
626

N
N

T
:2

02
0I

P
PA

X
07

8

Authoring consistent, animated ecosystems:
Efficient learning from partial data

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n◦626
École Doctorale de l’Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Informatique, Données et Intelligence Artificielle

Thèse présentée et soutenue à Palaiseau, le 03 décembre 2020, par

PIERRE ECORMIER-NOCCA

Composition du Jury :

Jean-Michel Dischler
Professeur des universités
Université de Strasbourg (ICUBE, UMR 7357) Président

Joëlle Thollot
Professeure des universités
Grenoble INP (LJK, UMR 5216) Rapporteure

Nuria Pelechano
Associate Professor
Universitat Politecnica de Catalunya (LSI) Rapporteure

Eric Guérin
Maitre de conférences
INSA Lyon (LIRIS, UMR 5205) Examinateur

Julien Pettré
Directeur de recherche
INRIA Rennes Examinateur

Marie-Paule Cani
Professeure des universités
École Polytechnique (LIX, UMR 7161) Directrice de thèse

Pooran Memari
Chargée de recherche CNRS
École Polytechnique (LIX, UMR 7161) Co-directrice de thèse

Résumé

Grâce aux récentes améliorations de puissance de calcul, les mondes virtuels sont main-
tenant plus vastes et complexes que jamais. Alors que ce type de contenu se généralise
dans de nombreux médias, les utilisateurs attendent une expérience de plus en plus réal-
iste. En conséquence, de nombreuses recherches ont été effectuées sur la modélisation et
la génération de terrains et de végétation, et parfois leurs interactions. Néanmoins, les
animaux ont reçu bien moins d’attention, et, comme les plantes, sont souvent étudiés en
isolation. Avec le manque d’outils d’édition intuitive, ces problèmes font de la modélisa-
tion d’écosystèmes une tâche difficile pour les artistes, qui se retrouvent soit limités dans
leur liberté créative, soit forcés d’ignorer le réalisme biologique.

Dans cette thèse, nous présentons des nouvelles méthodes adaptées au design et à
l’édition d’écosystèmes virtuels, permettant la liberté créative sans pour autant renoncer
à la plausibilité biologique. Notre approche a pour objectif de fournir des outils basés
sur des données concrètes pour permettre une édition efficace des écosystèmes, tout en
ne nécessitant qu’un nombre peu élevé de données. En incorporant les connaissances
existantes sur la biologie à nos modèles, nous sommes capables de garantir à la fois la
cohérence et la qualité des résultats.

Nous présentons des méthodes dédiées à l’instantiation précise et intuitive d’éléments
statiques et animés. Pour prendre en compte le fait que les éléments statiques, tels que
la végétation, peuvent présenter des interactions complexes, nous proposons une méth-
ode précise basée sur l’exemple pour synthétiser des agencements arbitrairement com-
plexes d’éléments statiques pouvant se recouvrir. Nous appliquons un concept similaire à
l’édition de troupeaux, en utilisant des photographies ou courts segments vidéos comme
entrée d’un algorithme de synthèse par l’exemple. À une échelle plus large, nous utilisons
des données biologiques pour formuler un processus unifié gérant l’instantiation globale
et les interactions de long terme entre la végétation et les animaux sur un terrain donné.
En plus de garantir la cohérence biologique, ce modèle offre un contrôle sur le résultat en
permettant l’édition manuelle des informations à n’importe quelle étape du processus.

Les méthodes proposées fournissent à l’utilisateur à la fois du contrôle et du réalisme
tout au long du processus de création d’écosystèmes, couvrant les éléments statiques et
dynamiques, ainsi que les interactions entre eux-mêmes et l’environnement. Différentes
échelles sont également considérées, du placement et mouvement individuel à la gestion
de l’écosystème complet. Nous montrons la validité de nos résultats à l’aide de plusieurs
modes de validation, à savoir des études utilisateur, ainsi que des comparaisons avec des
données réelles ou fournies par des experts.

i

Abstract

With recent increases in computing power, virtual worlds are now larger and more com-
plex than ever before. As such content becomes widespread in many different media, the
expectation of realism has also dramatically increased for the end user. As a result, a
large body of work has been accomplished on the modeling and generation of terrains
and vegetation, sometimes also considering their interactions. However, animals have
received far less attention, and, just like plants, are often considered in isolation. Along
with a lack of authoring tools, this makes the modeling of ecosystems an arduous task for
artists, who are either limited in their creative freedom or are forced to break biological
realism.

In this thesis, we present new methods suited to the design and authoring of virtual
ecosystems, that allow for creative freedom without discarding biological plausibility. We
focus on providing data-centered tools to allow efficient authoring of the ecosystem, while
keeping a low data requirement. By taking advantage of existing knowledge regarding
biology, we are able to guarantee both the consistency and quality of the results.

We present dedicated methods for precise and intuitive instantiation of static and
animated elements. To account for the fact that static elements, such as vegetation, are
able to display complex interactions, we propose an accurate example-based method to
synthesize complex and potentially overlapping static arrangements. We apply a similar
concept to the authoring of herds of animals, by using real photographs or short videos
as input data for example-based synthesis. At a larger scale, we use biological data to
formulate a unified pipeline handling the global instantiation and long-term interactions
of vegetation and animals on a given terrain. While this model enforces biological con-
sistency, we also provide control over the result by allowing manual editing of the data
at any stage of the process.

Our methods provide both user control and realism over the entire ecosystem cre-
ation pipeline, covering static and dynamic elements, as well as interactions between
themselves and their environment. We also cover different scales, from individual place-
ment and movement of elements to management of the entire ecosystem. We demonstrate
the validity of our results using different modes of validation such as user studies and com-
parisons with both real and expert data.

iii

Thanks

I would like to first address a sincere thank you to my advisors for their support during
my PhD. In particular, thank you Marie-Paule for your hard work and inspiring insights,
both on my research and on Computer Graphics in general. Thank you Pooran for your
mathematical and geometrical vision that has been a great help throughout my PhD, and
a special thanks for bringing me into the lab in the first place.

Thank you to the jury who accepted to review this manuscript. I am looking forward
to your comments, that will be a great help to continue my research.

I would also like to thank my co-authors Guillaume C., Julien, Bedrich, James and
Baptiste. It was a pleasure working with you and I hope that we will have opportunities
for more collaborations in the future.

Thank you to everybody related to the Tautavel project, since our team retreat in
2018. Thank you Anne-Marie, Philippe, Nicolas, Sophie, David, and all the others for
your work.

A big thank you to all the researchers that I shared meals with, discussed with,
interacted with in the day-to-day life in the lab. Thank you Pauline, Marie-Julie, Damien,
Thibault, Corentin, Chloé, Maxime, Nicolas, Robin, Tashiv, Gowtham, Amal, Maks,
Jean-Michel, Leo, Christophe, and everyone who has been a member of the GeoViC
team. A special thank you to Thomas who accompanied me from the start of my PhD,
for the problem-solving sessions, personal discussions, ping-pong matches, and everything
else. Thank you Maud for being a great co-office, and for all the interesting discussions.

Thank you to Baptiste and Guillaume L., who I had the pleasure to advise during
their respective internships. I hope you enjoyed your stay here and that your internship
was useful to you. I would also like to thank the administrative and technical staff at the
lab, including but not limited to Magali, Evelyne, Frédéric and Jordan, that keep the lab
up and running.

A big thank you to my family, my parents and my sister for your continuous support
over the years, and for giving me a great environment while growing up. You always
pushed me towards science, curiosity and creativity, and for that I am forever grateful.

Finally, my deepest thanks are towards my wife Florence, who has been at the core
of my life since I met her all those years ago. Thank you for sharing the best moments of
my life with me, and for your unconditional support when I needed it most. Thank you
for pushing me forward and always believing in me. Thank you for always bringing fun
ideas, suggestions and activities to the table. Thank you for your help and your input,
every time I needed it. For all of this, and so much more, this thesis is dedicated to you.

v

Table of Contents

1 Introduction 1

1.1 Ecosystems in Computer Graphics . 1

1.1.1 Control . 2

1.1.2 Main challenges in populating landscapes 3

1.1.3 Unified ecosystems . 3

1.2 General overview . 4

1.2.1 Outline . 4

1.2.2 Publications . 5

2 State of the art 7

2.1 Distribution analysis and synthesis . 8

2.1.1 Point distributions . 8

2.1.2 Multi-class and shape aware solutions 10

2.1.3 Discussion . 11

2.2 Modeling vegetation . 13

2.2.1 Generation of plants . 13

2.2.2 Simulation . 14

2.2.3 Statistical approaches . 16

2.2.4 Discussion . 17

2.3 Animation of creatures and crowds . 17

2.3.1 Animation of individual creatures 18

2.3.2 Crowd simulation . 19

2.3.3 Crowd animation . 22

2.3.4 Path planning . 23

2.3.5 User control and authoring . 24

vii

Table of Contents

2.3.6 Discussion . 25

2.4 Ecosystems and self-interacting models 25

2.4.1 Joint modeling of terrain and vegetation 26

2.4.2 Interactions between animals and vegetation 26

2.4.3 Biology-inspired models . 27

2.4.4 Discussion . 28

2.5 Conclusion . 28

3 Object placement in static landscapes 29

3.1 Technical background . 32

3.1.1 Data and assumptions . 32

3.1.2 Analysis and synthesis of point distributions with PCFs 34

3.2 Learning from arbitrary domains . 36

3.2.1 Compensation of missing points 36

3.2.2 Quantitative results . 37

3.2.3 Application to distribution inpainting 38

3.2.4 Application to distribution decomposition 38

3.3 Interactions between multiple classes . 39

3.3.1 Validation . 41

3.4 From points to disks . 41

3.4.1 Distinguishing important configurations 43

3.4.2 Saliency-based distance between disks 43

3.4.3 Processing disk distributions . 44

3.5 Improving convergence . 46

3.5.1 Variance-aware PCFs . 46

3.5.2 Control of convergence . 49

3.6 Results and applications . 49

3.6.1 Parameters . 49

3.6.2 Comparison with previous methods 50

3.6.3 Results . 52

viii

Table of Contents

3.6.4 Computation times . 54

3.6.5 Limitations and discussion . 54

3.7 Conclusion . 56

4 Towards animated worlds 59

4.1 Herd animation from photos: overview 61

4.1.1 Authoring interface . 62

4.1.2 Method and challenges . 62

4.2 Analysis and synthesis of static herds . 63

4.2.1 Data extraction from a single image 64

4.2.2 A PCF-based method for interactions 65

4.2.3 Editable descriptors . 66

4.2.4 Synthesis algorithm . 67

4.2.5 Descriptors as control tools . 69

4.3 Herd animation . 70

4.3.1 Global herd trajectory . 70

4.3.2 Generating individual movement 70

4.4 Results and discussion . 71

4.4.1 Results . 71

4.4.2 Limitations . 73

4.5 Towards herd animation from video . 75

4.5.1 Extracting meaningful data from video clips 75

4.5.2 Avenues for animated synthesis methods 77

4.6 Conclusion . 78

5 Authoring complete ecosystems 79

5.1 Case study: effect and visualization of skiers 82

5.1.1 Context . 82

5.1.2 Skiers in snow-covered landscapes 83

5.1.3 Discussion . 85

5.2 Populating a complex ecosystem: overview 86

ix

Table of Contents

5.2.1 Input and output . 87

5.2.2 The Resource Access Graph . 88

5.2.3 Processing pipeline . 88

5.3 Resource Access Graph . 89

5.3.1 Definitions . 90

5.3.2 Initialization with the vegetation layer 92

5.3.3 Animal accessibility maps . 92

5.3.4 Computing the next level . 92

5.4 Competition algorithm . 93

5.4.1 Survival constraints . 93

5.4.2 Solving for a Food Chain Level 94

5.5 Ecosystem-aware landscapes . 96

5.5.1 Generating a map of trails . 96

5.5.2 Daily itineraries and 3D instantiation 97

5.6 Results and discussion . 99

5.6.1 Interactive editing and exploration 99

5.6.2 Results . 99

5.6.3 Validation with expert users . 100

5.6.4 Limitations . 103

5.7 Conclusion and future work . 105

6 Conclusion 107

6.1 Contributions . 107

6.2 Future work . 108

Appendices 111

A Ecosystem parameters and notations 113

B Ecosystem user study 117

Bibliography 118

x

Chapter 1

Introduction

Contents
1.1 Ecosystems in Computer Graphics . 1

1.1.1 Control . 2

1.1.2 Main challenges in populating landscapes 3

1.1.3 Unified ecosystems . 3

1.2 General overview . 4

1.2.1 Outline . 4

1.2.2 Publications . 5

Virtual worlds play an essential role in a growing number of multimedia content.
While limited performances restricted them so far both in terms of quality and quantity
of elements, new developments in hardware and algorithms have made virtual worlds a
central part of games, movies, animations, and much more in recent years. To match this
increased demand for virtual content, innovative methods have been created to boost the
productivity of the artists designing them, while retaining fine control over the result. In
this work, we specifically explore the living components of the world: ecosystems. We
present new methods focused on improving ease of use and artistic control, and designed
for the efficient authoring of complete virtual ecosystems.

1.1 Ecosystems in Computer Graphics

In this thesis, we use the term“ecosystem”to refer to the aggregate of all living species in a
specific environment. While the word ecosystem has been extensively used in Computer
Graphics literature as a shortcut for plant ecosystems, the term initially refers to all
living entities including both fauna and flora. Although vegetation may have the overall
highest impact on the visual appearance of an ecosystem, animals are vital for ecosystems
to be considered truly complete. As the major dynamic entities in a landscape, animals
can be used to naturally bring focus on specific areas of a landscape, provide additional
information on the ecosystem, and give an overall much livelier feel to the scenery. Indirect
information can also be used for artistic and visualization purposes: sounds of far away
animals, trails and tracks, or a freshly grazed field can all convey plenty of information
on the environment without directly showing the animals themselves.

1

Chapter 1. Introduction

1.1.1 Control

All the challenging problems considered in this thesis were tackled while keeping in mind
the usability of the solution, i.e., its ability to conform to the initial intention of the
user. To best enforce usability and enable the combination of user control and help from
the system towards consistency, we also made sure to restrict input information required
from the user to partial data. We use this term to encompass all data that exhibit low
requirements from the user: for example, data that can be incomplete or corrupted (low
quality an quantity), that is widely available (e.g., images on the internet), or that can
easily be created manually. We did not consider big data, such as those used for deep
learning, where very large quantities of potentially annotated data is required.

Originally, the absence of effective authoring tools meant that most of the creative
work had to be done manually by artists, for every detail of a project. This places an
important burden on creators, as a significant portion of their time is spent on simple tasks
instead of being dedicated to the more creative aspects of their work. Since then, three
main approaches have been introduced in Computer Graphics to reduce the workload of
artists and help them in their creation.

The first, inverse procedural methods, attempt to reverse the usual procedural pro-
cesses. Standard procedural methods start from a set of parameters that the user has to
manually enter to generate a result. If the result is different from what the user expected,
they update the parameters to bring the result closer to their initial vision. Unfortu-
nately, this process quickly becomes tedious depending on the number of parameters,
and linking a change of parameter to a specific impact on the result also becomes difficult
as the complexity of the simulation increases. Inverse procedural methods reverse this
problem, and try to provide mechanisms to automatically find the set of parameters that
produce a given result when a specific generation technique is used.

In contrast, example-based methods start from an exemplar, but try to directly syn-
thesize similar looking results instead providing the user with parameters for a specific
algorithm.

Finally, interactive modeling relies on the user to interactively edit the generated
content until a specific result is achieved. The edits can take the form of labels or con-
straints to guide the algorithm, or even direct modifications to the result to fit the needs
of the user. This category of methods have the constraint of interactive performances for
the synthesis algorithm, or the ability to continue the synthesis at specific points after
edits from the user.

As the generation of ecosystems is a vast topic with many different facets, finding
the right control systems for each task is a challenge in itself. We draw from both
example-based methods and interactive modeling depending on the applications and type
of available data, to steer towards the best possible balance between accuracy and user
control.

2

1.1. Ecosystems in Computer Graphics

1.1.2 Main challenges in populating landscapes

Instantiating objects, and possibly animating them over full virtual landscapes has been
a long-standing problem in Computer Graphics. Even without considering animals, there
has been a high demand for detailed virtual environments, populated with many objects
such as plants and stones, for the background of media content.

While simulation methods have been developed for the particular case of growing
and competing vegetation, they usually require long synthesis times and are rarely suited
for high level user control. They may also not be compatible with other static elements
that compose landscapes, such as rocks, branches, or man-made structures. Statistical
methods no not depend on a specific type of content, and have been used for this pur-
pose in the past. However, many fail to consider the spatial extent of objects, which in
turn prevent them to accurately reproduce intricate relationships between elements. For
example, the size of trees is the main variable needed to understand the distribution of
resources between two plants, and is essential to model overlaps such as plants thriving in
the shadow of others. Instantiation of animals and humans suffer from similar problems,
but is made more complex by the dynamic nature of these entities. A moving object
implies a direction of movement, which in turn makes an isotropic representation of such
a distribution ill-suited. Dynamic elements also exhibit complex behaviors, that depend
on a wide variety of variables related to the species and context, such as their speed,
orientation, local density, vitality, and so on.

Taking all these attributes into account makes instantiation of elements in a land-
scape a difficult task, that is made even harder when control over the result is required.
In this thesis, we use an example-based approach to bypass the cost of simulation and
give an intuitive control over the result to the user.

1.1.3 Unified ecosystems

While Computer Graphics research on complete ecosystems is much less developed than
local instancing, they can be used for the same applications. However, these two scopes
present some key differences. For example, animals play a crucial role in such a context,
as the expansion of plants would only be regulated by self competition without them.

While pure simulation approaches can in theory model a full ecosystem, they also
present major drawbacks. Apart from the difficulty of coupling it with user control,
stability is the main challenge for simulations. Indeed, the considerable number of pa-
rameters that need to be expressed in a complete ecosystem makes it nearly impossible to
establish links between a single parameter and its impacts at the end of the simulation.
Furthermore, the overwhelming majority of parameter configurations would lead to the
extinction of one or more species, eventually bringing the ecosystem to a mostly dead
resting state. The flexibility of the method is also important: modeling plants and ani-
mals as completely different systems could introduce inequalities in the framework, and

3

Chapter 1. Introduction

make it harder to naturally represent interactions between species.

An alternative approach to simulation methods can be devised to model ecosystems,
in order to avoid their extensive computational costs. Large-scale solutions present such
an alternative, where the main interactions considered are not between an element and its
neighbors but between regions across the whole terrain. In this case, the precise instan-
tiation of elements is not required during computations, as long as general constraints
on the global population are satisfied. This can help simplify the computations, but re-
quires a separate instantiation step to allow the user to visualize and explore the result
afterwards.

If stability and computation issues can be solved, complete ecosystems techniques
have the potential to open the way to new applications. For example, besides the expected
use in entertainment and simulations, scientific study of inaccessible ecosystems can be
made possible with such a system. It could also have future applications in museography,
to allow visitors to visit unusual or now extinct ecosystems in real time.

1.2 General overview

This thesis presents novel methods dedicated to the authoring of various aspects of virtual
ecosystems, from local instantiation of vegetation and animals to global control over a
consistent, complete ecosystem.

1.2.1 Outline

After detailing the state of the art related to ecosystems in Computer Graphics (Chap-
ter 2), we present our work in three chapters, each operating at different scales or on
different subjects. The first two chapters of this thesis focus on direct instantiation of
elements at a local scale, applied respectively to static and dynamic elements of the land-
scape. The third chapter targets ecosystems at a whole, and brings consistency between
their different components at a global scale.

Static landscapes. We consider in Chapter 3 the placement of static objects in virtual
worlds. This problem is critical for the creation of detailed virtual worlds, as it can be
used for many different objects ranging from rocks and dead branches to trees and even
man-made structures. We focus on providing a method adapted to objects with a variety
of sizes, which may or may not exhibit specific constraints regarding their overlap, while
relying on small quantities of data to facilitate user control. After detailing the necessary
technical background on Pair Correlation Functions, used as a base for this chapter, we
describe the different aspects that are necessary to the creation of such a method. We
apply our approach to the analysis and synthesis of various arrangements of elements,

4

1.2. General overview

including direct applications to generation of vegetation. We validate our results by
comparison with other methods with similar objectives.

Animated worlds. Chapter 4 discusses the extension of this framework to the analysis
and synthesis of animated elements, such as animal herds. In comparison with static
elements, the dynamic nature of herds makes efficient authoring a quite different problem.
Because control over the result and ease of use remains our focus, we solve this issue by
separating the control and animation in two separate parts of the approach. Following
this logic, we extend previous methods to allow synthesis of static herds, where size,
orientation, and density of animals are important. Standard methods in crowd simulation
are then adapted to allow seamless interpolation between the generated static herds,
producing a fully controlled and animated herd as a result. To further increase control,
we allow the use of real photographs of animals as input through a semi-automatic method
able to extract information from pictures. The output of the method is compared with
the input photographs, and control over the different parameters are demonstrated with
custom results. We finally show that an extension of this model to a fully animated
method is possible, using video clips as input to gather additional information about the
movements within the herd.

Ecosystems and interactions. In Chapter 5, we step away from local instancing to de-
velop a global, unified framework for the authoring of complete ecosystems. After demon-
strating the impact of dynamic elements on their environment with a case study of skiers
on a snow-covered landscape, we detail the different interactions between the terrain,
vegetation and animals in a full ecosystem. The work in this chapter was realized in col-
laboration with a team of paleontologists, who contributed through both data and insight
about the interactions that take place within an ecosystem. We provide user control by
allowing manual editing of data at any step of the pipeline, and resuming computations
with the updated data. At the end of the process, our system outputs a stable ecosystem
that can be interactively explored in 3D, showing vegetation, animals, and their impact
in the form of trails and freshly grazed vegetation. We validate our results with a user
study operated on both artists and scientists, and with comparisons with expected results
that were hand-made by experts.

1.2.2 Publications

The research presented in this thesis have either been subject to publication, or is a work
in progress expected to be submitted soon.

� Chapter 3: The main content of this chapter has been previously published in
Computer Graphics Forum and presented at Eurographics:

5

Chapter 1. Introduction

– Pierre Ecormier-Nocca, Pooran Memari, James Gain, and Marie-Paule Cani.
Accurate synthesis of multi-class disk distributions. In Computer Graphics
Forum, volume 38, pages 157–168. Wiley Online Library, 2019

It has been extended and contextualized with content from another collaboration
on a similar topic, presented as a short paper at Eurographics:

– Baptiste Nicolet, Pierre Ecormier-Nocca, Pooran Memari, and Marie-Paule
Cani. Pair correlation functions with free-form boundaries for distribution
inpainting and decomposition. Eurographics 2020 short paper proceedings,
page 4, 2020

� Chapter 4: This chapter has been published in Computer Animation and Virtual
Worlds and presented at CASA:

– Pierre Ecormier-Nocca, Julien Pettré, Pooran Memari, and Marie-Paule Cani.
Image-based authoring of herd animations. Computer Animation and Virtual
Worlds, 30(3-4):e1903, 2019

It has been extended with work in progress demonstrating an avenue to extend such
an approach to animated herds. As this part has not been completed, it does not
include final results. A submission of this work is expected in the near future.

– Pierre Ecormier-Nocca, Julien Pettré, Pooran Memari, and Marie-Paule Cani.
Authoring animal herds through short video clips. Work in progress, to be
submitted.

� Chapter 5: This chapter has been submitted before, but is currently in the process
of being extended and resubmitted. It was realized in collaboration with other
researchers, a team of paleontologists who provided data and knowledge, as well as
engineers who helped on the visualization.

– Pierre Ecormier-Nocca, Guillaume Cordonnier, Philippe Carrez, Anne-Marie
Moigne, Pooran Memari, Bedrich Benes, and Marie-Paule Cani. Authoring
Consistent Landscapes with Flora and Fauna. Work in progress, to be submit-
ted.

