51.2 -0.1
Belgium 46.6 46.5 0.1
AtriumNight 52.5 51.2 1.3
MtTamWest 42.5 423 0.2

Table 3: HDR comparison at 8bpp (dB mPSNR).

a portion of the ‘AtriumNight’ and ‘Spirals’ images. Images
are rendered at an exposure of +3. On the AtriumNight im-
age, ASTC preserves slightly more detail. On the Spirals
image, both compressed formats exhibit block artifacts, but
ASTC also shows luminance distortions. In HDR mode, our
encoder attempts to minimize error in the log of image lu-
minance. This causes trouble around pixels with very small
values, where the slope of the log function is very large. The
result is that the encoder works very hard to minimize errors
at very small pixel values, at the expense of fidelity in other
parts of the image. We believe that this is a codec issue, and
not a fundamental problem with the format.

6. Conclusion

We have described a new texture compression method that
spans an extremely wide range of bit rates and use cases.
The format introduces several technical innovations, most
notably a general method for representing value sequences
using a fractional number of bits per value, and a system for
constructing per-texel color weights from sparse samples.
The resulting image quality is competitive with the most ad-
vanced formats in use today, and better than that of industry
standards such as DXT and PVRTC.

Acknowledgements

The authors would like to thank Konstantine Iourcha, Cass
Everitt, Nick Penwarden, Walt Sullivan, and many others for
valuable discussions and feedback.

References

[AMHHO8] AKENINE-MOLLER T., HAINES E., HOFFMAN N.:
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA, 2008. 1

[AMS03] AKENINE-MOLLER T., STROM J.: Graphics for the
masses: A hardware rasterization architecture for mobile phones.
ACM Transactions on Graphics (Proc. SIGGRAPH 2003) 22, 3
(july 2003), 801-808. 1, 2,3

[BAC96] BEERS A. C., AGRAWALA M., CHADDHA N.: Ren-
dering from compressed textures. In Proceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1996), SIGGRAPH °96, ACM,
pp- 373-378. 1

(© The Eurographics Association 2012.

Nystad et al. / Adaptive Scalable Texture Compression 113

(a) Context

(b) Original

(¢) PVRTC 2bpp

(d) ASTC 12x10 (e) ASTC 8x8

Figure 4: Low bit rate LDR-RGB compression examples. Source images are at left. Detail images, from left to right: Original;

PVRTC-2bpp; ASTC 12x10 (1.07 bpp); ASTC 8x8 (2bpp)

[CDF*86] CAMPBELL G., DEFANTI T. A., FREDERIKSEN J.,
JOYCE S. A., LESKE L. A.: Two bit/pixel full color encod-
ing. In Proceedings of the 13th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1986),
SIGGRAPH 86, ACM, pp. 215-223. 2

[DM79] DELPE.J., MITCHELL O. R.: Image compression using
block truncation coding. IEEE Transactions on Communications
27,9 (September 1979), 1335-1341. 2

[Fen03] FENNEY S.: Texture compression using low-frequency
signal modulation. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(Aire-la-Ville, Switzerland, Switzerland, 2003), HWWS 03, Eu-
rographics Association, pp. 84-91. 2

[FNK94] FRANTIP., NEVALAINEN O., KAUKORANTA T.: Com-
pression of digital images by block truncation coding: A survey.
The Computer Journal 37, 4 (1994), 308-332. 2

[Gus05] GUSTAVSON S.: Simplex noise demystified. Technical
report at http://www.itn.liu.se/~stegu/simplexnoise/
simplexnoise.pdf, Mar 2005. 5

[INH99] IoUrcHA K., NAYAK K., HONG Z.: System and
method for fixed-rate block-based image compression with in-
ferred pixel values. US Patent 5,956,431, 1999. 2

[Khr05] KHRONOS: OES_compressed_ETC1_RGBS8_texture.
available at http://www.khronos.org/registry/gles/, 2005. 2

[Kod] KoDAK: Kodak lossless true color image suite. available
athttp://rOk.us/graphics/kodak/. 7

[KSKS96] KNITTEL G., SCHILLING A., KUGLER A.,
STRASSER W.: Hardware for superior texture performance.
Computers & Graphics 20, 4 (1996), 475-481. 1

(© The Eurographics Association 2012.

[MCHAMO6] MUNKBERG J., CLARBERG P., HASSELGREN J.,
AKENINE-MOLLER T.: High dynamic range texture compres-
sion for graphics hardware. ACM Trans. Graph. 25, 3 (July
2006), 698-706. 7, 8

[NVI] NVIDIA: Nvidia texture tools. available at code . google.
com/p/nvidia-texture-tools/list/. 7

[Opel0] OPENGL ARB: ARB_texture_compression_bptc.
available at http://www.opengl.org/registry/specs/ARB/, 2010. 2

[SAMO4] STROM J., AKENINE-MOLLER T.: Packman: texture
compression for mobile phones. In ACM SIGGRAPH 2004
Sketches (New York, NY, USA, 2004), SIGGRAPH ’04, ACM,
pp. 66—. 2

[SAMO0OS5] STROM J., AKENINE-MOLLER T.: iPACKMAN: high-
quality, low-complexity texture compression for mobile phones.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware (New York, NY, USA, 2005),
HWWS ’05, ACM, pp. 63-70. 2,5,7

[SPO7] STROM J., PETTERSSON M.: ETC2: Texture compres-
sion using invalid combinations. In Graphics Hardware (2007),
pp. 49-54. 2,7

[TK96] TORBORG J., KAJIYA J. T.: Talisman: commodity real-
time 3d graphics for the pc. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques
(New York, NY, USA, 1996), SIGGRAPH *96, ACM, pp. 353—
363. 1

[WS09] WENNERSTEN P., STROM J.: Table-based alpha com-
pression. In Computer Graphics Forum (2009), vol. 28, Euro-
graphics 2009, pp. 687-695. 3

114 Nystad et al. / Adaptive Scalable Texture Compression

(a) Original (b) PVRTC-4bpp (¢c) S3TC (d) ETC2 (e) ASTC 6x6

Figure 5: Medium bit rate LDR-RGB compression examples. From left to right: Original; PVRTC-4bpp; S3TC; ETC2; ASTC
6x6 (3.56bpp)

(d) Original (e) BC6H (f) ASTC 4x4

Figure 6: HDR image comparisons. From left to right: Original; BC6H (8bpp); ASTC 4x4 (8bpp)

(© The Eurographics Association 2012.