In the context of this thesis, a section from a different collaboration, published in
Computer Graphics Forum and presented at Eurographics, has been added as a
case study of an effect similar to the one seen in the main chapter:

– Guillaume Cordonnier, Pierre Ecormier, Eric Galin, James Gain, Bedrich Benes,
and Marie-Paule Cani. Interactive generation of time-evolving, snow-covered
landscapes with avalanches. Computer Graphics Forum, 37(2):497–509, May
2018

6

Chapter 2

State of the art

Contents
2.1 Distribution analysis and synthesis . 8

2.1.1 Point distributions . 8

2.1.2 Multi-class and shape aware solutions 10

2.1.3 Discussion . 11

2.2 Modeling vegetation . 13

2.2.1 Generation of plants . 13

2.2.2 Simulation . 14

2.2.3 Statistical approaches . 16

2.2.4 Discussion . 17

2.3 Animation of creatures and crowds . 17

2.3.1 Animation of individual creatures 18

2.3.2 Crowd simulation . 19

2.3.3 Crowd animation . 22

2.3.4 Path planning . 23

2.3.5 User control and authoring . 24

2.3.6 Discussion . 25

2.4 Ecosystems and self-interacting models 25

2.4.1 Joint modeling of terrain and vegetation 26

2.4.2 Interactions between animals and vegetation 26

2.4.3 Biology-inspired models . 27

2.4.4 Discussion . 28

2.5 Conclusion . 28

7

Chapter 2. State of the art

We present in this chapter an overview of previous research that has been used
to place content such as objects, vegetation, and animals into virtual worlds. We first
consider the creation of purely static landscapes. In this case, the process can be reduced
to one of object placement in space, and has been extensively studied through the analysis
and synthesis of point distributions (Section 2.1). While this approach can be used for
learning and synthesizing the placement of all static objects, more specialized methods
have been developed to tackle the generation of plants, from individual ones to ecosystems
(Section 2.2). As virtual worlds are not limited to static elements, the movement and
behaviors of both animals and humans have also been broadly studied in the past. These
works will be detailed in Section 2.3. Finally, a few methods study the interaction between
these different components, and will be presented in Section 2.4.

2.1 Distribution analysis and synthesis

Object placement in a scene, while used in a wide variety of Computer Graphics problems
for decades, remains a difficult challenge. Although the synthesis of specific patterns has
its own applications, we will focus on the task of learning these patterns from examples,
in view of recreating them. We present in this section the state of the art and various
applications of point distributions, before moving on to arrangements of shapes, where
the extent and orientation of elements need to be considered.

2.1.1 Point distributions

The purpose of point sampling is to dynamically generate a set of points that embodies
specific properties. It is widely used for stippling [MALI10, DSZ17, MAAI17], but also
for rendering [Coo86, SJ13], remeshing [YLL+09, YW13, YGJ+14] and texture synthesis
[DMLG02, IMIM08]. As one common requirement is to match the spectral profile of
blue noise, there have consequently been many improvements to the state of the art
in this area. For example, both [BWWM10] and [LNW+10] present improvements in
computation time, by developing parallelized formulations of previous point synthesis
algorithms. Blue noise synthesis methods have also been extended to new contexts such
as anisotropic settings [LWSF10], or to problems where non spatial features also have an
important place [CGW+13] by drawing inspiration from the bilateral filtering technique
usually used for images. The analysis process has also seen similar improvements.

Point sampling synthesis methods can also be applied to general distributions instead
of only predetermined ones. Example-based synthesis aims at deriving from a given
representative input, an output that captures key visual aspects of the original, but
which differs in certain specifics such as having larger extent or a constrained boundary.
To achieve such a goal, different approaches are used depending on the application and
constraints, and usually depend on the support used to encode information and the

8

2.1. Distribution analysis and synthesis

Fig. 2.1: After extracting Pair Correlation Functions from the input example (middle),
a distribution with a similar appearance (right) can be synthesized by matching the
curves [ÖG12].

selected synthesis algorithm. Discrete representations usually rely on histograms to count
the number of samples appearing at different distances in the input exemplar. Since the
histogram bins can have relatively large sizes, this allows for a fast analysis and low
memory footprint, at the cost of precision in the output. Synthesis on such supports is
usually done via the Metropolis-Hastings algorithm [HLT+09, EVC+15], where points are
continuously added and removed at different probabilities based on convergence, or with
dart throwing [GLCC17], by adding new points at random locations and either accepting
or rejecting them to steer towards the target distribution.

In contrast, continuous representations for the distributions are heavier to store and
compute, but offer higher precision and exhibit important properties to overcome sen-
sitivity to noise and varying initial conditions. While the synthesis algorithms used for
discrete supports can still be used, continuous representations support the computation of
an analytic gradient, which in turn allows the use of robust solvers like gradient descent.
Once a first estimation of the result is computed, this can be used to refine the solution
by gradually moving the points towards their optimal position, resulting in a much more
accurate solution.

Zhou et al. [ZHWW12] proposes a method using such a support, which relies on
the spectral representation of a distribution to generate point distributions matching
a user-defined spectrum. [ÖG12] uses an alternate 1D representation of the spectrum,
namely Point Correlation Functions or PCFs, for the analysis and synthesis of a point
distribution. They encode the point density depending on the distance between samples,
and exhibit many interesting properties such as scale invariance, robustness to noise, and
a strong characterization of the encoded distributions. As this approach has been used
and extended for multiple applications throughout this thesis, the theoretical framework

9

Chapter 2. State of the art

on which it lies will be explained in detail in Chapter 3. PCFs have later been used
for interpolation purposes between input exemplars by [RÖG17]. A functional sum-of-
Gaussians was also used by Roveri et al. [RÖM+15] in the context of discrete, repetitive
structure synthesis. While most work in this area focuses on distributions across a 2D
plane or surface, one exception is the synthesis method of Lagae and Dutré [LD06], which
supports Poisson sphere distributions in 3D space using an efficient tiling algorithm. More
recent solutions such as [LSM+19] use deep learning techniques to provide efficient point
sampling methods even in high dimensions. By transferring most of the computation time
for a spectrum to the training phase, the method allows the synthesis of very high sample
count at interactive rates. Recent neural network-based methods such as [TLH19] have
also been used to accurately reproduce local details and regular patterns, a consistently
challenging feature for previous methods.

2.1.2 Multi-class and shape aware solutions

One of the main problems with these approaches is that they do not effectively model
interrelationships between classes of elements, and are mostly limited to distributions of
points. As such, they are unable to reproduce more complex distributions where elements
are placed differently based on their size, orientation, or display close interactions of
overlap.

On the multi-class front, Hurtut et al. [HLT+09] automatically classify vector ele-
ments based on histograms of appearance that consider area, orientation, elongation, ex-
tremities and edge crossings. Arrangements among and between classes are then analyzed
using multi-type point process statistics and synthesized with a variant of Metropolis-
Hastings sampling. [EVC+15], also based on Metropolis-Hastings sampling, tackle mul-
tiple classes by iteratively computing descriptors of the distributions for each class, with
respect to the previously instantiated classes. In a similar vein, multi-class variants of
blue noise sampling techniques have been proposed by Wei [Wei10] based on extended
dart throwing, and by Qin et al. [QCHC17] based on constrained Wasserstein barycenters.
However, these enhancements are specific to blue noise distributions.

Shape issues are addressed by Ma et al. [MWT11] who places multiple point sam-
ples per element and uses an energy-based iterative solver that supports extra terms to
capture user requirements (such as orientation fields). Similarly, Landes et al. [LGH13],
uses relative orientation and the distance between the elements’ geometry to reproduce
shape-aware textures. [GLCC17] supports distributions of disks, and discretizes different
interaction cases in bins depending on the proximity. This allows the system to learn and
synthesize distributions where elements are completely inside, mostly inside, and mostly
outside others, but does not provide a finer continuous control over their placement. All
of these methods that handle distributions of shapes generally also consider correlations
between elements across multiple classes.

Element packing can be seen as a specific type of arrangement synthesis, where

10

2.1. Distribution analysis and synthesis

Fig. 2.2: [MWT11] uses multiple samples per element to produce complex shapes (left).
[LGH13] instead takes into account relative position and orientation to synthesize distri-
butions of shapes with a defined orientation (right).

elements are placed in a limited space with the objective of filling the space following
predefined constraints. Taking shape and size into consideration is often an important
feature of such methods due to their action on a constrained space. While some of the
approaches to this problem are mostly automatic [GSP+07, XK07], other rely on user
input to influence the result. For example, [RRS13] represents elements by their outline
and asks the user to manually place three primitives to extrapolate the result, while
[HWYZ20] represents shapes as a collection of disks and uses brush strokes from the user
to compute the result.

2.1.3 Discussion

Example-based arrangement synthesis can be used to bring control over distributions
for many applications. Considering points is not sufficient to analyze and synthesize
complex shapes. Therefore, these methods have been extended to support different shapes
and more parameters (e.g., orientation). We use this idea, and more precisely the PCF
formalism as a starting point for an efficient placement of objects in virtual worlds in
Chapter 3. In particular, the smooth curves and their ability to generalize the encoded
information make this approach very suitable for applications where a precise placement
is required. However, the spatial extent of potentially large objects used in virtual worlds
makes the use of standard techniques where only points are considered difficult. After
extending PCFs for distributions of disks, we develop a similar approach for the case of
distributions of animals in Chapter 4, where the size, orientation and overall shape of the
distribution are all crucial for a convincing result.

11

Chapter 2. State of the art

Input [LGH13] [BBT+06] [IMIM08] [HLT+09] [MWT11]

Input [ZHWW12] [MWT11] [RÖM+15] [TLH19]

Fig. 2.3: Comparison of distribution synthesis methods for different shapes and regularity.
Please see [LGH13] (top) and [TLH19] (bottom) for more examples and details.

12

2.2. Modeling vegetation

2.2 Modeling vegetation

The generation and placement of vegetation has one of the most salient visual impact on
natural landscapes. As such, is has been the subject of an important body of work ranging
from the generation of geometry for individual plants to coordinated synthesis of entire
plant ecosystems, with competition for resources and interactions with the environment.

Fig. 2.4: Simple L-system demonstrating plant growth from a simple set of rules [PH95].

2.2.1 Generation of plants

Fig. 2.5: Bush-like plant
generated from L-systems
[PLH+90].

Modeling the geometry of trees and individual plants, while
not directly in the scope of this thesis, is a crucial step when
bringing life to virtual worlds. While manually creating the
models of plants is possible, generative methods can be used
to bring diversity, and drastically reduce modeling time.

One of the first and main approaches to plant gen-
eration are the Lindenmayer systems, also known as L-
systems [Lin68, PLH+90]. This formalism, operating on re-
cursive replacement of strings of symbols following a defined
set of rules, has been used to generate wide variety of plants
and has been at the foundation of decades of research in the
modeling of vegetation. Figure 2.4 shows an example of a
simple L-system used to simulate the growth of a plant. The
two rules used to define this system are show in the top left of the figure. Starting from
a simple stem, the plant is iteratively expanded using the rules until the final plant is
generated. It is worth mentioning that while L-systems have been initially designed and
used with vegetation in mind, their simplicity and versatility caused the system to be
ported to many other areas of research, such as the generation of road networks [PM01]
or buildings [MWH+06].

13

Chapter 2. State of the art

In order to allow interactions of plants with the environment during generation, and
as a consequence produce more realistic results, Měch and Prusinkiewicz [MP96] ex-
tended this concept to Open L-systems. This version of the formalism is based around
bi-directional communication between plants and the environment, allowing the simu-
lation of competition for resources and responses to external events (i.e., presence of
obstacles or change of day length). Open L-systems have been used for entire plant
ecosystems in the work of Deussen et al. [DHL+98], by simulating competition between
plants and environmental constraints for large numbers of plants.

Different approaches more closely related to simulation have also been developed,
particularly adapted to specific plant species. For the generation and growth of lichen,
[DGA04] presents a method that first seeds lichen on a 3D object. The lichen is then prop-
agated in a realistic fashion over the model, taking into account space limitations, mois-
ture, lighting, etc. Hädrich et al. [HBDP17] model climbing plants as linked anisotropic
particles. This allows plants to be physically simulated in real time, making the method
prone to user interaction and authoring. By semi-random movement and duplication of
the particles, the plants are progressively grown based on their environment and physical
constraints.

Fig. 2.6: [HBDP17] uses a particle-
based approach to physically simu-
late climbing plants.

While simulation and procedural methods are
designed to produce realistic results, they can be
harder to accurately control. L-systems for exam-
ple, while flexible, require the user to manually en-
ter a set of rules if a specific result is required. To
mitigate this problem, some approaches have been
designed with the issue of control in mind. Both
[PMKL01] and [WBCG09] address this problem by
allowing a user to control the output of the method
using a sketch of the silhouette of the plant, respec-
tively by treating it as additional constraints for the
procedural rules or by a recursive manual design of
the plant outline from the full species to individ-

ual leaves. Both methods are of course coupled with biological knowledge to ensure a
plausible result. Beneš et al. [BAS09] propose a similar concept providing control over
generated plants by constraining plant growth with 3D meshes instead of 2D sketches.
Control and ease of use can also be provided in the form of example-based methods,
where the system is tasked with an approximate reproduction of a plant provided by the
user [SPK+14]. This concept allows a quick generation of diversity in a scene, provided
that the user is able to contribute the initial exemplars to the system.

2.2.2 Simulation

Plant ecosystems have been addressed mostly through the simulation of competition
for resources. The Eulerian approach to simulation encodes plant ecosystems in grids,

14

2.2. Modeling vegetation

Fig. 2.7: Three plant ecosystems of different biomes generated by [MHS+19], respectively
a deciduous forest, a boreal forest, and a rain forest.

and has been used for interaction with natural phenomena [CGG+17], or for modeling
plant growth through cellular automata. In contrast, Lagrangian simulations simplifies
individual plants as particles in order to compute relationships and interactions. This
class of methods allows a precise instantiation of vegetation and will be summarized here.

After Deussen et al. [DHL+98] first used the competition of individual plants to
generate plant distributions for large landscapes, the idea was extended to multilevel
simulations by [LP02]. In this work, the concept of multiset L-systems is introduced,
allowing the formalism to handle interactions of plants at different scales: the rules used
operate on multiple sets of strings instead of one. This is used to represent multiple plants
at once, and allows strings to be added or removed from the set, thus providing control
over births and deaths in the population. The concept of mutli-scale plant ecosystems
was recently further extended to layered ecosystems [MHS+19].

Competition for resources has been expanded to include effects where larger species
limit the access to resources of the smaller plants in their vicinity. This process, known as
asymmetric competition, is responsible for inhibiting the growth of smaller species when
resources are shared. In practice, [AD05] models this phenomenon by expressing zones
of influences for each plant, and considering overlaps between different zones as regions
where resources are shared. The type and variety of resources considered for competition
later increased to take into account elements such as sunlight, temperature, soil type and
viability, and free space [Ch’11].

In an effort to combine the benefits of simulation with user control, Bradbury et
al. [BSK+15] develops both local (plant editing, cut-copy-paste, spatial restriction of
simulation, density control, etc.) and global (automatic mapping of manually created
species to corresponding 3D models) operators that can be applied to plant ecosystems.
[GLCC17] also offers some form of user control over the result, by providing the user with
semantic brushes. After painting the desired features such as age, variability or density
over the terrain, the user is able to smooth results with a healing brush that bring the
different parameters back closer to the underlying terrain conditions.

15

Chapter 2. State of the art

Fig. 2.8: Distribution synthesis applied to virtual worlds. [EVC+15] learns correlations
between multiple objects (trees, grass, rocks) and provides a smart brush to allow the
user to paint the terrain (left). [GLCC17] takes the size of trees into account for a more
accurate placement (right).

2.2.3 Statistical approaches

Instead of running a potentially slow simulation when generating vegetation, some meth-
ods opt to directly synthesize the arrangement of plants based on a statistical represen-
tation of the target ecosystem. This representation is usually constructed from data or
previous knowledge, and is encoded in such a way that makes the reconstruction of this
data possible. These methods work on the assumption that it is possible to generate
plausible plant configurations without intermediate steps by encoding and reproducing
meaningful information about the relationship between plants from the input.

For example, a Wang Tile set, composed of multiple individual tiles with matching
borders, is designed to be able to seamlessly tile a potentially infinite plane by succes-
sively placing tiles where their borders match. This concept has been adapted for plant
ecosystem synthesis, by creating Wang Tiles corresponding to small groups of plants, and
using them to efficiently tile a terrain [AD06]. For small details such as mushrooms, grass,
twigs and rocks, Guérin et al. [GGG+16] encode collision information between elements
in a custom structure named Ghost Tile. Once this structure is constructed, the method
allows fast instantiation of heavily entangled details aware of collisions without requiring
a full simulation.

Worldbrush [EVC+15] does not use an intermediate structure, and directly encodes
the interrelationships within and between categories of scene elements (such as rocks,
trees, roads, and buildings) as distributions of points. Artists can then use smart brushes
to paint these distributions onto landscapes. In this framework, analysis is conducted us-
ing an adaptation of point process statistics to small input exemplars and a user-defined
hierarchy of classes, and synthesis is achieved with a modified Metropolis Hastings algo-
rithm. Ecobrush [GLCC17] extends this concept to address the problem of ecoplacement
– populating landscapes with plants whose attributes (such as species, position and age)
are ecologically sound. Here, input examples are automatically generated using sand-box

16

2.3. Animation of creatures and crowds

ecosystem simulations. The focus is on trees and shrubs with potentially overlapping
canopies, which represents an instance of the more general problem of analysing and syn-
thesising distributions of overlapping disks. However, Gain et al.’s solution is not general:
overlap cases are modelled using three extra bins in the Metropolis Hastings distance his-
tograms, to respectively represent complete inclusion, and more than and less than half
inclusion. Moreover, since disk position and radii are not jointly analysed, young and
mature trees of the same species are separated into different classes, which prevents any
mechanism for continuous optimisation of tree radii at the synthesis stage.

2.2.4 Discussion

While the generation of individual plants has been a well studied problem for many years,
generating consistent, large ecosystems while providing user control is still a challenge.
The methods typically used for the generation of plant ecosystems can be placed on a
spectrum starting from pure simulation techniques, which provides high realism but little
control, to purely manual methods where an artist has perfect control over the result at the
cost of biological consistency. Statistical approaches such as Worldbrush [EVC+15] and
Ecobrush [GLCC17] provide a middle ground solution by giving control to the user, while
giving them support to guarantee consistency. However, the constraint of user control
and interactivity leads such methods to make approximations in their synthesis to reduce
computation time. In Chapter 3, we attempt to alleviate this issue by using an example-
based method for user control while focusing on providing results that remain as accurate
as possible. In particular, we focus on close interactions and overlaps between plants, thus
indirectly providing support for complex behaviors such as asymmetric competition and
ecological niches. We later step back and focus on the interaction between vegetation and
animals to consider a full ecosystem (Chapter 5), and model their long-term placement.
At such large scales, we switch to an Eulerian approach, more adapted to the integration
of vegetation in a larger, global system where a precise position of plants is not necessary.

2.3 Animation of creatures and crowds

The placement and animation of dynamic elements in a world is often considered a prob-
lem standing on its own, with little interaction with other constituents of their environ-
ment. While a good portion of the research in this field has been made with humans in
mind, some of the approaches can also be applied to animals despite not being initially
designed for it. A few methods have also been specifically designed for various types of
animals.

17

Chapter 2. State of the art

2.3.1 Animation of individual creatures

While motion synthesis and control of individual animals is out of the scope of this thesis,
it remains a critical point to consider during the process of creating lively and convincing
worlds. In practice, this is generally either done manually by artists, or in contrast
automated thanks to the use of motion capture tools. However, these approaches quickly
become time and resource intensive as the number and complexity of models to animate
increase. For this reason, we will only detail here specific automatic and semi-automatic
methods that eases the creation of complex animations. For a more detailed overview
geared towards quadrupeds, please see [SRH+09].

Fig. 2.9: Various activ-
ities can be performed:
deadlift, cartwheel, kick
[LPLL19].

In order to facilitate the animation process, many meth-
ods that operate at different stages of the pipeline and on
different types of input have been developed. At the very
first step, [RFDC05] present a method to semi-automatically
construct a quadruped skeleton using a morphable model.
The model, based on manually made reference skeletons,
can be easily adapted to different species by selecting a
few key points on a reference image of the animal and
is then automatically adjusted and ready to be animated.
If an animation needs to be directly generated, [FRDC06]
and [XWL+08] provide methods to extract animations from
videos and images, respectively. They operate on a similar
principle of extracting silhouettes of animals with help from
the user, and finding an walk or run cycle in the resulting
images. [FRDC06] is also able to match a 3D model on the
input, while [XWL+08] is geared towards animation on 2D
images or billboards.

When learning from image or video example is not
an option, animations can also be computed by knowledge
or learning based models. [YLvdP07] provides a simple
knowledge-based model for biped locomotion control. The
approach makes use of a graph of poses in a normal walk
cycle, where target angles for various joints are either ex-
pressed in world-space or relative-space depending on their
role. This, coupled with feedback from the environment, al-
lows the creation of a controller robust to slight variations
of the terrain and disrupting forces. The initial publication
of [Sim94], popularized the concept of automatically learn-
ing motions such as walking, swimming or jumping from the
morphology and muscles of a creature. This diverse set of
effects and creature was made possible with heavy use of
genetic algorithms, used in conjunction with specific fitness
values for each problem. Since then, physically and muscle-

18

2.3. Animation of creatures and crowds

based locomotion learning schemes have been continuously improved and now produce
results of impressive quality and for many different activities [GvdPvdS13, LPLL19].
Please see the following survey [GPEO12] for a more detailed overview of the developed
methods in this field.

Recent advances in deep learning techniques have also been put to use for creature
animation. By learning animation cycles and transitions from motion-capture data, con-
trollers that provide realistic real-time animations of humans [HKS17] and quadrupeds
[ZSKS18] have been developed. On top of providing lifelike motion controllers that react
to user input, these methods are also able to handle variations of the terrain thanks to
the variety of input motion-data used as learning examples.

2.3.2 Crowd simulation

Fig. 2.10: Separation, cohesion,
and alignment are the three
rules used for a simple steering
behavior in Reynolds’ model
[Rey99].

Many different approaches have been explored to allow
crowds or groups of creatures to move in a realistic fash-
ion. When based on a simulation, most methods devel-
oped for this task belong to the family of microscopic
simulations, where each element is modeled individually
using a fixed set of rules. This results into systems based
on only a few customizable rules that rely on emergent
behaviors to accurately reproduce the complex forma-
tions present in real life. However, due to their emer-
gent and evolutionary nature, most of these algorithms
tend to be difficult to control or author without being
explicitly designed for it.

Force-based The pioneer work in microscopic simula-
tions [Rey87], later expanded in [Rey99], was a force-
based model at the origin of subsequent developments
and improvements for decades. In this model, tailored
to flocks of birds and schools of fishes, flocks are rep-
resented as a group of individual entities each governed
by a set of rules. The rules are defined as simple com-
putations based on the current disposition of neighbors
around each entity, and output a force to be applied to
individuals. For a simple coherent behavior, rules rep-
resenting separation, cohesion, and alignment between
individual elements are applied to each entity. Similar
models have been specifically developed for pedestrians,
representing intentions of individuals as forces [HM95],
or more recently modeling individual personalities to in-
crease the range of behaviors [PAB07, DAPB08].

19

Chapter 2. State of the art

Fig. 2.11: Synthetic vision is simulated to allow agents to use information about their
environment and find a path towards their target [OPOD10].

While force-based approaches are an efficient way to model coherent flocks at a
reduced cost, they also suffer from limitations: the produced movements are characteristic
of this kind of method, which can result in an unrealistic appearance depending on the
creature represented. It can also introduce deadlocks and unnatural configuration when
dealing with collision avoidance, both between entities and with the environment.

Velocity-based In order to improve the collision avoidance mechanisms of force-based
approaches, velocity-based methods [PPD07, vdBGLM11] take into account both the
position and movement of entities instead of just their position. From the current position
and velocity of neighboring entities, their expected movement is compared against a map
of reachable space for the current agent. This allows the computation of sets of parameters
that result in a collision free motion, which are then scored and compared to return the
best available solution.

Vision-based In an effort to get closer to the actual behavior of human crowds, vision-
based approaches mimic the though process of humans navigating crowds or obstacles by
providing the agents with synthetic vision [OPOD10, DMCN+17]. Information such as the
perceived angle between trajectories or the time to collision are merged and used to detect
potential obstacles and find alternate paths to avoid collisions. Alternate implementations
of a similar system have been developed using the optical flow instead of a virtual camera
[LCMP19], allowing the method to be used by robots and other entities where information
about the other agents or environment is not available.

Compared with purely geometrical approaches, these methods tend to produce more
realistic behaviors for crowds of humans and allow the formation of patterns such as
queues of agents moving in the same direction. However, these results come at the cost
of a much larger computational times.

20

2.3. Animation of creatures and crowds

Fig. 2.12: Crowds in various situations
(right) are reproduced from input video
data (left) [LCHL07].

Data-based Data-based methods use trajec-
tory or position information, usually extracted
from videos, to configure and calibrate their
models. [LCF05] build a graph from clus-
tered input video clips, which encodes the abil-
ity to smoothly transition from one formation
to another. Simpler force-based models such
as [Rey99] that was presented previously are
then used to fill in the gaps between states.
Other methods [LCHL07] also learn formations
and trajectories from input video clips, but
provide their own process to later reproduce
the learned features. The different behaviors
learned this way can also be blended together
to produce smooth transitions between forma-
tions [JCP+10].

One major downsides of such methods is
the difficulty to gather input data. Indeed,
they are often manually produced by filming
test spaces where humans interact in order to
provide favorable and controlled conditions for later treatment. This largely limits the
quantity and variety of data available, which, coupled with the difficulty such models
have with handling previously unseen situations, reduces their usability.

Fig. 2.13: Density, goal and boundary
grids (left) are used to compute a po-
tential field (right), in turn used to guide
the crowd [TCP06].

Macroscopic simulation Contrary to micro-
scopic simulations, a few projects take the op-
posite approach of considering crowds as a sin-
gle, global phenomenon instead of solving con-
straints individually for each agent. Macro-
scopic simulations have modeled crowds as a
“thinking fluid” [Hug03], or as dynamic poten-
tial fields [TCP06] that are then used to advect
entities by using its gradient.

While these models are a good fit for
highly dense crowds, they are not relevant for
smaller individual groups or outlier behavior.
Indeed, outliers break down the concept of con-
sidering the entire crowd as one, which also
make it difficult to have precise control and
recreate specific formations within the crowd.

21

Chapter 2. State of the art

2.3.3 Crowd animation

While the objective of crowd simulation is to replicate behavior as realistically or effi-
ciently as possible, crowd animation instead aims at directly solving one specific crowd-
related problem. The problems that can be solved this way can be related to the ease of
use by a user, global efficiency of movement, and so on.

Animation patches have been widely used for this end in the field of crowd anima-
tion. They represent small clips of predefined animations created specifically for their
interesting features such as an interaction between characters or an ability to be looped
indefinitely. Patches are often used in part to offset most of the computations - the gener-
ation of the patches - as preprocessing, leaving only the need for them to be played back
at runtime. This can drastically reduce the resources required for a scene, and allows the
creation of arbitrarily large scenes at a small computational cost.

[SKSY08] uses patches to represent an interaction between two characters. These
patches can be played simultaneously to emulate interactions between more characters,
and chained to one another to create longer sequences of animations. Control of a char-
acter can also be given to the user, letting the system the freedom to place the patches
needed for appropriate actions with other entities. The idea is developed further by
[KHHL12], by giving patches a spatial presence in the virtual world, with entry points,
interaction constraints, and a polygon representing the area of effect of the patch. This
makes it possible to interactively deform patches by acting on the entry and exit points,
effectively increasing the diversity of the system. The projection of the patches also allow
for the detection and avoidance of collisions with the environment, for a more dynamic
result.

Fig. 2.14: [JPCC14] uses patches of
looping crowd animation to seam-
lessly animate large urban crowds
at reduced costs.

Patches have also been used for the creation
of collision free, large-scale environments such as
cities. In the work of [JPCC14], patches are used
to represent a looping animation of many pedestri-
ans walking in and out of a limited section of space.
Patches can be connected or swapped out if their
exit and entry points match both in position and
timing, preventing the end-user to see repetitions
and obvious patterns. This formulation of patches
also makes it possible to provide the user with an
intuitive sculpting interface to expand, shrink, cut,
connect and rotate patches. The patches are cre-
ated and updated to fit the user constraints while
retaining their original properties. This framework
is adapted in [JCC+15] as a global tool, where the

user instead paints the requested density and directions on maps. Here, the patches be-
come part of an optimization problem where all constraints get progressively satisfied as
optimization progresses. The result is an animation of a large environment populated

22

2.3. Animation of creatures and crowds

with pedestrians, with constraints completely editable by the user and satisfied at every
moment of the animation.

The topology of a scene can also be used as a tool for crowd animation. By first
computing its harmonic field, [BSK16] extract a Reeb Graph of the topology of the scene,
as well as a collection of guide lines around obstacles. The Reeb Graph is then used to
compute the maximal capacity of every available path, and deduce an optimal partition
of pedestrians on different routes. This can be used to compute a perfect evacuation plan
or routing system for complex environments.

2.3.4 Path planning

Path planning attempts to find a path as efficient as possible within the environment,
allowing an agent or group to reach its goal. While the term encompasses more traditional
methods used for pathfinding, path planning will be used here to refer to the narrower
field focusing on challenges specific to the navigation of groups or the interactions with
complex environments. We refer the reader to a survey on path planning, and more
broadly human motion trajectory prediction for more details [RPH+20].

Many path planning algorithms rely on the use of roadmaps, or navigation meshes,
which provide important information about the available paths in the environment.
[BBJA02], for example, constructs a roadmap specifically designed to accommodate the
passage of standard Reynolds-like [Rey99] agents. Multiple types of roadmaps can also
be layered to achieve a convincing result on dynamic environments [KBG+13]. In this
case, one navigation mesh is precomputed and only considers static geometry to provide
a global approximated path towards the goal. A second mesh is focused on dynamic
elements, and is updated as the simulation continues. It is used along with the static
navigation mesh to compute a more accurate local version of the path, adapted to pre-
viously unseen obstacles. Navigation meshes can also be created with other attributes in
mind, such as the local density of regions [PGT08, vTCG12] or their topology [vTP19].

For small groups or single individuals, an important focus is made on the interaction
between the object of the path planning and the environment. Small groups can for
example be represented as a deformable or hinged box [KO04] to simplify the computation

Fig. 2.15: Two agents finding a path in a complex, dynamic environment [KBG+13].

23

Chapter 2. State of the art

of valid paths. In this approach, the box can be either deformed and rotated, or bent
to accommodate for less accessible zones of the terrain. Once a path is found using the
simplified box, individual agents can be instantiated inside it, guaranteeing their ability
to fit as a single group through the computed path. Other models [KO12] focus not only
on the interaction with the environment, but also between different groups of humans.

2.3.5 User control and authoring

Specific group animation methods have been developed to address the problem of user
control and authoring of animations. They often focus on the ability for an end-user to
specify visual features that the group will exhibit. While the target visual requirements
could in theory be varied, they are in practice often limited to the shape of a group,
with a few approaches paying special attention to the transitions between shapes or their
density. In most cases, this problem can be split in three main stages: sampling the
position of entities on the target shape, finding correspondences between the source and
the target shape, and finally animating the individual entities from their position in the
source shape to their assigned position in the target shape.

A user-specified target shape can be populated with entities with the help of a
geometrical representation. This is usually done by computing a Voronoi tessellation
[ZZC+14], or a Delaunay triangulation [WZDJ14, XWY+15] of a given model. In these
works, [ZZC+14] also provides control over the density of entities by taking into account
a density function when computing the centroids of the Voronoi tessellation.

Other geometry-based approaches place a distinction between the inside of a shape
and its outline, on the assumption that the entities lying on the edge of a formation are
what ultimately define the shape, thus requiring special attention for optimal results.
[XJY+08], designed to model flocks of small flying animals, only places entities on the
surface on the 3D target mesh. After randomly sampling the surface of the mesh and
computing final positions using an energy minimizing iterative algorithm, entities are
matched by spherically projecting positions from one shape to the surface of the other,
and matching closest points. The work presented in [GD13] fills the interior of shapes

Fig. 2.16: A crowd changes its shape from an ape to a human while following a curve
[XWY+15]. An overview (top) and close-up (bottom) are shown.

24

2.4. Ecosystems and self-interacting models

instead of just their outline, but does so by first carefully placing entities along the edge to
accurately represent the formation, before running a custom discrete flood-fill algorithm
to place remaining entities.

Other methods also provide efficient tools for user control without following the tradi-
tional sample-match-animate pipeline. A spectral approach is used instead to handle this
problem in [TYK+09]. Formation are represented, and reconstructed, from the Laplacian
matrix of the Delaunay triangulation of the group. This formulation is used the encode
the adjacency relationships between close entities, and can be interpolated later on to pro-
duce smooth transitions between formations. [HSK14] also stands out when compared
with more standard pipelines, by using a mesh-based structure to represent crowds. The
mesh can be interactively manipulated by the user with the help of a multi-touch device,
allowing them to control the shape of the crowd and its pathway through the environment
at runtime. The mesh, directly affecting the members of the crowd that it represents, is
automatically distorted to interact with the obstacles while following the user-provided
constraints as closely as possible.

2.3.6 Discussion

We once again observe a spectrum similar to that of vegetation synthesis methods. On
one hand, agents in microscopic simulation methods have the potential to develop very
realistic behaviors, but are very difficult to control because of their large set of parameters
and reliance on emergent behavior. On the other hand, methods geared towards control
provide artistic freedom to creators, but often present a realistic result in limited scenarios
such as marching bands or military formations. In this thesis, we extend control oriented
approaches to the case of large terrestrial animals and pay a particular attention to issues
specific to animal herds, including preservation of the overall shape of the herd, relative
orientation of animals and distribution of density (Chapter 4). We study the behavior
of animals at a larger scale in Chapter 5, where we focus on computing the long-term
presence of animals based on their environment and model interactions in the form of
a simplified food chain. We also provide a visualization tool to interactively explore an
ecosystem with plants and animals, and allow the user to observe the daily activities of
herds.

2.4 Ecosystems and self-interacting models

Very little research have been dedicated so far to the modeling of interactions between
a terrain, vegetation, animals, and other phenomena. For specific problems, this issue
can be alleviated by visually displaying the result of the interactions without the cost
of simulation. When this is not possible, full systems have been developed to simulate
specific interactions. However, they are often restricted to feedback between vegetation
and environment or vegetation and animals.

25

Chapter 2. State of the art

Fig. 2.17: [CGG+17] simulates the evolution of the terrain and vegetation. Here, the
user successively adds sand and fires (200y), rainfall (265y), and humus (310y) before
resuming the simulation.

2.4.1 Joint modeling of terrain and vegetation

Some methods attempt to go beyond raw landscapes, and emulate the result of complex
interactions by adding specific details to the scenes. For example, [GPG+16] develops a
framework for the synthesis of details such as snow cover, icicles, fallen leaves or grass
tufts. This is achieved by the use of a database of environmental objects, able to act on its
surroundings through effects (addition of geometrical details) and fields (modification of
local variables, such as heat or humidity). As described in subsection 2.2.3, the addition
of details was also studied by [GGG+16] through the use of a custom collision structure
allowing efficient placement of entangled details.

At a larger scale, Benes et al. [BMJ+11] models the interaction of urban layouts
with plant competing for resources, while considering human urban management. By
computing manageability levels of city block, which quantify if a zone should be seeded
in a wild or controlled manner, the system is able to generate a balanced urban ecosystem
with plants and buildings.

A model handling the interaction between vegetation and other phenomena, includ-
ing terrain erosion, was proposed by [CGG+17]. Cordonnier et al.makes use of a layered
representation of the different resources present on the terrain, and introduce a stochastic
simulation where individual events are simulated one at a time, many times. This formu-
lation allows many different event types to be integrated in the system, such as rainfall,
fires, lightning, or tree growth. Control is also provided to the user in the form of local
editing of material quantities or properties when the simulation is paused.

2.4.2 Interactions between animals and vegetation

With the objective of improving realism and control over visual scenes, [BE03] proposed
the use of agents to simulate the action of humans and animals over vegetation. By
equipping each agent with sensors and a set of habits defined in a configuration file,
they are able to reproduce the effects of actions such as watering, cutting or walking on
plants. Using agents with different profiles, they show the impact of various actions on a
resulting plant ecosystem. Ch’ng [Ch’13] also adopts an agent-based system to simulate

26

2.4. Ecosystems and self-interacting models

the interactions between populations including vegetation, herbivores and carnivores.
If these agent-based approaches are able to model the variations of populations, they
unfortunately require manual tuning of a large number of parameters to properly function.
In their current state, they also lack means to take into account variations of the terrain
and other more high level constraints needed to model real animals.

Fig. 2.18: A plant ecosystem after
being affected by a herd of cows
[BE03].

More specific models have also been developed
to model the effects of insects on vegetation. In par-
ticular, [PH95] presents a model for plants based on
L-systems that can progressively wither as insects
eat their apical buds. Variations in the behavior of
insects can be added to this system to model dif-
ferent or more complex behaviors. The concept is
further developed by Hanan et al. [HPZS02], where
both plants and insects are modeled using the same
formalism of L-systems. This facilitates the expres-
sion of interactions between insects and vegetation.
Specifically, this work takes into account the defense
mechanisms of plants when modeling movement and
interactions of insects.

2.4.3 Biology-inspired models

Biologists modeling ecosystems designed predictive models for ecological niches of species,
allowing decision making for global resource management. We refer to research on the im-
pact of biodiversity on the workings of an ecosystem [Lor10], motivated by conservation
biology for ecology and environmental analysis, and to [SHL+17] for a recent compre-
hensive survey on dynamic ecosystem models of a forest landscape. We also refer to
the book [MNR+17] for comprehensive insights into mathematical modeling of ranging
patterns and occupancy dynamics.

More abstract models, like the Dynamic Energy Budgets Theory (also known as DEB
Theory) [Koo10], have also been developed based on biology. It is a unified framework
used to describe and model the different aspects of metabolism, and has already seen many
applications. Since this framework operates at the level of mass and energy requirements,
it can be used indifferently to model plants and animals, as well as their interactions.
However, the abstract nature of the theory makes it difficult to be used in Computer
Graphics, where specific spatial information about the ecosystem is required. This has
been attempted before [MLM+11], but, to our knowledge, has not led to a finalized
product.

27

Chapter 2. State of the art

2.4.4 Discussion

While some methods include interactions between multiple elements of a complete ecosys-
tem, they are unfortunately often limited to a single interaction type (e.g., vegetation
with environment [CGG+17] or vegetation with specific animals [BE03]). A tool allowing
the authoring of a complete ecosystem with plants and animals, while taking into account
their interactions and impact on their environment has, to our knowledge, never been cre-
ated in Computer Graphics. We propose a unified framework designed for this purpose
in Chapter 5, and with combined goals of user control, visualization, and the ability to
exploit preexisting ecological data (detailed in Appendix A) to guarantee consistency.

2.5 Conclusion

Research in modeling of ecosystems has seen extensive advances on multiple fronts in the
past decades. However, methods providing efficient authoring tools are scarce, and often
rely on a trade-off between control and plausibility. We attempt to bridge the gap on
this front by developing both easy to use and accurate methods to tackle the authoring
of static arrangements of elements (Chapter 3), and dynamic groups such as herds of
animals (Chapter 4). In an effort to unify different areas of research related to ecosystem
generation, we also develop in Chapter 5 a general pipeline that can be used for the
authoring of complete ecosystems. This includes the modeling of interactions between
the environment, vegetation, and multiple species of animals along the food chain.

28

Chapter 3

Object placement in static landscapes

Contents
3.1 Technical background . 32

3.1.1 Data and assumptions . 32

3.1.2 Analysis and synthesis of point distributions with PCFs 34

3.2 Learning from arbitrary domains . 36

3.2.1 Compensation of missing points 36

3.2.2 Quantitative results . 37

3.2.3 Application to distribution inpainting 38

3.2.4 Application to distribution decomposition 38

3.3 Interactions between multiple classes 39

3.3.1 Validation . 41

3.4 From points to disks . 41

3.4.1 Distinguishing important configurations 43

3.4.2 Saliency-based distance between disks 43

29

Chapter 3. Object placement in static landscapes

3.4.3 Processing disk distributions 44

3.5 Improving convergence . 46

3.5.1 Variance-aware PCFs . 46

3.5.2 Control of convergence . 49

3.6 Results and applications . 49

3.6.1 Parameters . 49

3.6.2 Comparison with previous methods 50

3.6.3 Results . 52

3.6.4 Computation times . 54

3.6.5 Limitations and discussion . 54

3.7 Conclusion . 56

Creating arrangements of shapes in the plane (also known as 2D distributions) is
a common requirement in different Computer Graphics problems, be it for vector-based
texture synthesis of semi-regular patterns or for populating virtual worlds with varied
elements, from rocks to vegetation. Building on recent developments in statistical analysis
and synthesis, distributions can be learned from exemplars and seamlessly recreated over
larger regions, either automatically or by painting with interactive brushes [HLT+09,
EVC+15].

However, the application of point statistics to shape distributions has inherent lim-
itations: the spatial extent of shapes cannot be expressed, so that undesired shape in-
tersection may be inadvertently introduced in dense regions. Conversely, the presence
of meaningful overlaps in the input (for instance, the occurrence of undercanopy plants
beneath sheltering trees) simply cannot be captured using points distributions. This
problem – where arrangements of shapes have different forms of 2D bounding circle inter-
section – was recently identified, leading to a first model for disk distributions [GLCC17].
Unfortunately, the handling of nested and overlapping cases was limited to a few extra
bins in a distribution histogram, making it impossible to accurately describe the full
range of overlapping configurations. Furthermore, while continuous representations such
as Pair Correlation Functions (PCFs) [ÖG12] have been shown to improve the stability
and robustness of point distribution synthesis, these methods have yet to be extended to
either multi-class or extent-aware distributions.

In this chapter, we present an accurate and robust method for the analysis and
synthesis of multi-class distributions of potentially overlapping disks, and demonstrate its
applicability to populating virtual environments with 2D or 3D shapes. We also extend
previous PCFs formulations to enable analysis in arbitrary domains, making them robust
to noise or missing data.

A Pair Correlation Function (PCF) is a continuous curve that describes the density of
neighboring points as a function of distance from any given reference point. Our method
builds on these PCFs to achieve robustness in the multi-class setting. We first present a

30

License: Jim Champion, CC BY-SA 2.0

Fig. 3.1: Examples of natural scenes with complex interactions: fungi on the edge of a
stump and in small clusters (left), lily pads with varying overlaps on a lake (right).

simple extension of PCF analysis and synthesis to allow for dependency graphs between
multiple classes of disks, thereby representing objects with fundamentally different be-
havior in an arrangement. Since capturing spatial interactions within and between such
classes requires an awareness of both disk location and radius, we also introduce a new
metric for disks. This metric meets the differentiability requirements of PCF but is also
tailored to distinguish between perceptually different key configurations, such as nested,
tangent, or bordering disks. Finally, while retaining the global convergence of the mean
PCF, we improve the visual quality of synthesized distributions by constraining each in-
dividual PCF to a validity region, based on the variance of input PCFs. As our results
show, this framework leads to major improvements in the state of the art for capturing
general disk distributions.

Our main technical contributions include:

� A novel formulation of PCFs suited for analysis of distributions with missing data
or irregular domains. This broadens the range of exemplars that can be used as
input, and is demonstrated by two applications to distribution inpainting and de-
composition.

� An extension of state of the art methods for point distribution analysis and synthesis
to multi-class data. This is a crucial consideration when synthesizing hierarchical
or structured data, as it allows the user to model the relationship between different
categories of objects, substantially improving visual fidelity.

� A new metric for evaluating pairs of disks, adapted to disk distribution synthesis
and normalized to differentiate between key configurations in practice. In particular,
our metric efficiently takes into account any existing overlap between shapes as well
as nested configurations.

31

https://www.geograph.org.uk/photo/261258
https://creativecommons.org/licenses/by-sa/2.0/

Chapter 3. Object placement in static landscapes

� The introduction of variance-aware PCFs and associated error handling routines.
This improves synthesis quality, especially in highly-constrained cases with semi-
regular patterns. Variance-aware PCFs limit the most prevalent problem in dealing
with traditional PCFs, namely the loss of information that arises from solely con-
sidering the average curve.

We will discuss each of these contributions in a separate section, after a brief overview
of the necessary technical background on analysis and synthesis of point distributions with
PCFs. The final two sections are dedicated to our results and concluding remarks.

3.1 Technical background

In this section, we cover the technical background related to the Pair Correlation Function
(PCF) framework as presented by Öztireli and Gross [ÖG12]. We first provide global
overview of the method, discussing the input data and assumptions, and then detail the
different equations and steps required for analysis and synthesis of distributions.

3.1.1 Data and assumptions

The PCF framework captures point-based distributions by considering every point in a
stationary exemplar in turn and building an average density of surrounding points at
different distances. This is encoded as a density function (the Pair Correlation Function)
normalized according to the number of points in the exemplar, and which intuitively
represents the variation in the number of neighbors around each point as a function of
increasing distance. The main strength of PCFs is that they represent distributions as
normalized continuous functions, which are amenable to derivative-based optimization,
such as by gradient descent, at the synthesis stage.

A PCF also provides an easily interpretable visual signature that corresponds to
the perceptual characteristics of the underlying distribution. Figure 3.2 illustrates this
expressivity: while the PCF of a random distribution of points (top) is mostly flat,
the one obtained from a blue noise distribution (middle) shows a very characteristic
pattern of ripples of decreasing magnitude, with a global maximum located at the average
distance between a point and its closest neighbor. With clustered distributions (bottom),
the PCF features two dominant peaks: the first at the mean distance between points
within a cluster, and the second, less pronounced, at the mean distance between points
in neighboring clusters.

By design, PCFs operate on a set of assumptions related to the data that they rep-
resent. Firstly, they are in their original formulation aimed at stationary and anisotropic
data. This is the case because PCFs average contributions from all points regardless of
their location in space, apart from the distance between points. Since they average the

32

3.1. Technical background

Fig. 3.2: Three typical point distribution exemplars (left) and their associated PCF
representations (right).

contributions of nearby points, PCFs also rely on a few properties related to the number
of input samples. A high sample count is not required to achieve a good result, but
there is a minimum soft limit of a few dozen points needed to actually generalize the
underlying distribution instead of overfitting the data. This tendency to generalize data
can also become a problem with regular patterns such as grids. In such cases, it becomes
very difficult for PCFs to actually produce accurate results, since they can smooth out
important details or degenerate into overconstrainted problems at the synthesis stage.

33

Chapter 3. Object placement in static landscapes

3.1.2 Analysis and synthesis of point distributions with PCFs

Computing PCFs: As in standard point processes, the underlying principle of PCF
derivation is to count neighbors within rings of increasing radius around each point.
However, two modifications are required in order to generate density invariant, continuous
curves:

First, distances are normalized according to overall exemplar density. Given an input
exemplar with n points that, without loss of generality, occupy a unit square, distances are
divided by a value rmax based on how far points would be placed if they were maximally
spread to occupy the whole input domain. This value, which uniquely depends on the
mean density of points in the exemplar, is given by (see [LD06]) :

rmax = 2

√
1

2
√

3n
(3.1)

Second, to ensure the function is continuous and robust to noise, the influence of a
neighboring point is spread using a Gaussian Kernel kσ(x) = 1√

πσ
e−x

2/σ2
, centered at the

distance r from the reference point. In our work, we use the following simplified version
of the original PCF estimator [ÖG12], specialized for the 2D case and expressed over a
unit square domain:

PCF(r) =
1

Arn2

∑
i 6=j

kσ(r − dij) (3.2)

where Ar is the area of the ring with inner radius r−1/2 and outer radius r+1/2, and dij
is the distance between reference Pi and neighbor Pj. As in [ÖG12], we compute PCFs
in a relatively big neighborhood of Pi, depending on the density. In our experiments,
r takes discrete values from zero to krmax, where k and the discretization step are two
prescribed constants.

We often refer to this PCF estimation as “mean PCF” in the remainder of this paper,
to distinguish it from the so-called “individual PCF” associated to each Pi, and estimated
as follows:

PCF(Pi, r) =
1

Arn

∑
j 6=i

kσ(r − dij) (3.3)

As we will see in Section 3.5, considering individual PCFs in the synthesis procedure
results in a more accurate synthesized distribution.

Boundary handling: Since the input exemplars may have a limited number of points
we cannot afford to simply discard those near the boundary. In the past, Emilien et
al. [EVC+15] compensated this bias by weighting the contribution of every point, and for
each ring radius r by the ratio between the length of the circle inside the domain and its
full perimeter. The weighting factor w is computed as follows,

wi(r) =
2πr

li(r)
, (3.4)

34

3.1. Technical background

where li(r) is the length of the circle centered in Pi of radius r contained inside the
domain. This weight is designed for square domains, and accounts for missing points on
the portions of circles outside the domain. Effectively, this is used to compensate for the
fact that points located near the edge of the domain have fewer neighbors than those
further in. We present a more complete handling routing adapted to arbitrary domains
in Section 3.2.

Distribution synthesis from PCFs: Following [ÖG12], synthesis is achieved in two steps:

An initialization step computes a first-pass solution using generalized dart throwing
to set an initial position for n points in the target domain (with n computed from the
exemplar mean density and target area). This step operates by successively creating
and accepting or rejecting new random placements until the required number of points is
reached.

Each candidate point is only retained if the revised PCF error remains below a
threshold εm (set to increase with the number of accepted points m). The error is com-
puted as Einit = maxr(PCFnew(r) − PCF (r))+ where x+ indicates that negative values
of x are truncated to 0. This forces the algorithm to either generate a curve that remains
below the targeted PCF if possible, or exceed it by less than the tolerance threshold εm.
In practice, this initialization step leads to a PCF reasonably close to the target one.

A refinement step is then applied, during which point positions are adjusted using
gradient descent to better fit the current PCF to the target. We use a least squares cost
function Eref =

∑
r(PCFnew(r)−PCF(r))2, leading to the following normalized gradient

at point Pi:

∆i = −
∑

i 6=j uijwij∑
i 6=j |wij|

, (3.5)

uij = ∇Pidij, (3.6)

wij =
∑
r

PCFnew(r)− PCF(r)

r
(dij − r)kσ(dij − r) (3.7)

In turn, each sample Pi is moved along the associated ∆i by a random distance in
{10−1, . . . , 10−5} and only the single move that most reduces the error is retained. This
scheme is repeated until convergence.

Let us also mention that, by definition, the PCF (and so the defined error) depend
on the used metric which indicates the corresponding neighborhoods around each point
of distance r. We will specify the metric we use in our method for disk distributions in
Section 3.4.

35

Chapter 3. Object placement in static landscapes

Fig. 3.3: Incomplete point-set (left) and the extracted free-form boundary (dotted lines,
right). To compute the PCF of the red point, we sum contributions from areas of the
circle with an arc inside the domain (light green). These areas are delimited by the
intersection (green points) of the free-form boundary (red lines) with each circle.

3.2 Learning from arbitrary domains

In this section, we introduce a new simple and intuitive solution for PCF analysis with free
boundaries. We rely on the PCF formulation in Equation (3.3), weighted to compensate
the effects of a square domain with the term w presented in Equation (3.4). As this
weight formulation was introduced for the specific case of square domains, our objective
in this section is to extend it to domains with free-form boundaries.

3.2.1 Compensation of missing points

To generalize the weighing term in Equation (3.4), we first approximate the boundary of
the input by computing its Delaunay triangulation and filtering the longest edges. We do
so by going through every vertex and discarding the incident edges considered too long
according to a local criterion: only the edges shorter than t times the shortest edge are
kept, where t is a user-defined threshold. In our implementation, we found that t = 3
works well, even for non homogeneous point clouds (e.g. white noise). We then extract
the boundary of the point set from the resulting triangulation, by stamping the edges
contained in each triangle and filtering out those stamped more than once. Finally, we
compute the intersection points between the circle of radius r and the estimated boundary,
and the corresponding angles ∆αi (see Figure 3.3). We determine which angular portions
lie inside the domain by selecting a point on the current circle with an angle only slightly
larger than one of the computed angles, and determine whether it lies inside the boundary.
The new weighing term is set to:

36

3.2. Learning from arbitrary domains

0 rm ax 2rm ax 3rm ax 4rm ax 5rm ax

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Naive PCFs

Full dataset

Hole dataset

Cross dataset

0 rm ax 2rm ax 3rm ax 4rm ax 5rm ax

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Our m ethod

Full dataset

Hole dataset

Cross dataset

Blue noise Hole-shaped dom ain Cross-shaped dom ain

Fig. 3.5: Analysis of complete vs. incomplete data-sets. Contrary to standard PCFs
(bottom left), we get consistent curves (bottom right). This is the desired result since
the distribution did not change - the domain only was modified.

wi(r) =
2π∑
i ∆αi

(3.8)

3.2.2 Quantitative results

Fig. 3.4: Comparison of the average stan-
dard deviation of individual PCFs for reg-
ular (blue) vs. our PCFs (orange) on full
(a), hole-shaped (b) and cross-shaped (c) do-
mains.

Figure 3.5 compares our new PCFs with
standard ones, on complete vs incomplete
exemplars, showing that the mean PCF
we extract does not depend on the bound-
ary anymore. In addition, we computed
the average standard deviation of individ-
ual point PCFs for these three data-sets,
shown in Figure 3.4. The lower standard
deviation for our method further confirms
its relevance to handle arbitrary domains:
While results are similar for the first exem-
plar (a), we significantly reduce variance
in complex cases (25% decrease for cross-
shape (c)).

In terms of efficiency, our method is indeed slower than regular PCFs due to the need

37

Chapter 3. Object placement in static landscapes

(a) Incomplete point cloud (b) Result of our method

(c) Estimated Boundary (d) Computed PCFs

Fig. 3.6: Application of extended PCFs to the inpainting of distributions, illustrated by
the re-planting of a partially destroyed forest (a,b). From an incomplete dataset (a),
our method accurately estimates free-form boundaries (c) and compensates from missing
points when learning PCFs (d). This allows us to restore the perceived initial distribution
at the synthesis stage (b).

to compute a Delaunay triangulation, to filter triangles out, and to compute the weight
of each point. In practice, we achieve around 9 seconds for 300 points in a unit square
domain (a), 7 seconds for the domain with a hole (b), and 6 seconds for the cross-shaped
domain (c), compared to between half and a quarter of a second for standard PCFs. Our
algorithm was implemented on the CPU in Python and could be optimized. Timings
were computed on an Intel® Core i5 clocked at 3.3GHz with 8GB of RAM.

3.2.3 Application to distribution inpainting

Filling holes in a distribution with missing data is an immediate application, and a good
illustration of this extension. After computing boundary-independent PCFs, we simply
add samples to the input point-set such that each added point approximately maintains
the extracted PCF, and then fine-tune their position using gradient descent (similarly to
the synthesis stage in [ÖG12]). Figure 3.6 shows that a dataset with significant missing
data is sufficient to successfully recover an unbiased representation of the input, and then
seamlessly reconstruct missing parts.

3.2.4 Application to distribution decomposition

Our method can also be used to decompose a complex, unlabeled point-set into coherent
classes in terms of distribution, also enabling to analyze extra-class correlations. While

38

3.3. Interactions between multiple classes

different methods have been developed for similar problems [PGMZ12, SP19], our frame-
work brings a new and simple viewpoint to such decomposition problems. We use our
boundary-handling method to compute the PCFs of individual points, and then cluster
them by applying k-means in PCF space, where the number k of clusters is preset by
the user. Two clustering results are shown on Figure 3.7. The use of our PCFs with
free-form boundaries allows us to compute a relevant distribution whatever the point
position, resulting in robust and consistent clustering results. We show results without
the local triangle filtering step (Figure 3.7, center), to underline its importance in our
framework.

Regular PCFs No triangle ltering Our method

Fig. 3.7: Clustering results on 2 datasets, using regular PCFs, our method without, and
with local triangle filtering. The colors represent the classes assigned to each sample.

3.3 Interactions between multiple classes

An extension of the PCF framework is required for it to cope with complex cases involving
interdependent classes of objects. Although such an extension was mentioned in passing
by Öztireli and Gross [ÖG12], they only add control over the overall distribution regardless
of the point classes. This approach only works in simple cases and for largely uncorrelated
data, since precise interactions between classes are not modeled. We demonstrate these
limitations in the third example of Figure 3.17. A more complete approach was introduced
in the context of Metropolis Hastings methods [EVC+15], but this only supports a strict

39

Chapter 3. Object placement in static landscapes

linear hierarchy of classes. Placement of points within a particular class is assumed to
depend on all previously instantiated classes. While this approach works well for simpler
cases, our early experiments showed that it struggles to produce adequate results when
the number of classes increases, since later classes in the hierarchy are over-constrained
and the refinement step fails to converge.

To tackle this issue, we express dependencies in multi-class data using a general de-
pendency graph, stored in a Directed Acyclic Graph (DAG) data structure. Rather than
insisting that a given subordinate class be fully connected to every previously instanti-
ated class, we instead allow sparse parent-child connections. For example, in Figure 3.8
class d need not be connected to all of a, b, c, e, but can instead be more parsimoniously
reliant on only a and b. In many cases capturing a few strong relationships directly and
others transitively is sufficient to model a pattern. Crucially, this reduces the number of
constraints, thus facilitating convergence to a significantly better solution.

a

b c

d

e

a b c d e

a X

b X X

c X X

d X X X

e X X

Fig. 3.8: An example of a dependency graph (left) and the corresponding adjacency
matrix (right).

To incorporate such hierarchies, during analysis we derive a PCF for every pair of
classes (Ci, Cj) connected by an edge in the dependency graph. This requires ni × nj
additional pairs of points and thus terms in Equation (3.2), where ni is the number
of points in class Ci, in addition to the normal PCF computation within each class Ci
(involving ni(ni − 1)/2 terms).

At the synthesis stage, classes are always processed in the topological sorting order
of the dependency graph (e.g., a, b, c, e, then d in Figure 3.8). For each class, synthesis
proceeds in two steps as before. We take care to recalculate the initialization error for
each active PCF (the current class as well as its parent pairings in the dependency graph)
when determining if a random point should be retained or discarded. The major change
in the refinement step is that points are now moved in a direction computed using the
sum of gradient vectors from all active PCFs, rather than a single PCF. Note that in our
implementation, disk radii do not vary during refinement, which ensures that we retain
the initial distribution of radii for each class.

40

3.4. From points to disks

3.3.1 Validation

To validate our multi-class synthesis method, we demonstrate its behavior for a case that
exhibits strong interaction between classes. In Figure 3.9, red points cluster around iso-
lated cyan points, while green points form around isolated purple points. The combined
set of cyan and purple points are negatively correlated over the domain. It is impos-
sible to reproduce such clustering behavior without addressing the inherent multi-class
dependencies in evidence. Since clustering only occurs around cyan or purple centers,
we construct the DAG in Figure 3.9 (left) to express this specific dependency: purple
and cyan points influence each other, but clustered points only depend on the class they
agglomerate around. This reduces the dependency constraints from 10 (since we have
4 classes,

∑4
i=1 i = 10) in the näıve approach to only 7 (10 minus 3 removed relations

between the independent centers and clusters) in ours, which leads to a more efficient
error minimization.

Centers Centers

Clusters Clusters

Fig. 3.9: Synthesis of a 4-class-dataset: dependency graph (left), exemplar input (middle),
and synthesized output (right). Note that the chosen dependency direction between
purple and cyan classes is arbitrary. Such a distribution is not reproducible without
multi-class dependency.

3.4 From points to disks

When placing collections of 3D objects on a 2D surface there are cases where consid-
erations of relative size and potential intersection are vital. For instance, in ecosystem
simulations (such as Figures 3.11 and 3.16) tree canopies often overlap in a botanically
meaningful pattern. Such cases can be accommodated by treating them as distributions
of potentially overlapping disks instead of points. In this section we consider the range
of salient disk configurations, build a distance metric that distinguishes between them,
and indicate how this metric can be incorporated into our framework to support disk
distributions.

41

Chapter 3. Object placement in static landscapes

d ≤ r1 − r2

extent = 2r1

overlap = 2r2

f ≤ 4r1 − 4r2

fnorm ≤ 1

d = r1 − r2

extent = 2r1

overlap = 2r2

f = 4r1 − 4r2

fnorm = 1

d = r1

extent = 2r1 + r2

overlap = r2

f = 4r1 − r2

fnorm = 2

d = r1 + r2

extent = 2r1 + 2r2

overlap = 0

f = 4r1 + 2r2

fnorm = 3

d ≥ r1 + r2

extent = d+ r1 + r2

overlap = 0

f ≥ 4r1 + 2r2

fnorm ≥ 3

Fig. 3.10: Principal salient configurations of disk interactions. Relevant notation is as
follows: d is the distance between disk centers, extent and overlap are 1D measures linked
to the union and intersection of the disks, f is the new disk distance metric that replaces
r, and fnorm is a normalized version that distinguishes the salient cases.

42

3.4. From points to disks

3.4.1 Distinguishing important configurations

Our goal is to design a disk-aware distance metric suited to PCF processing, which
distinguishes between perceptually salient disk interactions, as enumerated in Table 3.10.
These configurations were derived from a study of several application scenarios, including
layouts both organic (such as plant ecosystems) and structured (such as table settings
and meshing cogwheels).

Unfortunately, existing disk metrics fail to disambiguate these salient configurations.
The first näıve approach is to add disk radius as a third coordinate and calculate an
R3 Euclidean distance, but this conflates position and radius so that visually distinct
configurations can map to the same distance.

As a second standard measure classically used in computational geometry [Aur87],
one can think of the sum of the power of each center with respect to the other circle
(equal to 2d2 − r2

1 − r2
2 using the notation of Table 3.10), also known as the Laguerre

distance. Although the sum of powers is strictly increasing and continuous, it becomes
negative in certain overlapping cases. Moreover, since these negative values do not admit
any general lower bound, a positive metric cannot be guaranteed by adding a constant
term.

Lastly, as already mentioned, the EcoBrush measure for histogram binning of plant
distributions [GLCC17] is discontinuous, which both prevents fine-grained analysis of
overlapping cases and makes it fundamentally unsuited to the gradient-optimization that
underpins the PCF framework.

Consequently, there is a need to develop a continuous metric that distinguishes be-
tween salient disks configurations, as identified in Table 3.10.

3.4.2 Saliency-based distance between disks

In addition to computational efficiency and meeting the standard requirements for met-
rics (namely, non-negativity, identity of indiscernibles, symmetry and triangle inequality),
our main goal in designing a distance between disks is to ensure detection and distinc-
tion between perceptually-different disk configurations, such as nested, bordering or fully
disconnected disks.

Let (A, r1) and (B, r2) be two disks, where radius r1 ≥ r2, and d be the distance
between their centers, A and B.

Our metric is based on what we term the extent of the disks, defined as the length
of the intersection between the line that goes through A and B, and the convex envelope
delimited by the circles (see the red lines in Table 3.10). This can easily be calculated
using Equation (3.9). We also define the overlap (see Equation (3.10)), which is the
length of the intersection between the line through A and B, and the intersection of the
two circles (see the green lines in Table 3.10). Using these two measures, we construct our

43

Chapter 3. Object placement in static landscapes

new metric as the difference between the extent and the overlap (which can be regarded
as a 1D approach to the union minus the intersection, or the length of the extent that
is not common to both circles), to which we add the distance between centers d and the
difference between radii, in order to differentiate all cases (see Equation (3.11)).

extent = max(d+ r1 + r2, 2r1) (3.9)

overlap = clip(r1 + r2 − d, 0, 2r2) (3.10)

f = extent− overlap+ d+ r1 − r2 (3.11)

As it stands, our distance is a symmetric, continuous function that differentiates
successfully between the three main cases of disk interaction (fully inside but abutting
the border, centered on the border, and fully outside but against the border) for fixed
r1 and r2. Unfortunately, it provides different values for the salient configurations when
the radii change, as indicated by the radii-dependent values of f listed in Table 3.10.
This makes it unsuitable for PCF computations, since merging values that are similar
but carry a different meaning will destroy that meaning, thus making it impossible to
synthesize a perceptually-correct disk distribution.

To circumvent this, we normalize our distance function based on these three special
cases, transforming them into three fixed values. More precisely, we choose 1, 2 and 3 as
the three normalized values for the specific cases ”inner border”, ”border” and ”outer bor-
der” (see Table 3.10), and define the normalized distance fnorm as a continuous piecewise
linear function of f that maps the specific cases to these values:

fnorm =

f/(4r1 − 4r2), if d ≤ r1 − r2

(f − 4r1 + 7r2)/(3r2), if r1 − r2 < d ≤ r1 + r2

f − 4r1 − 2r2 + 3, otherwise.

(3.12)

3.4.3 Processing disk distributions

Analysis: Replacing the standard Euclidean distance with our new distance function
for analyzing disk distributions is straightforward. The new distance fnorm is used as the
horizontal axis of the PCF, and therefore both r and d in Equation (3.2) relate to this
metric. However, the Euclidean distance between disk centers is retained for computations
not directly related to disk interactions, such as the evaluation of rmax (Equation(3.1))
and compensation for border effects during analysis.

Synthesis: More care is required during synthesis, since both disk positions and consis-
tent radii need to be generated.

During initialization, we match the original distribution of disk radii by sorting the
radius values of the input exemplar within a class in descending order and simply picking

44

3.4. From points to disks

them sequentially during dart throwing. When the number of required output disks
exceeds the input, we repeat the entire list of input radii as required and use a random
non-duplicated sampling to make up any shortfall before sorting as before. This simple
scheme has the virtue of being computationally efficient and allowing greater freedom of
placement. Smaller disks are easier to fit as they generally have more valid locations, so
we prefer to save them for later and focus on the largest and most difficult cases first.

At the refinement stage (Equations (3.5) – (3.7)), we replace point-wise distance
(dij) with our new disk-wise distance (fnorm) and apply gradient descent to optimize for
center positions. The radius distribution is handled in parallel where we take values from
the input radius distribution in decreasing order. This way our final radius distribution
matches exactly with the given distribution. Indeed, this strategy makes the best use of
the given radius distribution, and seems practically more efficient than a gradient descent
method optimizing on both position and radius simultaneously.

Figure 3.11, illustrates the use of this method for a distribution with three disk
classes, including some overlapping and inner border cases. For comparison, the PCFs of
our synthesized example are shown at the bottom right.

Rendered Result

Fig. 3.11: Disk-based multi-class forest synthesis: mushrooms (in red) grow in the shade
of trees (in purple), but grass (in green) is unshaded. Images include: the input exemplar
(top left), output synthesis (top center), and corresponding preliminary rendering (top
right), with analyzed input (bottom left) and synthesized Pair Correlation Functions
(PCFs) (bottom right).

45

Chapter 3. Object placement in static landscapes

3.5 Improving convergence

Although putatively accurate in their convergence to the mean statistics for each class,
PCFs methods can give rise to a clear mismatch between input and output. Furthermore,
a few scattered disks may be introduced during initialization to compensate for inaccu-
racies in the positioning of other disks, thereby decreasing overall error in the moment.
Once present, these outliers cannot be removed, since refinement only locally improves
the radius and position of a disk, giving rise to objectionable artifacts.

In this section, we introduce a new strategy for validating inserted disks during syn-
thesis. While retaining global convergence of the mean PCF, these additional constraints,
based on the variance of input PCFs, significantly improve the visual quality of the final
outcome.

3.5.1 Variance-aware PCFs

The method presented thus far creates a combined average over individual per-point
PCFs. Predictably, this summarization leads to a loss of information compared to the
original, individual PCFs. As Figure 3.12 shows, such a data reduction can cause visually
inaccurate replication of the initial distribution in over-constrained cases, even when
convergence to the mean PCFs (one for each class, and one per edge in the dependency
graph) is achieved.

To tackle such challenging cases, we introduce a variance-aware extension of the PCF
method (for typical outcomes see Figure 3.13). Our idea is to retain more data from the
individual exemplar PCFs. This enables us to ensure during synthesis that the PCF of
a candidate disk is never too divergent from individual PCFs in the input distribution.
This is done without sacrificing convergence to the mean PCF.

In practice, rather than retaining individual PCFs, which would be both costly in
memory and difficult to manipulate, during analysis we extract the lower and upper bound
of the set of all the individual PCF curves and employ these bounds as constraints.

During synthesis, a new disk is accepted only if its PCF lies in the so-called validity
region bounded below and above by the lower and upper envelopes of the union of the
original PCFs (as illustrated in Figure 3.14, where gray curves represent the original
PCFs from reference disks in the exemplar).

These bounds, and the difference between them, allow us to differentiate parts of the
PCF that must be strictly enforced (an error is likely to be perceptually salient for human
observers in regions of low variance) from those with greater leeway. An alternative would
be to compute the standard deviation at points along the mean PCF curve, but this is not
necessarily representative since the distribution of curves is often asymmetrically skewed
about the mean. Moreover, bounds are a harder limit than the standard deviation,

46

3.5. Improving convergence

Fig. 3.12: Correctly matching the average PCF alone is not sufficient for perceptually
convincing results in highly constrained cases. (Top) Input disk distribution and the
corresponding mean PCFs, where the purple (respectively red) curves represent inter-
relationships within the purple (respectively red) class of disks, and the yellow curve
represents the dependency of red on purple. (Bottom) A perceptually incorrect synthe-
sized distribution, despite convergence of all mean PCFs.

Fig. 3.13: A challenging over-constrained nested case (left). Synthesis result using Eco-
brush [GLCC17] (center). Our variance-aware solution (right).

47

Chapter 3. Object placement in static landscapes

Fig. 3.14: Validity region: during synthesis the insertion of a new disk is only accepted if
its PCF lies in the envelope formed by the union of all original PCFs.

allowing us a better fit for the more extreme cases that may have occurred in the source
exemplar.

To make effective use of the information provided by our variance-aware PCFs, we
add a new term to the error formula used during initialization. This term represents the
largest distance between the new curve and the validity region. We also check that each
individual error term remains positive, and divide the differences by the target value.
This enables us to associate a higher error with variations where the target PCF value is
close to 0. These represent visually salient errors, since they are equivalent to adding an
outlying disk where none exists in the input data. Incorporating these changes, we end
up with the following error function for synthesis initialization:

E =

(
max
r

newmean − PCFmean
PCFmean

)+

(3.13)

+ max

(
max
r

new − PCFupper
PCFupper

,max
r

PCFlower − new
PCFlower

)+

where x+ indicates that negative values of x are truncated to 0.

This change in the initialization proves effective in practice. In particular, we achieve
the result in Figure 3.13 for the case with over-constrained nested disks.

48

3.6. Results and applications

3.5.2 Control of convergence

Since PCFs are by nature injective and not surjective (any layout of disks can be mapped
to a PCF, but some PCFs cannot be realized as a corresponding disk layout), achieving
initialization in reasonable time can be challenging.

Indeed, even with incremental relaxation of the error threshold ε, for complex distri-
butions the error can sometimes become so large that it prevents ongoing point placement.

Further relaxing the error threshold could prevent the initialization from seizing up,
but at the cost of lower quality in simpler cases. One solution is to adapt the relaxation
factor according to the input configuration, but such automatic tuning in complex multi-
class cases seems highly non-trivial.

Instead, we flag a lack of progression when the number of consecutive point rejections
exceeds a certain threshold (we generally used a threshold of around 1000 rejections), and
switch to a simple grid search. We divide the domain into a regular grid, and compute
the expected error for each grid cell. We then sample and accept a random point in the
cell with lowest error (or in a random cell among those with minimal error). While this
algorithm is slower than dart throwing for easy cases, it runs in constant time regardless
of the complexity of the distribution and always returns a solution close to optimal.
It is also trivially parallelizable thanks to the independent error computation in each
cell. Algorithm 1 sums up the initialization step of our pipeline with this grid search
enhancement.

3.6 Results and applications

3.6.1 Parameters

In most of the examples in this paper, we used σ = 0.25 (smoothness of the Gaussian
kernel), δ = 0.1 (discretization step for radii analysis), and a neighborhood size around
each point set to 5rmax for PCF computations. If the neighborhood radius is too small,
the PCFs will not incorporate sufficient context area, reducing reproduction accuracy.
Conversely, if the radius is too large, the method will overfit the data, damaging its abil-
ity to generalize. A similar trade-off exists for the smoothness parameter σ: reducing it
improves the replication of detail and particular configurations, while increasing it speeds
up convergence, with the drawback that details may be approximated. The termination
test for refinement is when the accumulated adjustments to all disks during the last iter-
ation drops below a distance threshold. Alternatively, since all PCFs are incrementally
updated after each iteration, we could check the difference between the target and cur-
rent PCF curves. We also set a maximal number of refinement iterations to obtain an
approximate fallback solution when refinement fails to converge.

49

Chapter 3. Object placement in static landscapes

Input: Hierarchy of PCFs, number of elements n
Output: Initialized elements

foreach class do
fails← 0;
repeat

ε← ε0 + ε∆fails;
Sample a random element from original distribution;
Compute error E;
if E < ε then Accept this element;
else fails← fails+ 1;

if more than max fails successive fails then
while less than n elements accepted do

Grid-search the domain for the lowest error;
Sample a random element in the best cell;
Accept this element;

end

end

until n elements are accepted ;

end

Algorithm 1: Initialization algorithm incorporating grid search.

3.6.2 Comparison with previous methods

In WorldBrush [EVC+15], trees, grass and other scene elements are modeled as points for
the purpose of placement. Since the varying spatial extents of objects are ignored, fine
control over complex interactions, such as collisions, is unattainable. Figure 3.15 shows
a typical failure case in close-up from their video results.

The example in Figure 3.11 provides a similar context for comparison. In this toy
example of a fairytale forest, mushrooms are sun intolerant and must be slightly shaded
by trees, while grass favors sunlight and cannot be shaded. In addition to avoiding
collisions thanks to the use of disks, our method models such inter-class relationships
effectively. We provided the exemplar from Figure 3.11 as input to an Ecobrush-style
synthesis [GLCC17], to evaluate the benefits of our continuous distance function over a
binned solution (see Figure 3.15 (right)). While their method respects coarse constraints
(mushrooms in the shade, grass in the sun) the discrete distance function fails to reproduce
the blue noise distribution of grass and the positioning of mushrooms near the border of
tree shade.

Lastly, while the EcoBrush algorithm cannot handle over-constrained cases (as shown
in Figure 3.13), our method proves to be robust to the types of dense ecosystems that
is the focus of their work, even with the significant dependencies resulting from a full
hierarchy of classes. Figure 3.16 demonstrates our results on a dense ecosystem with

50

3.6. Results and applications

Fig. 3.15: Comparison with prior work: (Left) Modelling objects as points in Worldbrush
makes collision handling impossible (e.g., grass growing through rocks). (Right) For the
exemplar from Figure 3.11 Ecobrush instantiates some mushrooms (in red) too near tree
centers (in purple) and fails to achieve an even distribution of grass (in green).

9 species and more than 2, 300 individual plants (taken from Ecobrush, courtesy of the
authors).

Figure 3.17 demonstrates that our method is able to reproduce point distributions
found in previous work. We provide results that are perceptually similar to two examples
from Ma et al. [MWT11], with the difference that we cannot capture the orientation of
dominant lines, since our method is rotation invariant. We also include a comparison with
a multi-class example from Öztireli and Gross [ÖG12]. Here, our results match the input
far more closely, as indicated by the analyzed curves. For instance, the purple points
are never close together in the input nor in our output. More generally, their approach
is effective for relatively simple scenarios, but fails in more complex cases, since they
only consider interactions within classes and for the dataset as a whole, but not between
classes.

Unfortunately, as evident from Figure 3.19, our method is unable to reproduce Roveri
et al.’s [RÖM+15] highly structured patterns, since one of our key goals is the ability to
generalize an input pattern rather than perfectly replicate it. Similarly, non-stationary
distributions (such as in the work of Roveri et al. [RÖG17], are beyond the scope of this
paper. Importantly, however, our method is able to process arrangements of overlapping
shapes, which is not the case for any of the more structured methods.

51

Chapter 3. Object placement in static landscapes

Fig. 3.16: Results for a dense ecosystem with 9 interdependent classes and more than 2,300
plants. (Top) input exemplar and analyzed PCFs. (Bottom) synthesized distribution and
the corresponding PCFs.

3.6.3 Results

Figure 3.18 illustrates the use of our disk distribution synthesis in different application
scenarios, that can be used in the context of virtual worlds.

The first scenario is derived from the behavior of scattered water droplets on a smooth
surface, with applications to texture synthesis. Although input and output are rendered
in the same style for ease of comparison, the input distribution has a physical analog
and was extracted by hand from a photograph. To account for the interaction of size
and placement, droplets are divided into 4 classes, with a sequential chain of dependency
from largest to smallest.

The second example showcases general object placement, with a more complex dis-
tribution of plates, glasses, bowls and food items in class-specific configurations. The
specific interactions that are encoded here include classes that may touch but should
not overlap (glasses, bowls and plates), should overlap (food on plates), or may overlap
(apples and candies).

52

3.6. Results and applications

Fig. 3.17: Comparison with Ma et al. [MWT11] indicates that our method is capable
of reproducing previous results, except for the specific orientation of the dominant lines,
while a comparison with Öztireli and Gross [ÖG12] shows that we more accurately respect
features in multi-class data (refer to the PCFs in the bottom row).

Lastly, we use our method to populate a Mediterranean landscape with plants, based
on a distribution of 12 plant species with 78 dependencies, computed by an ecosystem
simulator [GLCC17]. The output distribution is synthesized over a larger region, and
used to instantiate 3D tree models (Figure 3.18 (bottom)). As demonstrated by this
example and the corresponding rendered landscape in the teaser at the beginning of the
chapter, our method is not limited to placing shapes with a strictly circular projection.
Here, the disks used at the analysis and synthesis stages are only coarse bounds for the
footprint of plant canopies.

53

Chapter 3. Object placement in static landscapes

Fig. 3.18: Application of multi-class disk synthesis to the placement of 3D objects (input
exemplars on the left, synthesized results on the right). From top to bottom: Water
droplets (4 classes, no overlaps), table set with plates, bowls, glasses and food (5 classes,
6 interdependencies, nested distributions), a Mediterranean biome (12 classes, full depen-
dencies, overlapping distributions). The domain size is increased during synthesis for the
last example, to simulate the generation of vegetation from a sample.

3.6.4 Computation times

Table 3.1 provides the computation times and specifications for our synthesis examples.
Timings were taken on an Intel® Core I5 with 4 cores, clocked at 3.3 GHz with 8GB
of RAM, and an NVidia GeForce GTX 960 graphics card. It should be noted that
the method was implemented in Python on the CPU without GPU acceleration and its
runtime could be improved with further optimization.

3.6.5 Limitations and discussion

In this section, we discuss the limitations of our method. First, we have prioritized
accuracy over speed. As it stands, the method is not suited to interactive design, where

54

3.6. Results and applications

Example Disks Classes PCFs Time
Toy forest (Fig. 3.11) 460 3 5 2min
Droplets (Fig. 3.18) 800+ 4 10 7min
Food (Fig. 3.18) 224 5 11 1min
Mediterranean (Fig. 3.18) 1500+ 12 78 12min
Dense ecosystem (Fig. 3.16) 2300+ 9 45 30min

Table 3.1: Runtime and specifications for example scenes.

users create and edit distributions with cycles of rapid feedback. However, even in such
situations there are options available. For instance, a placeholder distribution, derived
from a partial initialization or by directly cutting and pasting the exemplar, could be
displayed while refinement takes place in a background thread.

Another limitation, shared by previous point and disk synthesis methods, is an in-
ability to reconstruct regular or otherwise highly constrained distributions, such as the
case in Figure 3.19 (top). One issue is that the pressure of constraints tends to push
disks to the same position during refinement. To address this we reuse our PCF va-
lidity regions to re-check the individual PCFs of generated points after refinement, and
re-initialize outliers as required. This strategy, illustrated by Figure 3.19 (bottom), im-
proves results locally – see for instance the leftmost bumps in Figure 3.19 (middle) that
are consequently suppressed – but does not solve the issue more generally. An efficient
handling of such regular configurations would likely require PCFs to be enriched with
additional structural information. As a first pass, separating PCFs into directional arcs
or quadrants, as in WorldBrush [EVC+15], would improve global alignment. Although
the synthesis of structured data sets is quite far from the context we were considering in
this thesis, it is worth noting that recent work such as [TLH19] have tried to tackle this
particular problem with alternative approaches.

Since our method is specifically designed for disk distributions, a main limitation is
that it does not cater for other shapes. Of course, any 2D shape could be approximated
by a union of disks and therefore analyzed, but there would be no guarantees as to
the quality of the synthesized result. Moreover, in such cases it is necessary to account
for relative orientation as well as radial distance, and this is beyond our scope. While
this is usually not an issue for trees and mostly round shapes, other objects in virtual
worlds would benefit from a formulation that considers elongated shapes with a precise
orientation. For example, particular rocks, animals, and man-made structures such as
roads exhibit strong anisotropic features that cannot be replicated with this approach.

More generally, our method considers the input exemplar as a whole under the as-
sumption that the distribution is homogeneous and isotropic. Although our analysis could
be used to test homogeneity using cropped sub-regions we have not investigated spatially-
varying distributions further. One possible avenue for catering to non-homogeneous dis-
tributions would be to extend Roveri et al.’s [RÖG17] method for handling two different
distributions and densities.

55

Chapter 3. Object placement in static landscapes

Fig. 3.19: Failure case on an hexagonal grid: (top) exemplar input, (center) standard
disk synthesis, and (bottom) synthesis with outlier removal. The pattern and distance
between points are preserved locally but the global layout does not converge to a visually
acceptable solution. Disks with the most outlying PCFs are colored in red at each stage.
In the center left pattern, these correspond to several superimposed red disks, inducing
the initial PCF bumps (center right).

3.7 Conclusion

In this chapter, we presented a boundary handling technique for PCF computations
which allows the analysis of 2D distributions in arbitrary domains. We also introduced
for the first time an efficient PCF-based method capable of analyzing and synthesizing
general two-dimensional distributions of disks, including those with nested and partially
overlapping configurations. We tackled this from a statistical perspective, by defining a
new distance metric adapted to disks and specifically designed to distinguish perceptually
salient key configurations, as illustrated by a variety of applications to virtual worlds

56

3.7. Conclusion

throughout the chapter. Our approach handles multi-class distributions efficiently, and
can be further optimized if provided with a user-specified inter-class dependency graph.
Moreover, special attention was devoted to the issue of convergence, enabling completion
of synthesis even in highly-constrained situations.

There are a number of viable avenues for future work. First, although our method
has proven to be robust in converging to a visually convincing result for all our test cases,
providing a general proof of convergence for every realizable PCF (i.e., those for which
a disk distribution exists) remains as future work. Secondly, being able to distribute
shapes in 3D as well as in 2D would open up many other applications, ranging from the
placement of leaves, flowers and fruit in plants and trees to the instantiation of granular
materials. From a theoretical point of view, our metric and the attendant framework are
well suited to such a generalization.

Finally, one of the main limitations of the method is its restriction to isotropic
distributions of disks. New metrics could be designed to handle more complex objects,
but additional work outside of the metric will probably be necessary to handle arbitrary
shapes. An alternative solution would be to represent arbitrarily complex objects as sets
of points (similar to [RÖM+15]) and adapt our method to this new structure.

Focusing on lifting the constraint of isotropy, we propose in the next chapter an
alternate method designed to handle anisotropic distributions, while still considering their
spatial extent. In order to allow the concept of direction in the distribution, we replace
disks with their oriented equivalent, namely ellipses. This allows us to properly model
the distribution of animals in a herd, and in turn to propose an intuitive tool for the
placement and animation of herds in virtual worlds.

57

Chapter 4

Towards animated worlds

Contents
4.1 Herd animation from photos: overview 61

4.1.1 Authoring interface . 62

4.1.2 Method and challenges . 62

4.2 Analysis and synthesis of static herds 63

4.2.1 Data extraction from a single image 64

4.2.2 A PCF-based method for interactions 65

4.2.3 Editable descriptors . 66

4.2.4 Synthesis algorithm . 67

4.2.5 Descriptors as control tools . 69

4.3 Herd animation . 70

4.3.1 Global herd trajectory . 70

4.3.2 Generating individual movement 70

4.4 Results and discussion . 71

59

Chapter 4. Towards animated worlds

4.4.1 Results . 71

4.4.2 Limitations . 73

4.5 Towards herd animation from video 75

4.5.1 Extracting meaningful data from video clips 75

4.5.2 Avenues for animated synthesis methods 77

4.6 Conclusion . 78

While methods for easing the generation of complex virtual worlds widely spread in
the last decade - leading to impressive results with detailed terrains as well as plausible
distributions of rocks and vegetation - much less attention was paid so far to animal life.
Yet, populating virtual worlds not only with vegetation blowing in the wind and a few
birds, but also with moving groups of ground animals, is mandatory to get a lively result.

Fig. 4.1: A herd of cattle traveling on a road.
We can see the emergence of lines, small
groups, and a strong anisotropy.

This chapter tackles the authoring of
herd animations. The key idea is to enable
intuitive authoring and enhanced realism
through visual analogies with real photos.
More precisely, we allow the user to key-
frame the animation of a herd by copy-
pasting a series of photos over the terrain
using a pipette tool. In addition to the
rough trajectories they define, each photo
is used as a model for the local shape, dis-
tribution and density of the animals within
the herd.

The input photos may indeed show
quite different numbers of animals. There-
fore, our solution relies on a new statisti-
cal method to analyze the photos indepen-
dently from animals count and then syn-
thesize a visually similar herd while ac-
counting for the target number of animals,
their size and local obstacles avoidance.
In addition to the statistical distributions
governing the relative distance between an-
imals (modeled as oriented ellipses), our model extracts and reproduces two higher level
features from each photo, namely the herd’s density map (also defining its global shape)
and the local orientation map for animals within the herd. If desired, these features can
be edited at high level by the user using brush strokes.

Lastly, we propose a simple method to generate the individual trajectories of the ani-
mals from a herd key-frame to the next. It includes an automatic best-pairing mechanism
between animals in successive key-herds and a microscopic simulation enabling animals

60

4.1. Herd animation from photos: overview

to avoid collision while following the trajectory and having the desired relative motion in
herd frame.

In summary, our three main contributions are:

� An intuitive authoring tool for key-framing herds, using the concept of pipette
tool for copy-pasting the herd visual aspect from a photo and providing additional
editing brushes;

� A new, two-levels method enabling to analyze both global herd features and local
distributions of animals on images, and to synthesize visually similar ones with a
given, target number of animals;

� A layered model using both the herd global trajectory and the desired relative
motion within the herd to generate the animation between successive key-frames.

4.1 Herd animation from photos: overview

Fig. 4.2: To create a herd animation, the user selects the desired visual aspects over time
on photos, by placing them as key-frames on the terrain (top left). The analysis-synthesis
method generates, for each photo, a visually similar key-herd with the target number N of
animals (bottom left). The animation is then generated (right), thanks to an automatic
labeling process to pair the animals of successive key-herds.

We present a method for authoring herd animations based on data extracted from
still photos.

61

Chapter 4. Towards animated worlds

4.1.1 Authoring interface

Our interactive tool enables the user to upload a virtual world which may contain a non-
flat terrain with obstacles such as trees and rocks (top left of Figure 4.2). The user then
choose a type of animal in a library, sets their maximal maximal speed Vmax (which can
be extracted if desired from zoological information) and their number N in the herd to
be animated.

Our framework is inspired by traditional animation principles, namely the key-
framing and interpolation workflow. In the reminder of this section, the key-frames
correspond to important locations where the user requests a specific aspect for the herd,
extracted from real world’s pictures. In practice, the user can also add position-only
key-frames to edit the trajectory without imposing a specific aspect of the herd.

Using an analogy with drawing software, we allow the user to upload reference photos
of real herds in a palette window and to extract the herd aspect from them using a pipette
tool to define key-frames. To provide an intuitive visual feedback, the selected photo is
copy-pasted on the terrain at the position where the user would like to impose this specific
aspect of the herd.

As in usual pipelines, the animation process is fully automatic once key-frames have
been positioned on a timeline. Yet, the user can not only edit the timing and choice of
reference images at key-frames, but also some high level parameters, namely the density
and orientation maps at each key-frame, as detailed below.

4.1.2 Method and challenges

Key-herds from photos: From each key-frame position with an associated photo, the
first step is to generate a key-position for a herd with the target number N of animals,
which we call a key-herd (see bottom left of Figure 4.2). The latter should reproduce
the visual aspect in terms of global shape, distribution and orientation of animals of the
herd on the photo, while avoiding obstacles. The main challenges are to define and learn
the right set of global and local descriptors from the photo, and then define an algorithm
enabling to use them at the synthesis stage. Our solutions are detailed in the Analysis
and synthesis section.

Animation: Once key-herds have been generated and projected onto the terrain, a global
trajectory is computed between their centroids. Individual trajectories are then automat-
ically generated for each animal. Achieving a fluid motion is a challenge, since it requires
consistently labeling the animals within the successive key-herd. Moreover, the individual
trajectories need to insure collision avoidance between animals and with obstacles on the
terrain, while following the herd global path and matching the required change of posi-
tion in herd frame. Our solutions to these problems are detailed in the Herd animation
section.

62

4.2. Analysis and synthesis of static herds

Environment + Constraints

Input data

Correlation curves

Editable descriptors

Generated descriptors

Result

Fig. 4.3: Pipeline for computing a key-herd: From oriented ellipses extracted from the
photo (top left), correlation curves and editable descriptors are computed. The descrip-
tors are adapted to the trajectory orientation and obstacles (bottom), and then used in
conjunction with the correlation curves to produce a key-herd with N animals (right).

4.2 Analysis and synthesis of static herds

While the key-herd synthesis process has a similar goal to the one presented in Chapter 3,
the two use cases reveal in practice many differences that prevent a direct use of our
previous method. Indeed, most animals have an inherent direction that has to be encoded,
which is often not the case for static objects. This anisotropy constraint has consequences
on the shape used to represent elements, as well as their computed distance. The fact
that we focus on herds also has major implications: since the density and orientation of
animals is not guaranteed to be uniform at different locations in the herd, a particular
attention is required to faithfully reproduce such variations. The overall shape of the
herd is also an important attribute that was not considered in the case of static objects,
but is crucial to recreate the behavior of different species.

With these considerations in mind, our processing pipeline for generating a key-herd
from a photo is detailed in Figure 4.3. The photo is first pre-processed to extract oriented
ellipses giving the position and orientation of the animals. We analyze this resulting dis-
tribution to compute correlation curves modeling the local interactions between animals,
as well as editable features in the form of density and orientation maps. We take the

63

Chapter 4. Towards animated worlds

(a) Original image (b) User annotations (c) SVM segmentation

(d) Extracted regions (e) Fitted ellipses (f) Outlier detection

Fig. 4.4: Semi-automatic data extraction process from user annotations. The method
automatically extracts ellipses based on user input and detects wrongly assigned clusters.

global orientation of the herd trajectory, the possible obstacles on the terrains and the
size of the target herd to modify these maps, which may also be interactively edited.
Finally, we use both curves and features to synthesize a perceptually similar herd of the
right size. We details these steps below.

4.2.1 Data extraction from a single image

We use a semi-automatic method to extract data from an image. It only requires manual
tuning in ambiguous regions and greatly eases the extraction work for large images.

We ask the user to manually annotate a few spots on the image (see Figure 4.4b)
as foreground (the animals) or background (for ground or other unwanted features). A
specific Support Vector Machine (SVM) is then created and trained to discriminate fore-
ground from background pixels based on their color in the user-defined annotations, and
subsequently used to create a black and white mask (4.4c) of these features. Different
regions, usually corresponding to different animals, are then extracted using a Watershed
Transform (4.4d). Finally, we fit ellipses on each of these regions to retrieve their position,
orientation and dimension (4.4e). The same arbitrarily chosen global direction is given
to all ellipses, and can be flipped by the user if necessary.

Some animals can be wrongly captured as a single, large region if they were too close
to each other. We detect these cases with an analysis on the distribution of extracted
region sizes. In such situations, the created ellipses are too large, too small or of unusual

64

4.2. Analysis and synthesis of static herds

proportions. They are automatically detected and displayed in black (4.4f), allowing the
user to manually draw new ellipses to replace them.

4.2.2 A PCF-based method for interactions

We model the local interactions between animals by extending the concept of the Pair
Correlation Function (PCF) to distributions of ellipses within arbitrary convex polygons
representing a herd.

Let us recall here the basic equation behind PCFs, previously explained in the last
chapter. They are computed by weighting the contributions of neighbors at distance r
with the Gaussian Kernel kσ(x) = 1√

πσ
e−x

2/σ2
. For the case of a 2D point distribution

within the unit square domain, the PCF can be expressed by:

PCF(r) =
1

Arn2

∑
i 6=j

kσ(r − dij), (4.1)

where Ar is a normalization factor defined as the area of the ring of radius r and thickness
1, and dij is the distance between points i and j.

Fig. 4.5: Local distance field of an
ellipse with isolines, based on orien-
tation and size

From point to ellipse distributions: To extend the
framework to distributions of ellipses, an appropri-
ate distance encoding both the size and the orien-
tation of each ellipse is required. We simplify the
problem of computing an ellipse-to-ellipse distance
by using two ellipse-to-point distance computations,
one for each ellipse of every pair. This choice is con-
sistent with the fact that PCFs compute and aver-
age the distances of each element with respect to
the others in the distribution.

In order to take into account the size and the
orientation of the elements while computing ellipse-
to-point distances, each point is expressed in local
coordinates relative to the ellipse. More formally,
for the point (x, y) in local coordinates, we compute
its distance to the axis-aligned ellipse using:

d(x, y) =

√
x2

a2
+
y2

b2
, (4.2)

where x and y are the local coordinates of the point, and a, b re respectively the semi-
major and semi-minor axes of the ellipse. More intuitively, this distance represents how

65

Chapter 4. Towards animated worlds

much larger the ellipse would have to be for the point to be lying on its contour. This
scaling value is equal to 1 for all points on the ellipse (see Figure 4.5 for a visualization).

Generalizing the domain: Although the standard PCF formulation operates on square
domains, herds can and usually do take arbitrary shapes and it is unreasonable to expect
the user to search for input images that fit perfectly in a square, or to crop the input
and lose precious information. While the free-form PCF formulation presented in the
Section 3.2 of Chapter 3 could be used to compute an unbiased PCF from the herds, we
will refrain from relying on it in this chapter. Instead, we can make a few assumptions
and approximations about the input data in order to simplify the problem, and as a result
reduce the computation time. The two assumptions that we make in this chapter is that
the overall shape of herds can be reasonably approximated to a convex polygon, and that
potential holes and variations of density that exist in this convex domain are meaningful
and must be recreated by the model.

With this in mind, we choose to define the domain as the convex hull of the data
points, which is an arbitrary convex polygon. Although accurately computing the area
of an elliptic ring inside a convex polygon is complex, we can efficiently provide a good
approximation of the solution: we consider an approximation of the ellipse as a collection
of as many triangles as there are edges in the convex hull of the domain. Each of these
triangles is composed of the origin of the ellipse, and two consecutive points on the hull
polygon. We translate the points of the hull to the intersection between the ellipse and
the convex hull. The area of the part of the ellipse in the domain is computed as the sum
of areas of the triangles. The area of the inner ellipse is subtracted to get the area of the
elliptic ring within the domain.

In practice, these computations are only performed for a few rings at regular distances
around each point. The actual weighting coefficients, given by the ratio of the ring in
the domain over the area of the full ring, can then be interpolated between these few
computations to increase performances.

4.2.3 Editable descriptors

On top of the correlation curves used to keep track of the local relationship between
objects, at least one other descriptor, the orientation field, is required to produce a result
faithful to the original data. One last optional descriptor, the density map, can also be
used in conjunction with the rest of the framework to replicate the density of regions in
the same location in our output.

Orientation field: The orientation field is defined everywhere in the domain, and allows
us to assign a plausible orientation at any hypothetical point within the original convex
hull.

66

4.2. Analysis and synthesis of static herds

Fig. 4.6: The descriptors are computed by interpolation inside triangles from the Delaunay
triangulation of the input data.

We compute this field by extracting the Delaunay triangulation of the centers of the
extracted ellipses representing animals, and assigning the orientation of the ellipse to each
vertex of the resulting mesh, as can be seen in Figure 4.6. When querying the field for
the orientation of a new arbitrary point, we find the triangle that contains this location
and interpolate the three angles of the vertices using barycentric coordinates.

Density map: Extracting density maps as well helps creating distributions as close to
the original as possible by reproducing the position of the denser areas and empty regions.

Our approach to do so is similar to the one used for the orientation field. From
the Delaunay triangulation of the ellipse centers, we use the area of the 1-ring, i.e. the
collection of neighboring vertices, as an indicator of how much free space is available
around at this location. We take the inverse of this area as an approximation of the local
density and assign it to each point of the triangulation. We use barycentric coordinates
interpolation withing each triangle to define density everywhere in the domain.

4.2.4 Synthesis algorithm

The editable descriptors computed from the input image are first transformed and mod-
ified to account for the general orientation of the herd trajectory at the key-frame, the
obstacles in the environment and the size of the herd (each animal being of constant size,
a herd of 100 will not take the same surface area on the terrain as a herd of 1000): after
rotation and projection of the density map on the terrain, the part covered by obstacles
is masked out. The map is then scaled in or out until it fits the requested number of
animals. The same transformation is then applied to the orientation map.

Our synthesis method is based on the dart throwing algorithm (Algorithm 1) from
the previous chapter. However, it has been modified to take into account the new features

67

Chapter 4. Towards animated worlds

added to the formulation, responsible for the handling of ellipses, herd shape, as well as
non-uniform densities and orientations. As a result, our new synthesis algorithm takes
as input the PCFs of the input distribution, the density and orientation maps, and the
number of ellipses required in the target distribution, and outputs a new distribution
matching the original. The method is summarized in Algorithm 2, and further detailed
in this section.

Input: PCF, orientation field O, density map D, number of elements N
Output: Ellipse distribution

fails← 0 ;
while < N elements accepted do

Sample ellipse from D;
Sample orientation from O;
Update PCF with new ellipse;
if error decreased or fails > max fails then

Accept best ellipse;
fails← 0;
continue;

end
fails← fails+ 1;

end

Algorithm 2: Synthesis algorithm

We first pick a random ellipse respecting the probability distribution of the density
map. This sampling is done by computing running sums of densities per column of a
discretized version of the density map, and then from one column to the next. This gives
us the probability of having a point in each column, and for each column the probability
of having a point at each pixel. We use these cumulative density functions to sample
random ellipses according the density map. A rotation is then assigned to the ellipse
using an orientation field query at its location. We update the current PCF with the
impact of the new ellipse and compute the error E compared to the target PCF, after
normalization to account for the difference in element count. We use:

E =
∑
r

(
PCF (r)− PCF0(r)

)2

PCF0(r)
(4.3)

where r spans distances to the ellipse.

The ellipse is accepted if adding it to the distribution reduces the error. Otherwise,
to make sure that the algorithm does not get stuck in an infinite loop, we keep track of the
best candidates while searching for ellipses. If the algorithm cannot find a good enough
solution before reaching a threshold max fails, the best candidate from the previous
tries is accepted.

68

4.2. Analysis and synthesis of static herds

(a) Original descriptors (b) Smoothed orientation (c) Spiral orientation

(d) Uniform density (e) Left-to-right density (f) Radial density

Fig. 4.7: Effect of the editable descriptors on the synthesized result, with changes to the
orientation field (top) and density map (bottom).

4.2.5 Descriptors as control tools

While it is possible to extract every component of our model from images and use them
to create key-herds, the user can also edit the orientation map and density field to obtain
a finer control over the result.

The density map is a completely optional parameter and removing it will yield an
image that is similar but has local density extrema in different places. Manually painting a
density map can be used for artistic purposes to alter the look of the resulting distribution.

Similarly, editing the orientation field leads to another form of control over the result.
Indeed, replacing every orientation in the field by the same orientation produces a uniform
flow, and smoothing or adding noise to the field can be used to control the level of detail
in the emerging distribution.

The extent of this control is shown in Figure 4.7, with the top row showing the
effects of orientation field changes while the bottom row showcases the impacts of different
density maps. Sub-figure 4.7b shows the result after merging the orientation field with
orientations pointing straight right, and figure 4.7c shows the effect of a pure rotational
orientation field on this example. While changes in the density map are more discreet,
its effects can still clearly be seen. Indeed, the most important empty spots are mainly
located to the left of the herd in figure 4.7e while they are in the center in sub-figure 4.7f.

69

Chapter 4. Towards animated worlds

4.3 Herd animation

4.3.1 Global herd trajectory

We extend the idea of key-framing an animation to a group of animals. While traditional
key-frames can be used to represent important poses of an individual character, our key-
herds encode a full group of animals at a specific point in time.

From this input, a global trajectory for the herd, modeled using an interpolation
spline between the centroids of key-herds and the extra position-only key-frames, is gen-
erated and projected onto the terrain. The herd can be seen as a local frame that moves
along this global trajectory, and within which the animals will have some adequate relative
motion.

4.3.2 Generating individual movement

We first compute a consistent labeling to pair animals within successive key-herds, and
then use microscopic simulation to define individual trajectories, as described next.

Pairing based on optimal transport: Establishing a good correspondence between the
animals of a key-herd and the following one is essential to generate fluid motion. In
our work, we use optimal transport [BvdPPH11] for this computation, after virtually
superposing the two successive key-herds to best align their centroids and orientations (by
convention, the X axis in a local frame). More precisely, the mapping is computed as the
optimal transport of one unit of mass for each animal located in local coordinates relative
to the key-herd, to the local positions of the animals in the next key-herd. Depending
on the type of animation required, the metric used for this computation can be the
Euclidean distance, the Euclidean distance to the nth power to increase the penalty on
distant mappings, or a metric that penalizes matching along one axis more than the other.

Herd-frame-guided simulation: The key idea to generate individual animal trajectories
that both interpolate their assigned position in two successive key-herds, but also follow
the herd trajectory in-between, is to use microscopic simulation following moving guides
defined in the herd frame. This way, while the guides model the necessary relative motion
within the herd, the steering behavior in world frame enables to avoid collisions with other
animals and with obstacles.

We use a simple steering model based on five forces to generate individual motion.
The first three forces are separation, alignment and cohesion [Rey87]. They are responsi-
ble for the general behavior of the individuals. They are completed by an extra force to
handle collision with the environment: it steers the animals away from obstacles if their
predicted future position given their current position and velocity gets too close.

70

4.4. Results and discussion

The last force controls the animal movement by giving them guides to follow. The
latter straightly move, in the local herd frame, from their previous position in a key-herd
to the next. Guide positions are transformed to world frame at each time step, while the
herd frame follows its global trajectory. In addition, to account for the actual speed of
the associated animals, which can be slowed down by other interactions, the position of
the herd frame along its trajectory is set to move forwards only when all the associated
animals are about to reach their guide.

Note that in our current implementation, the orientation of animals can be computed
either from their movement or by interpolating the orientations of successive key-herds.

4.4 Results and discussion

4.4.1 Results

Our framework is implemented in Python for herd analysis and synthesis and in C# on
the Unity Engine for user interaction and rendering. Timings reported in Table 4.1 were
run on an Intel Core i5 processor at 3.3GHz equipped with 8GB of memory.

Herd size Ex.1 Ex.2 Ex.3
N = 1054 N = 43 N = 220

5 1.8s 0.5s 0.7s
25 1.9s 0.5s 0.8s
100 2.2s 5.1s 6.2s
200 3.5s 16.2s 15.4s
500 15.9s 73.4s 59.3s

Table 4.1: Benchmark of synthesis time

Figure 4.8 shows synthesis results for three different input images depicting herds of
widely varying sizes and visual patterns. For each input, generation is performed with
different target herd sizes (around 50, 100, 200, and 500+ animals) to illustrate the ro-
bustness of our method. We can see that the overall shape and orientations are preserved,
and that the less dense spot of the herd near the bottom is also encoded by the model
(leftmost example). In the middle example, where dense and sparse regions alternate,
we demonstrate the capability of our approach to generalize to a larger sample size: the
dense and sparse spots are duplicated as necessary along the herd shape to preserve the
local consistency of the distribution as the number of animals increases. Finally, the
rightmost example proves to be the most complex one, due to the presence of strongly
constrained formations such as lanes. This is indirectly encoded by the anisotropic ellipse
distance and the density map, but is not strictly enforced by the system. This results in
varying degrees of accuracy in the generated distribution. This is visible for 500 animals,
where the formation of lanes is harder to recognize.

71

Chapter 4. Towards animated worlds

Fig. 4.8: Generated herds with different target herd sizes. The size in the input image is
in red.

Animation results are depicted in Figures 4.2, 4.9 and 4.10. In particular, Figure 4.9
shows a comparison between the input image and the resulting animation of the animals
close to the key-frame where this particular image is placed. Similarities in shape and
disposition of the animals are visible, despite a different number of animals and minor
distortions caused by the global path of the herd. Figure 4.10 demonstrates the interaction
of a small herd with a tree. The steering agents used for individual movement are able
to avoid the obstacle while maintaining the overall arrangement.

As these results show, our method can handle challenging animation scenarios with
significant changes in the herd shapes due to user input or environmental constraints,
while maintaining the global aspect of the herd distribution learned from the input herd
photos.

72

4.4. Results and discussion

Fig. 4.9: Comparison of the result with the input image, with a far smaller number of
animals.

Fig. 4.10: Frames from an animation showing interaction with an obstacle.

4.4.2 Limitations

Firstly, although orientation fields are properly reconstructed at herd key-frames, we failed
to achieve an animation of individual animals that both matches this orientation field and
results in natural motion, as can be seen in Figure 4.11. This comes from the fact that

73

Chapter 4. Towards animated worlds

Fig. 4.11: Compared to computing orientations based on animal movement (top), inter-
polating orientations between key-herds (bottom) helps to reproduce variety in a herd,
but can result in side-way movement.

linearly rotating guides between their target position and adding angular forces within
the steering behavior produces strange behavior such as animals moving side-way or even
back-way. Achieving animation that match orientation constraints is therefore left for
future work. Secondly, although we offer a precise control of the statistical distributions
of animals at key-frames, our method does not offer any guarantee on the plausibility
of the distribution in-between. In particular, even when the same reference image is

74

4.5. Towards herd animation from video

used for two successive key-herds, the fact we use microscopic simulation to process local
interactions in-between, may alter the intermediate distribution. A last limitation is the
difficulty to reproduce constrained formations as the queue of animals in the rightmost
example of Figure 4.8. This is due to the interpolation of the density map, which diffuses
density where there was none in the input image, and to the distance used that does not
discriminate front from side, apart for the inherent shape of the ellipses.

4.5 Towards herd animation from video

While the work presented in this chapter provides an intuitive tool designed for the
authoring of herds of animals, its input is restricted to images by design. Compared to
videos, this facilitates the extraction of data and increases the quantity of available data,
but as a consequence contains much less information about the behavior of underlying
animals. For example, the average and relative speeds, the type of motion (e.g., kangaroos
or rabbits hopping) as well as special events (e.g., an animal falling down, getting back
up and then running to get back to the herd) are all lost when only considering still
images. We present in this section a work in progress intended for the learning, synthesis
and authoring of animated herds, where information from short video sequences is used
to control groups of animals.

4.5.1 Extracting meaningful data from video clips

We choose to focus on information from short video clips (of a few seconds) to avoid
putting difficult constraints on a user looking for data. Just like for images, the first
stage is to extract the relevant information from the input, which will later on be used
for analysis and synthesis. Working with video data presents both pros and cons when
compared to static images. On the positive side the successive frames provide additional
information about the targets, which can be exploited for a higher accuracy. This includes
mostly the movement of animals against a static background, which is easy to detect.
However, video data also come at the cost of many constraints, such as blurred frames or
a mobile camera that introduces a bias in velocity computations.

Figure 4.12 presents the different steps that we follow in order to successfully extract
data from the input. Starting with the original video, we keep the same principles as for
images and ask the user for a rough annotation of elements in the input. We provide
a simple tool for this purpose (visible in Figure 4.12b) equipped with brushes for the
different annotations and standard controls over the timeline of the clip (bottom of the
image). The user is asked to mark a few sections of the background in red. In cases
where the input is unstable, the user can interactively split the timeline to annotate
different parts of the video independently. Optionally, the user can annotate some pixels
as containing animals (green) or irrelevant data such as text displayed over the video
(black). To extract movement information, we compute the optical flow (Figure 4.12c,

75

Chapter 4. Towards animated worlds

(a) Input video clip (b) User annotations (c) Optical flow

(d) Movement detection (e) Color detection (f) Animal detection

Fig. 4.12: Semi-automatic detection pipeline on video clips. Our method combines color
and movement information from a few manual annotations to accurately detect animals
in short clips.

with artificial colors representing orientation and intensity) over the entire example. In
this case, we used PWC-Net [SYLK18] for the quality of the output over dynamic data
with small elements, but our method is not bound to a particular optical flow computation
method.

We use the optical flow in conjunction with the user annotation to compute the
relative movement of pixels belonging to the background during the video. This allows us
to estimate a 3×3 homography matrix H that represents the screen-space transformation
of the ground pixels from one frame to the next. The matrix is optimized to satisfy

x′y′
1

 = H

xy
1

 , (4.4)

for all points (x, y) mapped to (x′, y′) in consecutive frames. Inverting H provides us
with a matrix that can be used to compensate the camera movement during the clip
(illustrated in Figure 4.13), thus removing the initial bias and allowing the detection
of moving objects over the static background. This stabilization with the help of an
homography relies on the assumption that the terrain on which the animals move can
locally be approximated to a plane.

We rely on two estimators to detect the location of animals, one based on their
movement and the other one based on their color. The first one (4.12d) is computed
from the difference between the measured optical flow and the theoretical optical flow
representing the movement of the background. This movement map displays areas where

76

4.5. Towards herd animation from video

(a) Input clip

(b) Stabilized video

Fig. 4.13: Result of stabilization using the optical flow and inverted homography. Screen-
shots were taken after 0, 5 and 10 seconds of video, respectively.

objects are moving, but can produce false positives if the camera movement is not properly
compensated or the lens of the camera produces distortions near the corners. We apply
a temporal Gaussian blur and adaptive thresholding to minimize those issues. For the
color-based estimator (4.12e), we use the same method as in Section 4.2.1: the image is
binarized after training a SVM over the color of pixels annotated by the user. Combining
the information from our two estimators provides an accurate detection of animals (see
subfigure 4.12f) from a video, with a minimal amount of work from the user. While a
false positive is visible at the top right of the image, it is a rare occurrence and can be
easily corrected manually.

4.5.2 Avenues for animated synthesis methods

While we do not have completed our research regarding an authoring tool for fully dy-
namic herds, this direction seems promising so far. We will discuss here a few of the
experiments that we have carried, or plan to carry out for this purpose. Two main ap-
proaches can be considered to extend our existing method from static to animated data.

The first option is to operate at the distribution level, and would aim at the synthesis
of already animated distributions. In this formulation, the objective is to add a temporal
component to curves encoding the distribution, making it possible to recreate the animals
directly animated instead of relying on an independent animation step. This additional
temporal component can take the form of a new dimension (turning the PCFs into 2D
surfaces, on which computations would be expensive), a would require a more expressive
metric, or a separate encoding mechanism (similar to the orientation and density maps
used in Section 4.2.3).

77

Chapter 4. Towards animated worlds

An alternative approach considers this problem from an animation point of view.
From the motion data extracted from the input video, we propose to generate a stochas-
tic motion model for individual animals. This model could be used to individually predict
plausible trajectories for each animal based on their neighbors and their direct environ-
ment. This can be seen as a more specific version of the steering agents used in this
chapter, automatically generated to mimic behavior learned from the input data. On
top of this microscopic simulation, global control over the shape and distribution of the
herd could be applied with static synthesis methods. After moving the animals using
the custom model, deviations from the target distribution would be computed and the
positions of outliers be corrected (similar to the gradient descent used in [ÖG12]).

We plan to explore these research directions in the next few months.

4.6 Conclusion

We presented in this chapter an easy to use authoring tool for herd animations. It enables
the user to key-frame a herd over a terrain by extracting the successive visual appearances
from photos, while automatically taking the 3D environment constraints as well as the
target number of animals into account. This is achieved by dissociating animation from
placement and only considering static synthesis at specific locations. Once the target
distributions are encoded at each key-frame, the user is allowed to manually update
the orientation and density of animals in the herd thanks to the use of auxiliary fields
representing these two variables during synthesis. At runtime, the animals in successive
key-frames are then automatically paired and animated with an agent-based microscopic
simulation method that handles collisions between animals and with the environment.

In addition to matching orientation and density fields, the animation could be further
improved using known animal features such as their type of movement. For example,
simulating movement ranging from smooth to cyclic (jumping of kangaroos or frogs) or
to Brownian motion (flying insect swarms) would greatly increase the variety of species
that can realistically be generated. An extension to 3D would also be beneficial when
modeling flocks of birds or schools of fishes, since control can be difficult to achieve with
traditional approaches.

Still, the velocity and behavior of animals cannot be learned from a photo. With this
in mind, we discussed possible extensions to our method to support video clips as input
data. Paired with our dedicated animal detection pipeline, this could allow the automatic
synthesis of fully dynamic herds while retaining a simple and intuitive user experience.

In the next chapter, we take a step back and present a biology-inspired method
to unify the instantiation of vegetation and animals on a terrain. At the scale of the
entire environment instead of a local neighborhood, we explore the relationships between
different species and propose a formulation allowing control, stability and plausibility
without the need for an expensive and complex simulation.

78

Chapter 5

Authoring complete ecosystems

Contents
5.1 Case study: effect and visualization of skiers 82

5.1.1 Context . 82

5.1.2 Skiers in snow-covered landscapes 83

5.1.3 Discussion . 85

5.2 Populating a complex ecosystem: overview 86

5.2.1 Input and output . 87

5.2.2 The Resource Access Graph . 88

5.2.3 Processing pipeline . 88

5.3 Resource Access Graph . 89

5.3.1 Definitions . 90

5.3.2 Initialization with the vegetation layer 92

5.3.3 Animal accessibility maps . 92

5.3.4 Computing the next level . 92

5.4 Competition algorithm . 93

5.4.1 Survival constraints . 93

5.4.2 Solving for a Food Chain Level 94

5.5 Ecosystem-aware landscapes . 96

5.5.1 Generating a map of trails . 96

79

Chapter 5. Authoring complete ecosystems

5.5.2 Daily itineraries and 3D instantiation 97

5.6 Results and discussion . 99

5.6.1 Interactive editing and exploration 99

5.6.2 Results . 99

5.6.3 Validation with expert users . 100

5.6.4 Limitations . 103

5.7 Conclusion and future work . 105

Beautiful landscapes result from the long and short-term co-existence of various
forces and effects, such as weather, erosion, vegetation – and animals. While all these
phenomena have a strong influence on landscape appearance, their effects are not always
well-understood, and only some of them have been considered in Computer Graphics.
In particular, a large body of previous work has addressed terrain generation and plant
ecosystems, either in isolation or combined. Despite these efforts, humans can still easily
distinguish fully automatically synthesized landscapes from real ones, and a significant
amount of manual editing is often needed to improve realism.

Our first key observation is that animals have a critical visual impact on landscapes,
as they compete for space and resources, shaping clearings and trails through the vegeta-
tion, which, in turn, affects erosion. Therefore, the standard pipeline where a terrain is
generated, eroded, covered with plants, and where animals are only added on top while
neglecting their interactions with the other elements, should be revisited.

License: Bernt Rostad, CC BY 2.0

Fig. 5.1: Narrow trail in a forest, used by
deer and other wild animals.

The second key observation is that
modeling a landscape as the result of the
co-existence of a variety of life forms can be
done consistently without a full simulation
while enabling intuitive user control. This
point is essential since launching a full,
simultaneous simulation of terrain forma-
tion, vegetation, and wild-life would only
bring indirect user control. Besides, the
involved multiple time scales would make
the simulation unmanageable.

We propose a solution to increase the
quality of landscapes in Computer Graph-
ics by generating full ecosystems with
fauna and flora interacting with the ter-
rain. Our approach unifies the treatment
of plants and animals by considering them

as different levels of a food chain, which is iteratively instantiated, from lower to upper
levels. Moreover, we designed our method to allow intuitive authoring from the user,

80

https://www.flickr.com/photos/brostad/3513118356/
https://creativecommons.org/licenses/by/2.0/

Terrain Climatic conditions Species density maps Map of trailsResource Access Graph

On-the-fly exploration

Fig. 5.2: From an input terrain, a set of climatic conditions, and proportions of competing
species, our algorithm computes density maps per species by iterating on an embedded
resource access graph, and finally extracts a map of animal trails (top). This enables the
on-the-fly exploration of consistent ecosystems (bottom), showing vegetation, animals
and the trails they generate. The user can edit maps at any stage using painting tools.

as well as the on-the-fly instantiation of the resulting ecosystem during interactive ex-
ploration, by positioning plants and animating animals along their daily paths between
resources.

We achieved these results thanks to a trade-off between efficiency and exactness
through a system providing several approximations and key choices: first, we allow au-
thoring by taking as input the desired proportion of present species at each level of the
food chain. We compute the actual number of specimens and their distribution over
the terrain from this input, thanks to a new procedural competition algorithm ruled by
the following hypothesis: the resulting ecosystem should not only be consistent in terms
of resources, but also at a quasi-equilibrium state. The latter meaning that only the
surplus produced by each species during one year can be used as food at the next food
chain level. Second, the procedural competition method makes use of a novel hierarchi-
cal data-structure called the Resource Access Graph (RAG), which embeds resources for
each species with their location and accessibility in the form of a layered graph embedded
on the 2.5D landscape. This structure encodes both interactions with the previous level
of the food chain and access paths between resources. Therefore, the completed RAG
provides all necessary information to build a map of eroded trails over the terrain.

In a typical use-case, the user starts by specifying the terrain, and a set of species
with optionally their desired proportions after competition. This input is used to compute
the closest steady-state ecosystem, in the form of a set of editable density maps for each

81

Chapter 5. Authoring complete ecosystems

species of plants, herbivores and then carnivores over the terrain. At each level of the
food chain, the impact of the generated species is propagated back to the resources it
consumes and the paths between them, enabling to account for grazing, foraging, and
erosion along animal trails. The resulting ecosystem, composed of a set of density maps
and trail maps, is finally instantiated during interactive exploration. In particular, we up-
sample the computed animal paths from the RAG while taking into account the terrain
features and plant density maps, so that animated herds can be consistently displayed
and animated. Figure 5.2 shows an example of interactive authoring and exploration of
a populated landscape.

We claim the following scientific contributions:

� We introduce the RAG, a hierarchical, biology-driven graph of resources, which
encodes interactions among food chain levels and enables us to model paths between
resources.

� We introduce a procedural competition algorithm to build a fast approximation of
a steady-state ecosystem at each level of the food chain.

� We propose a method for the consistent, on-the-fly instantiation of plants and ani-
mals during interactive landscape exploration.

We will start this chapter with a short case study of interactions and interdependen-
cies similar to the case of ecosystems, but applied at a smaller scale and for a different
context. This will be used to draw similarities and discuss the different challenges related
to the case of ecosystems, but on a more constrained example. We will then provide
an overview of the pipeline for general ecosystems, before detailing our data structure,
competition algorithm and instantiation process.

5.1 Case study: effect and visualization of skiers

We focus in this section on the visual impact of skiers on snow-covered landscapes, as
well as their interactions and effects on different types of snow.

5.1.1 Context

Snow-covered mountains, such as the one visible in Figure 5.3 (left), can present some
of the most breathtaking landscapes. Their complexity stems from the impact of many
different elements including the altitude of the mountain, the uneven melting of the snow
depending on sun exposure, the effect of the wind on snow, or human activities. The goal
of the work [CEG+18] from which this section originates is to simulate the main causes
affecting the visual aspect of mountainous landscapes, to recreate their complexity while

82

5.1. Case study: effect and visualization of skiers

Fig. 5.3: Snow-covered mountainous landscape (left) are shaped by many factors such as
wind, altitude, sun exposure, and more. Human activities (right) also play an important
role by leaving tracks, compacting snow and triggering avalanches.

allowing interactive user control over the result. To reach this goal, the above-mentioned
phenomena are modeled as stochastic events computed on the GPU, and acting on a
layered representation of the terrain describing both the underlying rock and multiple
types of snow (e.g., compacted, stable, unstable, powdery).

We will focus this section on one type of event that greatly affects the aspect of
such landscapes, and presents similarities with the way animals interact with their envi-
ronments in complete ecosystems. Indeed, skiers leave characteristic tracks in the snow,
akin to how animals create trails to and from places of interest. They also have direct
impacts on their environments, as they compact the snow in their path and can even
trigger avalanches.

The size of our simulation grid (10m per cell) only allows a consideration of the gen-
eral direction of the skiers. While this is sufficient when modeling the impact of skiing on
snow state during the simulation, we need more precise paths to achieve realistic render-
ing. We thus opted to integrate a procedural method to generate plausible refined tracks
on demand without increasing the computational costs during the interactive simulation.

5.1.2 Skiers in snow-covered landscapes

Global path search. Skiers can be either manually placed on the terrain by the user,
or automatically placed by the system. In this case, each cell has a low probability of
spawning a skier. This probability is influenced by the length and viability of a ski route.
Therefore, we pre-compute a map registering the distance from each cell to its farthest
down-slope end point (local minima or edge of the terrain). We use a simple cellular
automaton that finds minima on the terrain and propagates the distance to them in
subsequent steps to efficiently compute this map, directly on the GPU. This distance
map is used both as a weighted mask when automatically spawning new skiers, and as a
guide to discourage skiers from reaching dead-ends, as discussed next.

83

Chapter 5. Authoring complete ecosystems

Fig. 5.4: Global paths (left) are computed in real-time and represent the rough trajectory
of skiers going down the mountain. Refined tracks (right) are computed for rendering
purposes, to detail the actual path taken by individual skiers.

Large scale paths are computed to approximate general direction and movement of
the skiers, without the detail of the curves used to regulate their speed (Figure 5.4 (left)).
For that, we take into account the slope of the mountain by defining an ideal slope angle
st that skiers will be comfortable with and try to follow, and make sure that there is
enough snow for them to ski on. In this work, skiers are modeled as independent agents,
defined by their position and orientation, responsible for deciding their next move using a
local search, based on the amount of snow present in neighboring cells, the corresponding
relative slope sn and a pre-computed weight wd related to the distance to a terminus. In
practice, skiers have a small lookahead window of a few tiles, and will steer in the best
candidate direction defined by the center of a nearby cell. The probability for a skier
aiming towards a given cell n is:

P (n) = 1snow>threshold f(|sn − st|)wd, (5.1)

where 1 is the indicator function, sn is the slope between the current cell and cell n, and
f is a function that assigns a weight, which can be changed to tune the behavior of skiers
with regard to slope. To avoid sharp changes in direction, a smooth transition to the new
steering direction is computed and applied to the orientation of the skier. The steering
direction is re-evaluated at each animation step.

Refined tracks, visible in Figure 5.4 (right), are created for rendering purposes.
They are approximated based on the observation that the precise movement of skiers is
analogous to sine waves of varying amplitude and frequency, with sharp turns used to
slow down and straight paths to gain speed. With this in mind, we model movement on
each straight segment of a global ski trajectory using p(t) = a sin(2πft), where a is the
amplitude and f is the frequency, dynamically updated with the terrain’s varying slope.

Indeed, a skier moving straight down a mountain will go faster than one with a
trajectory following the isoline. To account for this, we compute the effective slope se of
the skier’s trajectory as:

se = arcsin
sin(sn)

2f l
l =

√
1

4f 2
+ 4a2, (5.2)

84

5.1. Case study: effect and visualization of skiers

where l is the distance between sine curve extrema. This provides the local frequency
value required for skiers to reach their comfortable target slope st:

f =

√
sin2(sn)− sin2(st)

4a sin(st)
(5.3)

Continuity with the previous refined position and orientation of the skier is ensured by
choosing an appropriate starting phase value along the sine curve. At each animation step,
the resulting movement detail is mapped on the fly onto the lower resolution trajectory
computed using Eqn. (5.1). This is done using a local update to a ski-tracks texture layer
covering the whole terrain. An alternative is to export this texture as a displacement
map for off-line rendering.

Interaction between ski tracks and snow is two-way. Once a skier enters a cell it
transforms a fixed amount of snow from unstable to stable, or from stable to compacted
if no more unstable snow remains. If there is unstable snow still remaining then the
probability of an avalanche is increased. Conversely, the impact of snow on rendered ski
tracks is taken into consideration: as snow is deposited along the path or shifted by the
wind, the tracks fade dynamically depending on the quantities involved.

5.1.3 Discussion

Fig. 5.5: Fresh bear tracks
left in the snow.

We demonstrated in this section the importance of inter-
actions between individual elements and their environment.
Apart from the direct mark left by skiers in the snow,
their ability to compact snow under them and to trigger
avalanches also results in drastic changes in the resulting
landscape, that can give the user critical information on the
environment. All these aspects have equivalents in the case
of ecosystems. The ski tracks have an effect similar to that of
animal trails, showing information on important places and
recurring activities in the environment. They also be seen
as similar to animal prints left in the snow, which instead
give recent information about a single animal. Besides this,
the main effects of skiers on the environment – compacting
snow and triggering avalanches – can be seen as a parallel to
animals consuming resources and being consumed by preda-
tors.

This case study also provided interesting insights on how
ski tracks and animal trails can be handled. Indeed, this
example shows that a complete and precise simulation of the
elements is not required to reach a polished result. In the case of skiers, we used a
procedural model to recreate a detailed version of the tracks after the simulation, using

85

Chapter 5. Authoring complete ecosystems

coarse information about orientation and the global path of skiers. This can be applied
to the case of animals, where a simulation of animal movements over an extended period
of time would be an intractable solution to generate trails.

We go back to the case of ecosystems in the next section, and provide an overview of
our method designed to handle interactions between species and with their environment.

5.2 Populating a complex ecosystem: overview

Environmental
Resources R0

Design Exploration
Editing

Terrain

Competition
Food-Chain

Level i

RAG Level i
Surplus Level 𝑖𝑖 − 1
& Daily Planning

Ecosystem-Aware
Animated Landscape

For each Food Chain Level (𝑖𝑖 ∈ 0,𝐾𝐾)

Temperature
Moisture

Illumination

Fig. 5.6: System overview: After initializing environmental resources, we process each
food chain level, starting from the bottom, and subsequently compute the corresponding
level of the Resource Access Graph (RAG), the result of the competition algorithm for
FCLi, and the remaining surplus for FCLi−1. Finally, we gather the resulting density
maps (species and their surplus), yielding the ecosystem-aware-landscape, together with a
map of eroded trails on the terrain, computed from the RAG and the density information.
During the interactive exploration, the ecosystem is instantiated from its collection of
maps. The user intuitively edits results by over-painting any of the maps, the edits being
consistently propagated up the processing chain (the user being warned if they increase
a species density beyond the available resources).

Both artists designing virtual worlds for movies or games and scientists studying the
effect of climatic changes on ecosystems share an interest in generating and exploring
consistent 3D landscapes with flora and fauna. Both, however, need control over the set
of species they observe on the terrain, either to author a virtual world or to restore past
ecosystems from data –such as animal bones and plant pollen found by paleontologists–
that inform them about the nature and proportion of species.

In order to match these authoring needs, we do not simulate competition between
species expressed as differential equations, since this standard approach would lead to a
time-evolving ecosystem with little control over the resulting proportions of species. We
instead build on user input to create a consistent landscape that matches the expressed
authoring choices. This is done by iteratively considering a given level of the food chain,
from bottom to top, to progressively generate the number of specimens for each species
that will form a consistent ecosystem. The latter is supposed to be in a quasi-equilibrium

86

5.2. Populating a complex ecosystem: overview

state, meaning that only the surplus produced by a given species is used as a resource
that feeds the specimens of another species higher in the food chain.

Although the number of generated specimens can be limited, our solution ensures
that the user-specified proportions between competing species at each food chain level
are maintained. We use a novel data structure: a hierarchical directed graph called the
Resource Access Graph (RAG), to encode the interactions between the different levels
of the ecosystems, as well as their interactions with the terrain of interest. This structure
enables us to output a modified terrain that embeds the trails eroded by animals’ daily
itineraries from a resource to the next.

The key concept behind our solution (see Figure 5.6) is the mutual interaction among
species through food chains. For i ∈ [0, K], a food chain level is denoted by FCLi =
{Sij}j=0..Ni

, and is a set of species Sij that feed from species in FCLi−1. The FCL is
updated in discrete iterations so that the previous state depends on the new one leading
to a chain of FCL0 → FCL1 → · · · → FCLK . In our implementation, we use three
food-chain levels, namely plants, herbivores, and carnivores.

Let Ri
j denote the set of resources on the terrain used by a given species Sij ∈ FCLi.

These include areas where they can drink and areas where they can find either plants
or animals of interest, among Si−1. We denote by R0 the natural resources for plants,
including soil nutrients, sunlight, and moisture, computed over the terrain from the terrain
soil map and climatic conditions.

5.2.1 Input and output

The input to our algorithm is a terrain given as a digital elevation model (16 km2 with
a resolution of 1 m in our examples), together with a map of soil nutrients, and the full
set of species (including both plants and animals), denoted by S = {Sij}

i=0,...,K
j=1,...,Ni

the user
defined on this terrain, with the desired proportions at each level i of the food chain.

The user may also directly provide maps of natural resources for plants such as mois-
ture, temperature, and yearly light available over the terrain. In our implementation, we
adapt the approach from [CGG+17] to consistently compute these maps from the ter-
rain orientation, altitude, latitude, and some user-defined climatic information, including
extreme temperatures at sea level and average sunlight and precipitations on a monthly
basis.

In addition, the algorithm makes use of widely available information about living
species. For instance, the plant database [TBDB] includes a set of needed resources
(minerals, light, and water) as well as the minimal and maximal temperature the plant
can withstand. For animal species, in addition to the needed resources (water, food
in terms of species from the previous FCL), the database [ADWDB] also includes the
average motion speed, the ability to climb slopes and to cross rivers; information that we
use to compute their ability to travel over the terrain.

87

Chapter 5. Authoring complete ecosystems

The output of our method is a set of maps over the terrain, representing the density
of presence of any given species, and a map of eroded trails. Density maps for animals are
uniform over a set of species-specific confinement regions that are delimited by frontiers
such as rivers or cliffs that the animal cannot cross. We use uniform densities to represent
the ability of an animal to move anywhere in such a region. In practice, species typically
have non-uniform probabilities of presence over their confinement regions, depending on
the location of the resources they need. Therefore, we also compute daily itineraries for
animals within each confinement region, to model their typical routes. The resulting set
of maps defines an ecosystem-aware landscape populated with animals, plants of various
species, with clearly distinguishable trails.

5.2.2 The Resource Access Graph

The Resource Access Graph (RAG) is the main data-structure used during computations.
This is a hierarchical, directed graph embedded in the terrain. At each level of hierarchy
i ∈ [0, K], the RAG’s nodes are individual resources available for the set of species FCLi,
located on the terrain (represented by the centroid of the corresponding region if they
have an extent in space, such as meadows of grass). Edges –labeled by indicators of the
species– encode the ability of a given species to travel from one resource to another and
they are valued by the average time it takes (we use directed edges if traveling times back
and forth are different).

The RAG hierarchy represents the fact that species are resources for other species
higher in the food chain, and are thus encoded within resource nodes (e.g., a population
of antelopes in a sub-region of the terrain, which is a food resource to wolves, is expressed
as a resource node for carnivores in FCL2). Therefore, nodes at each level of the RAG
are built from the connected components of the RAG at the previous level (e.g., the
resource graph used by these antelopes, which live between the river and the cliff, and
travel between different resources to feed in this region) as shown in Figure 5.8. Therefore,
the RAG cannot be precomputed at once but needs to evolve progressively in order to
reflect the interactions between a previously computed food chain level and the next, as
detailed below.

5.2.3 Processing pipeline

Our algorithm (see Figure 5.6) first uses the input data (terrain maps and climatic con-
ditions), discretized in a regular grid, to compute the set of natural resources R0. We
initialize the first layer of the RAG (i.e., resources for plants) by considering each cell of
the grid to be an individual node.

Then, we launch the iterative computation of the ecosystem, where we successively
apply the same computational process at each level of the food chain (in our implemen-
tations: plants, then herbivores, then carnivores):

88

5.3. Resource Access Graph

1. Building RAGi: We create the i-th level of the RAG, which encodes the resources for
species from FCLi, their location over the terrain, and the ability of each Sij ∈ FCLi
to travel between them;

2. Solving competition for FCLi: We use a new procedural method to compute steady-
state competition results for FCLi that best matches the proportion of species
specified by the user at this level of the food chain. We output maps with a uni-
form density of presence for each species in each of the confinement region in their
accessibility map.

3. Computing surplus for FCLi−1: The surplus is defined as the difference between
production and death for a species during a given period (related to growth-rates
for plants and birth/death rates for animals). It can be consumed by the species
higher in the food chain with no impact on the ecosystem equilibrium. We take
into account the use of the available resources on the terrain by species in FLCi to
compute density-maps of surplus for all species in FCLi−1. These surpluses will be
displayed in the form of younger animals or plants during interactive exploration
(the species being supposed to be at equilibrium, older specimens are to die during
the year).

Finally, the collection of density-maps is exported to form the ecosystem-aware-
landscape, together with a trail map extracted from paths in the RAG, and used to
model animal-driven local erosion.

Users can interactively explore the resulting landscape thanks to our on-the-fly in-
stantiating method. They can also further edit the generated ecosystem and its local
embedding within the terrain, by editing maps from any Food Chain Level. While in-
creasing the quantity of a given species may not match realism due to the lack of resources
(a warning is displayed), decreasing densities is always possible and will propagate up the
processing chain for consistency. This can be used to model external events such as
specimen destruction due to fire or diseases.

5.3 Resource Access Graph

We focus on medium-scaled terrains, e.g., 4, 000×4, 000 Digital Elevation Model (DEM)
grids with one-meter cells. Therefore, directly making queries onto a set of maps to
check for types, quantities, and accessibility of resources, while considering the physical
needs and traveling abilities of the considered species and their uses of rivers and other
water sources, would not be practical. To simplify computations and allow interactive
user feedback during editing tasks, we extract all the necessary information from maps
that span the whole terrain and represent this information hierarchically using a graph
structure. Each node of this graph represents a single grouped resource (e.g., a meadow,
a riverbank from where animals can drink, or a grazing herd of antelopes), and edges

89

Chapter 5. Authoring complete ecosystems

(a) Individual resources (b) Resource nodes (c) Accessibility map

(per species)

(d) Final 𝑅𝐴𝐺𝑖

Fig. 5.7: Details of the computation of a RAG level over a terrain, from resource nodes
(a,b) and accessibility maps (c) for each specie. In the final structure (d), all resource
nodes lying in the same colored region are connected by an edge with the label of the
considered species.

represent the existence of a path on the terrain, which allows a given species to travel
from one resource to another. This graph is hierarchized into successive layers that
correspond to the different levels of the food chain (see Figure 5.8).

5.3.1 Definitions

A Herd is defined as a group of animals, where the number of instantiated animals is
extracted from zoological data. Depending on the species, we consider a single animal to
be a herd of size one.

Spatialized resources on the terrain: In this work, we are progressively building
and using areas where a given quantity of resources (e.g., light, water, a given plant, or
animal) is available on the terrain. Note that when the nutrient is another living species
(plant, animal), only the surplus produced during one year is considered as an available
resource. In contrast, we are using infinite quantities of resources for some other nutrients,
such as water accessible from a riverbank. To provide an easily understandable visual
representation, we depict spatialized resources on terrain maps as a set of ellipses whose
center, size, and color correspond to the barycenter, area, and type of resource of the
represented area, respectively (see Figure 5.7, left). We also keep track of the actual area
through our hierarchical representation, and we use it to compute the accurate amount
of resources during the competition (Section. 5.4).

Resource Access Graph (RAG): The RAG is a directed, hierarchical, and biology-
driven graph encoding the localized resources on the terrain and the paths between them,
for species in each of the food chain levels. The RAG’s hierarchical structure allows
species created at a given level of the food chain to serve as resources for species at the
next food chain level. More precisely:

� At each level RAGi, RAG vertices v are localized at the centroid of a spatialized

90

5.3. Resource Access Graph

𝑅𝑅𝑅𝑅𝐺𝐺0 𝑅𝑅𝑅𝑅𝐺𝐺1 𝑅𝑅𝑅𝑅𝐺𝐺2
Cliff River

Fig. 5.8: Example of a three-levels Resource Access Graph. From left to right: Level 0
encodes mineral resources available for plant species. Level 1 encodes meadows where
antelopes can graze and spots where they can drink. Antelopes can cross the river only
at one ford, leading to two confinement regions. Level 2 encodes the RAG for a predator
feeding on these two herds of antelopes. The predators can climb and go down cliffs, but
with different traveling times up and down. Only parts of RAG1 where antelopes herds
were actually created are considered as resource nodes within RAG2.

resource for species s ∈ FCLi. As a vertex may represent several local resources
available in the same area (see RAG initialization), we denote as q(r, v), the quantity
of the available resource r at v. This information is stored within the vertex data-
structure.

� At each level RAGi, RAG edges e are labeled by a species s ∈ FCLi, and model the
existence of an available traveling path between nodes (and thus between localized
resources) for this specific species. The edge is valued, in each direction, by the
average Traveling time among resources, proportional to the shortest path for an
animal of the considered species between the centroids of the two resource regions
on the terrain. This value roughly averages the travelling-time from/out of any
point in the resource regions, making it usable even for large regions. Note that
during instantiation, animal traveling speeds are based on the actual itineraries and
zoological knowledge, not on these average values.

� Hierarchical edges are used to connect nodes at different hierarchy levels. More
specifically, they connect a node of RAGi to the nodes of RAGi−1 used to build it.
They enable to find precise information about a specific resource, such as the exact
areas and paths it is built on.

The RAG is initialized and then computed layer by layer, where RAGi is built from
RAGi−1 and from the solution of FCLi−1 i.e., density maps for each species (see Fig-
ure 5.6). More precisely, the connected components of the graph at a given level of the
food chain (modeling, for instance, the grazing area for a herd of antelopes) become the
vertices of the next level of the RAG (surplus of antelopes as food for a carnivore), if the
region ends up with a non-zero surplus density of antelopes (see Figure 5.8).

Computing RAGi also makes use of accessibility maps (Section. 5.3.3) for species in
FCLi, modeling the ability of animals to travel from a resource to the next on the terrain.

91

Chapter 5. Authoring complete ecosystems

We call confinement region an area of the terrain from which a given herd of animals
cannot exit. Since a route may be infeasible due to dense vegetation, accessibility maps
for animals are created after the computation of the vegetation layer, as detailed below.

5.3.2 Initialization with the vegetation layer

The resources needed by plants are the environmental resources R0, which we compute
from soil type and climate conditions in a regular grid as described in [CGG+17]. We
convert each grid cell to a node of RAG0, depicted as a circle centered in the cell, and
assign the set of computed resources (light, moisture, nutrients) to the node. The edges
of RAG0 are created to connect each of these nodes with the four neighboring ones:
Although individual plants cannot move, and will be computed based on local resources
only, we use this feature so that contiguous areas where a given plant species grows (say,
a grass meadow) be grouped within a single node at the next RAG level, where the
connected components of RAG0 with non-zero density will be used as resource nodes for
herbivores.

5.3.3 Animal accessibility maps

Once RAG0 has been used to compute competition between the plant species in FCL0

(see Section. 5.4 for details), resulting in density maps for each of these species, we launch
the computation of the accessibility maps for animals, based on their mobility capabilities.

While plants cannot move and only access local resources, animals travel, but may
not be able to cross the whole terrain due to its topography (cliffs, rivers) or to areas with
overly dense vegetation. To model the resulting confinement regions for a given species, we
use a flood fill algorithm on the terrain after removing impracticable cells, including deep
waters, dense forests, and steep slopes that exceed given, species-dependent thresholds.

The result of this step is a set of accessibility maps, segmented into confinement
regions, in which the associated species is trapped (see Figure 5.7 (c), where we depict
each confinement region with a uniform color). These regions will be used during the
subsequent RAG computation steps to decide whether two resource nodes for a given
species can be connected.

5.3.4 Computing the next level

Let us now consider the computation of RAGi+1 from RAGi and FCLi. The nodes
of RAGi+1 represent all the localized resources available for species in FCLi+1. Since
we now deal with animals, we first initialize them with one node per region from where
animals can drink (banks of a lake or river). We then add one node per available localized
food source from FCLi (either plants or other animals), as follows: Let us consider the

92

5.4. Competition algorithm

restriction of RAGi to nodes where a given species sij is present (as computed in the
solution for FCLi), and to the edges modeling this species’s traveling abilities. Then,
connected components in this sub-graph indicate regions where this specific sij, now seen
as a resource, is available. We create one node v in RAGi+1 to express this resource.
The area associated with this node is directly given by the density map for sij (the full
connected component covered by a plant; or the full confinement region in the case of
a herd of animals). We set the amount of available resource q(r, v) to the local surplus
produced during one year by sij in this area (e.g., the number of newborns from a herd of
antelopes during one year, minus the number of dying animals), modeled as a percentage
of the number of local specimens.

Once all nodes are generated, we create edges of RAGi+1, labeled by each species
si+1
j of animal in FCLi+1, to model the ability for si+1

j to travel from one of the available
spatialized resources to the next. This is done based on the accessibility map for the given
species: if the two nodes (centers of ellipses in Figure 5.7) lie in the same confinement
region of the map, an edge is created, and valued based on the traveling time for this
species between the two connected nodes: we run a shortest path algorithm on the terrain
grid to compute the path between vertices v1 and v2, while taking the mobility abilities
of the species into account, in the form of the maximal slope the animal can climb
comfortably (the other edges in the graph are removed). This results in curved paths
taking the topography of the terrain into account. The value associated with the directed
edge joining v1 to v2 with respect to species sij is finally set to the associated travelling
time, denoted by eij(v1, v2).

5.4 Competition algorithm

We introduce a procedural competition algorithm, to solve for species density maps at
each successive level of the food chain (vegetation→ herbivores→ carnivores). Instead of
modeling competition between species from different food-chain-levels (as done in prey-
predator dynamic systems), we consider the full ecosystem as being in a state of quasi-
equilibrium. Therefore, only the yearly surplus produced by a given species can be used as
resource for another species. If some of this surplus remains unused, it will be displayed in
the form of denser areas for plants or youngsters for animals during interactive exploration
(Section. 5.5), but an equivalent number of specimens is supposed to die during the year
since numbers are supposed not to evolve. In the following, the notation sij for species
in FCLi is simplified to s wherever the information about the level of food chain is not
needed.

5.4.1 Survival constraints

Resource consumption: In our model, some of the resources (e.g., temperature and
water sources) are modeled as unlimited and will not be consumed by species. For all

93

Chapter 5. Authoring complete ecosystems

other resources r, our input contains a representative average consumption value per
species s and per year, denoted by n(s, r).

Survival thresholds: Each species s is associated with a set of resources fitness
ranges, denoted by F(s, r), provided as input to our algorithm. The minimum value of
this interval Fmin(s, r) is the minimum quantity of resource r needed for the species s to
survive over a unit of time (a month in our implementation). This value might be zero
for a non vital resource, or even a negative value in case r represents the temperature.
The maximum value Fmax(s, r) is the maximum value of resource r that species s can
stand in its environment (for instance, the maximum temperature tolerated by a plant)
and can also be infinity. By definition, a species s fits in an environment, if and only if
the available resource values belong to the corresponding F(s, r).

5.4.2 Solving for a Food Chain Level

The input of the competition algorithm for FCLi are RAGi, which provides the quantities
of available resources and their location on the terrain, the confinement regions for each
species (a single cell for a plant), as well as the set of adequacy ranges F(s, r). Given this
data, we first compute adequacy functions, fit(s), modeling the ability for a species s to
survive in each of its confinement regions. We then run a simple, procedural algorithm
to infer the set of density maps for all s ∈ FCLi that best matches the user’s specified
proportion between species (if any), or instead maximizes the use of resources. Let us
detail these steps:

By definition, a species fits in the environment if and only if at any time of the
year, the minimum and maximum values of available resources are compatible with its
corresponding survival intervals. The more the interval of available resources overlaps
with the survival interval, the higher the adequacy of the species with the environment.
Therefore, we define the adequacy function for a species s ∈ FCLi, and for each resource
r as the ratio of the available interval of the resource which belongs to the survival range
of the species during an entire year composed of n = 12 time periods. The minimum of
these intervals over all the resources needed by s then gives a global adequacy value for s,
since the sparsest resource determines the ability for a species to actually survive. This
leads to:

fit(s) = min
r∈Ri

n∑
t=1

min (Fmax(s, r), rtmax)−max (Fmin(s, r), rtmin)

n (rtmax − rtmin)
, (5.4)

where rtmin and rtmax represent the minimal and maximal values of resource r during the
period t. This adequacy function is computed for each species and confinement region of
RAGi and represents the likeliness of the species to survive and grow based on the locally
available resources.

The method shown in Algorithm. 3 computes a solution to the computation of FLCi

that best matches the user-specified proportion between species at this level. Starting

94

5.4. Competition algorithm

from zero, this iterative algorithm tentatively increases the number of individuals in a
species by a number set from the typical number of individuals in a herd, and only retains
the solution that provides the closest proportions of species to the user-defined values.
It then positions the newly created group in the best adapted confinement region on
the terrain. This process is repeated until no new specimen may be created due to lack
of resources. If the user did not provide any desired proportion for species in FCLi,
Algorithm. 4 is used instead to automatically infer plausible proportions based on the
available resources in each confinement region of the terrain (we use the intersection
of the species-specific confinement regions, in case the species in FCLi have different
travelling abilities).

The two versions of the algorithm have similar logics, but Algorithm. 3 makes use of
the target proportions provided by the user, as an additional constraint enabling to guide
population increase towards the most relevant species. In contrast, Algorithm. 4, used
when no target proportions is given, makes use of a region-based strategy, ie. iteratively
increases density of species per region, choosing species with closest adequacy. While these
two deterministic algorithms are greedy and do not insure that globally optimal solutions
are achieved, they guarantee completion, consistency and constraint satisfaction, since
they only decrease the amount of surplus resources available in the environment.

Input: RAGi, species s and their proportions
Output: densities of FCLi

repeat
Select s that would bring FCLi closest to target proportions;
Compute fit(s) in each confinement region C for s;
Select C with highest fitness;
Increase density of s in C;
Decrease accordingly the available resources in C;

until not enough resources to increase density ;

Algorithm 3: Competition algorithm with target proportions

Input: RAGi, species s
Output: densities of FCLi

repeat
foreach confinement region C (or their intersection) do

Compute fit(s) for each s;
Select s with highest fitness;
Increase density of s;
Decrease accordingly the available resources in C;

end

until not enough resources to increase density ;

Algorithm 4: Competition algorithm with no target proportions

95

Chapter 5. Authoring complete ecosystems

The results are a density map for plants - with a value per cell based on locally avail-
able resources, or a number of specimens - and thus a uniform density - per confinement
region for animals. The remaining resources at the current level, in each confinement
region (i.e., the unused surplus of species of FCLi) are exported as maps and later used
to display extra specimens for FCLi in the ecosystem-aware landscape.

5.5 Ecosystem-aware landscapes

5.5.1 Generating a map of trails

Our goal is to generate a set of eroded trails on the terrain consistent with their probability
of being used by animals. We first evaluate the time each animal spends at the different
RAG nodes in its confinement region. Then, we assign probabilities of fauna presence to
RAG edges, and finally we refine these edges into trails.

Given an animal in the confinement region C, its probability of presence at a spatial-
ized resource node v in the associated part of the RAG depends on the dependency its
species has for each resource r, as well as on the available quantity q(r, v) of this resource
at v.

For simplicity, we assume that the animal consumes its vital resources r ∈ R(s)
uniformly over the relevant accessible RAG nodes; and the total time it spends in a
specific node is proportional to its reference need n(s, r) with respect to r, compared to
its total need for all resources denoted as n (s, R(s)). These assumptions lead to a model
to compute the probability of presence of an animal of species s on RAG node v:

Ps(v) =
∑
r∈R(s)

(
q(r, v)

q(r, C)
· n(s, r)

n(s, R(s))

)
, (5.5)

where q(r, C) is the quantity of resource r available in the region C.

Let us now consider the probability of the animal to travel from RAG node v to
RAG node v′ in C. We make use of the average travelling time information from v to
v′ for species s, denoted by es(v, v

′) (see Section. 5.3.4), for providing a simple, approxi-
mate value for this probability. The higher the travelling time, the lower the conditional
travelling probability:

Ps(v
′ | v) =

e−1
s (v, v′) · Ps(v′)∑

v”

(
e−1
s (v, v”) · Ps(v”)

) . (5.6)

From these probability functions, we can now model the impact of each animal species
s on local erosion (proportional to its number of specimen ‖s‖ and their average mass

96

5.5. Ecosystem-aware landscapes

ms) via the following weights computed for each RAG edge (considering all the trips in
both directions).

wvv′ =
∑
s

ms · ||s||
(
Ps(v) · Ps(v′ | v) + Ps(v

′) · Ps(v | v′)
)
. (5.7)

We use these weights to estimate the tracks that have been developed by animals in
the modeled ecosystem, assuming that the steady-state lasted for enough years to result
in animal-driven local erosion, as follows: First, we weight each edge of the RAG with the
expected total mass of animals that travel through the associated terrain segment. We
then initiate the eroded trail as the available terrain segment with the highest weight and
iteratively extend it by adding the highest weight neighboring edge at each end. Second,
once all trails have been weighted and accumulated, we compute the final trail map by
extracting the longest contiguous routes from portions of trails, starting from the most
used ones, and smoothing them out with splines (Figure 5.9, left). We finally subtract
the trails from the vegetation density maps for consistency, and render them as a rocky
texture on the terrain (see Figure 5.9, right).

The main trails demonstrate the need of animals to pass through the same spots
to access some of the resources (either because the resource is abundant, or because the
environment forces passage through a specific location). From these main trails, animals
will scatter to secondary resources. This will lead to recursive tree structures for the
trails, which highlight the frequency of usage.

Fig. 5.9: Map of main animal trails for a specific region (left), where darker segments
represent higher trail usage and consequently higher erosion. A rendered view of the trails
on the terrain is also shown (right).

5.5.2 Daily itineraries and 3D instantiation

For computing daily itineraries of animals between resources, needed for 3D instantiation,
we resort to the previously computed average travelling time es(v, v

′) from node v to v′.

97

Chapter 5. Authoring complete ecosystems

We build a semi-random daily planning for each herd of species s, (where the ”herd” can
be reduced to a single animal, depending on the species), by listing successive RAG nodes
that can be visited in a single day, along with the associated duration of stay, as follows.

In real life, the typical consumption time of a resource r in hours per day may follow
specific laws and our model would benefit from this specialized zoological knowledge. In
our current implementation, we instead compute the average time t(s, r) spent by an
animal of species s at each node of resource r according to the needs of the species, and
on the available quantity of resources at this node.

Since accessibility and adequate presence of resources to survive have already been
enforced during the previous steps, our planning algorithm simply focuses on preventing
too many animals to end up on the same resource at the same time, which is handled by
reducing the capacity of resource nodes when occupied by a herd at a specific moment.
We also facilitate the satisfaction of resource related constraints (such as accessing wa-
ter once a day) by treating the mandatory resources that an animal must access during
the day in priority. Algorithm. 5 summarizes the process for computing a daily plan-
ning, Planning(h) = {

(
v1, t1, t

′
1)
)
, . . . ,

(
vn, tn, t

′
n)
)
}, for each animal herd h of species s.

Planning(h) is a sorted list of the visited RAG nodes and corresponding time intervals.

Input: list of herds of species s ∈ FCLi, RAGi, ∀r, t(s, r)
foreach herd h of species s do

Planning(h)← ∅ ; counter ← 0 ; j ← 1;
repeat

if ∃r mandatory and not covered yet then
sample an available v ∈ RAGi containing r from Ps(v);

else
sample any available v ∈ RAGi from Ps(v);

end
vj ← v; tj ← counter; t′j ← counter + ts(v);

Planning(h)← (vj, tj, t
′
j);

decrease available space at vj;
counter ← counter + ts(v) + es(vj, vj−1);
j ← j + 1;

until counter > length of an active day of species s;

end
Output: daily planning of all herds of species s.

Algorithm 5: Daily planning algorithm for herds of species s.

The computed planning spots are then used as way-points along a daily itinerary for
the herd. Herds are set to follow smooth paths on the terrain from one resource to the
next. We take the terrain slope into account and use the A* path finding algorithm (over
a quadtree) to compute their precise trajectory. The latter are then smoothed using spline
curves. The effective speed of each herd along their trajectory is set from the zoological

98

5.6. Results and discussion

characteristics of the species and the local slope.

The result can be visualized as 2D herd motion on a map that provides a quick
lookup for the user to access areas of interest.

During the on-the-fly exploration, we instantiate individual animals depending on
the camera position and viewing angle. Animals within herds are simulated using a
boid model [Rey87] following the global path computed for the herd. This will prevent
collisions and generate some relative motion within the herd. Note that this simple
implementation, sufficient for 3D illustration in the context of this chapter, does not
take species-specific herd shapes information (e.g., the dynamic instantiation method
presented in Chapter 4) into account and therefore leaves space for improvement.

5.6 Results and discussion

5.6.1 Interactive editing and exploration

Our system was implemented in Python and the interactive exploration part is done in
Unity. The Unity engine allows interactivity at the cost of photorealism. We imported
specific models of plants and animals to match the species that were required for the case
studies. Generating the complete ecosystem with the eroded paths from the input takes
on average 15 minutes, with around 5 minutes spent on vegetation and 5 - 10 minutes on
the pre-computation of animal paths between resources. The density maps for animals
are regenerated in a matter of seconds. Therefore, our method allows interactive editing
through over-painting over any of the computed maps, with a re-generation time ranging
between a few seconds and a few minutes, depending on the stage at which the user is
making changes. Once maps, textures and daily itineraries are uploaded on Unity, the
exploration is done at interactive rates.

5.6.2 Results

In order to validate the use of our system as an authoring and exploration tool, and to
allow the visual validation of plausibility by experts, we focused on the modeling of two
past ecosystems studied by a team of paleontologists at two different climate periods, in
the valley of Tautavel. Period 1 corresponds to a cool and temperate climate around year
-500,000. This climate is quite humid and allows the development of forests. In contrast,
the second period refers to an earlier glacial period around year -550,000: a cold and
dry climate harsher to vegetation. Please refer to Appendix A for tables giving the set of
species for each of these ecosystems and the different parameters used in our experiments.

Figure 5.10 shows plant growth in the valley, and highlights their interaction with
the river and cliffs (North West and South East) in the two different Periods. Figure 5.11

99

Chapter 5. Authoring complete ecosystems

Herbs Shrubs Trees

C
lim
at
e
pe
rio
d
1

C
lim
at
e
pe
rio
d
2

Fig. 5.10: Density maps computed for a variety of plant species grouped into herbs,
shrubs, and trees. Darker colors mean higher densities. A river runs north to south in
the valley (best seen in the top, right image), and is bordered on both sides by cliffs where
vegetation has restricted access to water and more trouble growing. A forest developed
north of the valley in Period 1, reducing the development of shrubs. In contrast we
observe a reduced herbs density and much less trees in the colder climate (Period 2),
except on the slope facing south.

shows how animals impact vegetation growth. More precisely, herbivores regularly con-
sume a significant portion of the grass surplus in regions close to the river and away from
steep cliffs. Note that herbs that have enough supplies of water to grow on cliffs are
sheltered from herbivores, and manage to keep an overall higher surplus. This figure also
shows trails where vegetation is fully removed, on both sides of the river (appearing in
white in Figure 5.11, right). Finally, Figure 5.12 shows densities of herbivores for the two
climate periods, while Figure 5.13 shows the exploration of the valley during Period 1.

5.6.3 Validation with expert users

Paleontologists work in multidisciplinary teams including experts in geology, plants biol-
ogy and zoology. We worked with nine of these experts. Due to lack of effective compu-
tational tools for modeling, analyzing and visualizing past ecosystem, they are used to

100

5.6. Results and discussion

Fig. 5.11: Map of grass surplus without (left) and with (middle) the impact of animals
(where dark means no surplus). The third image shows the difference between the two
images, to ease comparison.

rely on visual comparison with current ecosystems in regions of the world with similar
climates to validate their models. The latter express their assumptions about proportions
and behaviors of species in past environments, based on multiple sources of findings on
the terrain. To enable this visual comparison, they typically use maps, but have also
tailored the development of a 3D virtual world, using standard software, enabling them
to visually explore the past ecosystems they wished to validate. This previous experience
with 3D gave them some grounds for comparison.

The nine experts in paleontology who used our system commented on the great
benefits of enabling the interactive exploration of a 3D, animated virtual world, automat-
ically built from their data, and which could be interactively edited. Their more detailed
opinions on the project are summarized in the upper row of Figure 5.14. Users rated,
in average, the completeness of the system as 3.9 out of 5, with the explicit mention
that some species were missing (since we demonstrated our model on large animals only).
They rated the user control as 4.1 out of 5, as they are already used to paint over density
maps to manually create regions over the terrain. Finally, they rated the realism of the
output of our system as 4 out of 5, mentioning that a good way to improve on this part
would be to develop interfaces enabling them to add more information into the system
and refine the input, as well as to account for extra species.

Additionally, we performed a second user study with ten end users experienced in
working with virtual worlds, in the fields of computer graphics, animation, cinematog-
raphy, video games, and museography. The participants were asked the same questions
as the experts about completeness, user control, and visual realism, to allow comparison
between the two studies. The results of this second user study are at the bottom of
Figure 5.14 and they show the same general trend of an increased rating of our project
as the user expertise increases (see Appendix B for details).

To provide more grounds for validation, the expert users also provided their own
manually-created map of the most important passageways that were likely to be have

101

Chapter 5. Authoring complete ecosystems

Reindeer Elk Wolf

C
lim
at
e
pe
rio
d
1

C
lim
at
e
pe
rio
d
2

Fig. 5.12: Density maps (in white to brown as density increases) for three different
animal species over the two studied Periods, based on different input proportions from
paleontology knowledge. Note that the difference in proportions of reindeers (from 2% to
70% of the fauna) allowed them to colonize a much larger area in Period 2. The wolves on
the other hand only settled on the side of the river where they could find their preferred
preys in Period 2, given that their population was restricted to only around 1% of the
fauna.

been used by species of large herbivores in the ecosystems they studied. We provide a
comparison with our results on Figure 5.15.

Lastly, our vegetation density maps (Figure 5.10) were also validated by the experts
through comparison with their own manually created maps. Each map was manually de-
signed before the start of our project, from gathered data and expert knowledge, by three
experts working together during one afternoon. For the sake of comparison, we recreated
them with a similar rendering style based on the raw data generated by our method. We
first grouped the species together by biome (e.g., Mediterranean or Mountainous), and
displayed for each biome the locations with the highest densities only (within the top
five percentile) to get a clear overview (see Figure 5.16 left). We then copied the color
code used by the experts on their map to ease visual comparison, outlining the dominant
species (Figure 5.16 middle). We then discussed the differences between these maps with
the experts. First, more river-related species appear in our version, located on smaller

102

5.6. Results and discussion

Fig. 5.13: A herd of reindeer grazing in the valley.

branches of the river. These were omitted in the experts version, since they focused on
the main branch. A second difference relates to the location of the Mediterranean biome
(orange and striped orange/green) on the north-west plateau in their version but on the
south side of this plateau in ours. This was attributed to an oversight on their end, ie.
the fact that south slopes offer higher sun exposure and access to water sources, making
it more sustainable for these species.

The validation of our results therefore emphasized not only the consistency of our
method, but also its potential to save time and efforts. In the case of vegetation, our
system provides more detailed density maps than the manual approach, providing infor-
mation about each species’s presence over the whole terrain, instead of only rough areas
where given species are dominant. Our maps can also be generated and edited in a mat-
ter of minutes, which allows a far better assessment of hypotheses than manually created
maps, requiring several hours of expert time.

5.6.4 Limitations

Although users emphasized that once configured with climate data, our system enables
an easy exploration of flora and fauna hypotheses, our approach still includes a number
of limitations.

First, the way we model the interactions between species is limited. Although we
partly considered competition, cooperation between species [CBG08] was mostly ne-
glected. In particular, while the fact that species bring resources to other species can

103

Chapter 5. Authoring complete ecosystems

Fig. 5.14: Results of the user studies ran with nine experts in paleontology (top) and ten
end users (bottom) who ranged their own expertise as respectively (2, 4, 5) and (3, 4, 5)
out of 5.

be considered as cooperation, we neglected cooperation down the food chain, since we
progressively build our solution from one food-chain-level to the next without consider-
ing any possible retro-action. Therefore, the fact that fauna can help fertilize soils for
vegetation, or that some animals may serve as pollinators, is not modeled.

In addition, our model prevents us from modeling dynamic competition mechanisms
between species. Indeed, we approximate the ecosystem as a series of procedural solu-
tions, built level by level while trying to best match user-specified proportions and to
maximize the use of available resources. In addition to bringing only a coarse approxi-
mation to a steady-state ecosystem, such a solution is by construction unable to model
the dynamics of competition. Moreover, the realism of results heavily depends on the
user-specified proportions between species. One of the main advantages of our model is
its ability to consistently embed this coarse ecosystem onto a landscape which is automat-
ically subdivided into relevant areas, to generate traveling itineraries for species between
resources, and to model their impact on vegetation and erosion. We also allow authoring,
where the user-defined proportions of species can be imaginary, extracted from real data,
or could also be pre-computed at a different scale through simulation. Therefore, despite
its limitations, we believe that our method can still be useful both for artists and for
scientists wishing to visualize their results.

Lastly, although the set of species considered in our study is limited, larger and more
complex food chains containing birds, smaller animal species and marine resources such

104

5.7. Conclusion and future work

Fig. 5.15: Comparison of paths manually created by an expert (black), and the herbivores
trails generated by our system (white). To ease comparison, we manually added exit
locations to the top right and bottom left of our terrain, as well as three fords over the
river, matching those indicated by the experts.

as fishes could be integrated in our model. However modeling marine food chains and
ecosystems with similar methodology is left as an open and challenging research direction.

5.7 Conclusion and future work

We presented in this chapter a method for the consistent creation of a full ecosystem
with flora and fauna over a terrain, enabling to model for the first time the impact of
wild life on vegetation and erosion. Our method relies on a layered graph of available
resources, positioned on the terrain, to progressively generate specimens of a steady-state
ecosystem, built to match user-desired proportions. Starting with the terrain and other
environment resources, we iteratively instantiate each level of the food chain, thanks to
a procedural solution to the competition algorithm between species of the same level.
The impact of instantiated specimens is then back propagated to the resources they use,
and to the terrain in the form of eroded trails. Our solution provides both interactive
authoring tools and an instantiation method enabling the user to interactively explore
the resulting, animated landscape.

We expect both artists designing imaginary virtual worlds for films or games and
scientists willing to visualize and explore past, present or future ecosystems, to share
interest in our method. In this context, enabling users to specify proportions of species
not only at a given steady-state, but also at specific points along a time-line, would

105

Chapter 5. Authoring complete ecosystems

Raw data Ours Experts

C
lim

at
ic

 p
er

io
d

1
C

lim
at

ic
 p

er
io

d
2

Fig. 5.16: Comparison of dominant vegetation maps generated by our system (left and
middle) with one manually created by experts (right) for Period 1. Colors and stripes in
blue, green, orange and yellow respectively represent Riparian, Ubiquist, Mediterranean
and Mountainous biomes.

be a great extension for future work. The challenge is then to allow the exploration
of intermediate landscapes, using a consistent ecosystem able to transition between two
successive, predefined states. In addition to being useful for artistic story-telling, this
could be a great tool in scientific applications such as paleontology, as a way to control
and visualize time-evolving landscapes.

Another promising future research direction is the extension of our linear food chain
model to a generalized food chain graph that would allow for a more accurate represen-
tation of the relationships between species.

Lastly, coupling our system with a standard, prey-predator simulation would bring
several benefits: It would allow to predict consistent evolving ecosystems, with dynamic
proportions of species, while enabling to stop at any point of in time and launch 3D
exploration of the associated animated landscape. This could be achieved by considering
long-term evolution as a succession of quasi-equilibrium states, and using predicted pro-
portions from the dynamic simulation at a given time as an input to our terrain-embedded
solution.

106

Chapter 6

Conclusion

In this thesis, we introduced novel methods for the authoring of ecosystems including both
plants and animals, operating at different stages along the ecosystem creation process. We
will summarize here our main contributions, and suggest promising directions of research
in this domain.

6.1 Contributions

Our contributions are related to the instantiation of elements, applied to static and dy-
namic problems, as well as methods for the authoring of complete ecosystems. Control
over the result remains an important priority throughout our work.

Static instantiation. We extended state of the art methods for the analysis and synthesis
of distributions of elements, and reformulated them for the placement of objects, such as
plant models, in virtual worlds. Given the variety of shapes and interactions that occur
in nature, it is evident that the size of objects has a significant impact on the distribution
of their neighbors. For example, small plants may need to avoid shade from taller trees,
whereas parasitic mushrooms will grow very close or directly on top of other species. To
make such interactions possible, we extended the PCF framework to distributions where
different types of elements coexist, as well as to distributions of disks instead of points. To
this end, we proposed a new 1D metric to evaluate the distance between two discs, which
is able to encode information about the state of overlap between these disks based on a
few critical configurations that we determined. To improve the robustness and usefulness
of our method, we also enhanced PCFs to encode variance information from the input
exemplars, and improved the analysis of distributions to support the extraction of data
from distributions with arbitrary boundaries.

Dynamic instantiation. In the case of dynamic elements such as herds of animals, we
developed a multi-scale approach where control over the appearance of the distribution
is dissociated from control over the overall movement of the herd. We presented a new
analysis and synthesis method based on the concept of PCFs but completely reformulated
for terrestrial animals. To this end, we represented the animals as ovals instead of circles
to better reflect their anisotropic nature while retaining information about their size. We
also paid a particular attention to the distance between animals, their orientations and

107

Chapter 6. Conclusion

local density, as well as the overall shape of the herd by introducing density and orientation
fields that we reused during synthesis. We used photographs as input to allow an easy
authoring process, and interpolated between exemplars to generate a smooth real-time
animation. We also briefly presented a work in progress and directions towards herd
animation from short video clips, with a mechanism to learn and synthesize relative
speeds.

Complete ecosystems. Finally, we developed a general pipeline able to handle both
plants and animals in a unified formulation. Our framework lies on the concept of an
ecosystem in a quasi-equilibrium state, where animals and vegetation do not consume
more resources than what is available, and as a result are able to keep a stable population
at large time scales. In this context, our method tackles the problem of positioning plant
species on the input terrain and computing daily cycles of animals, as well as modeling
interaction with the terrain as eroding trails. To compute the available resources while
keeping track of their accessibility to the different animal species, we introduced the
Resource Access Graph, an abstract formulation of all resources embedded on the terrain.
This graph is used by all living entities, and is updated gradually as requirements along
the food chain are computed. This unified formulation allowed us to develop a common,
efficient competition algorithm that we used to compute the requirements and presence
of species at each level of the food chain.

6.2 Future work

The fields related to ecosystem authoring still offer plenty of promising research directions
and challenges. We detail in this final section the main avenues for future research from
the findings of this thesis.

Instantiation. We used in this thesis the PCF framework to handle analysis and syn-
thesis of distributions, and extended them to handle simple shapes such as disks and
ellipses. We used a custom metric in the case of disks, and additional information maps
in the case of ellipses to guide computations towards their intended purpose. While this
produced good results for our applications, we believe that PCFs and similar methods can
still be developed much further. First, an extension to arbitrary shapes would help port
the method to the general case, enabling its use in many more contexts. This generaliza-
tion process would also need to be accompanied by the support of density variations and
anisotropy in a more unified fashion to truly establish the method as the primary tool for
distributions. We also believe that important performance improvements of the synthesis
routine are possible, which could make PCFs a solution for interactive applications.

Group animation. The high level authoring method presented in this work was designed
to provide the user with a way to intuitively control the aspect and formation of herds

108

6.2. Future work

of animals. Once this control was established, we relied on microscopic simulation to
smoothly interpolate between configurations and handle collision avoidance and other
interactions with the environment. This approach only covers basic interactions, and
could be vastly improved by focusing on the response of animals and humans to environ-
mental constraints. Combining the different stages of crowd animation methods can be
one path to solve this problem. For example, merging local interactions of microscopic
models, global control over the herd distribution, and global path planning algorithms
could patch the holes in current crowd synthesis methods.

Ecosystem modeling. To the best of our knowledge, this thesis was the first to introduce
full ecosystem modeling to Computer Graphics. However, due to the young nature of this
question, it remains an open problem and our work should be regarded as only one step
towards a more complete method for authoring full ecosystems. Our method could be
expanded in many interesting directions, of which the most pressing one is perhaps the
concept of food chain. While it is a good approximation for a limited number of species,
it shows limitations as the types of species increase. Indeed, many species of animals
have interrelations, which encourages a more open representation such as a graph of de-
pendencies. Another barrier that prevents the development of more general models is
our quasi-equilibrium assumption. We view this assumption as an approximation used to
relax constraints and allow the computation of a suitable solution. In a more comprehen-
sive system, the quasi-equilibrium assumption should be removed to allow the creation
of fully dynamic ecosystems, if control over the result can be supplied by other means.

Landscapes. We outlined the importance of animals when depicting landscapes through-
out this work. However, even without considering a direct representation of animals, they
are often completely omitted when landscapes are studied in Computer Graphics. We
are convinced that both direct and indirect (e.g., trails, sounds, consumed food, remains)
representations of animals are crucial to reach the level of quality that will be expected
of virtual worlds in a few years. Impacts at a larger scale also have mostly been ignored,
but could drastically affect the aspect of landscapes. For example, wolves regulating the
biodiversity, and beavers completely reshaping their landscape and altering the paths of
rivers both significantly affect their environment.

Control. While we paid a particular attention to user control and usability in our
work, we presented mostly indirect approaches for the authoring of ecosystems. Indeed,
example-based methods were used for instantiation problems, and we tackled ecosys-
tems by allowing the user to paint information on intermediate information maps. There
is, to the best of our knowledge, no method devised for a direct control over complete
ecosystems, allowing artists to interactively shape the life over a terrain while retaining
biological consistency. We believe that such a method would need a new control scheme
due to the presence of both static and animated elements, and as such would be a great
target for future research.

109

Appendices

111

Appendix A

Ecosystem parameters and notations

This appendix provides a detailed list of species parameters that are used in our ecosystem
analysis, as well as a list of notations used in Chapter 5.

Illumination Temperature Moisture Texture Geological viability
Cupressaceae (7, 9, 2) (2, 9, 0) (2, 4, 2) (2, 8, 0) (1, 0, 1, 1, 1)

Pinus (7, 9, 5) (6, 9, 0) (2, 5, 3) (1, 7, 0) (1, 0, 1, 1, 1)
Pistacia (7, 9, 2) (7, 9, 0) (3, 4, 2) (3, 4, 0) (1, 0, 1, 1, 1)

Alnus (7, 9, 5) (2, 8, 0) (4, 8, 5) (1, 4, 0) (0, 0.8, 0, 0, 1)
Apiaceae (3, 9, .2) (1, 9, 0) (2, 6, .2) (1, 7, 0) (1, 0, 1, 1, 1)

Cichorium (7, 9, .2) (6, 9, 0) (4, 6, .2) (3, 4, 0) (1, 0, 1, 1, 1)
Poaceae (5, 9, .2) (1, 9, 0) (1, 8, .2) (1, 9, 0) (1, 0, 1, 1, 1)

Asteraceae (4, 9, .2) (3, 9, 0) (1, 7, .2) (1, 8, 0) (1, 0, 1, 1, 1)
Quercus (7, 9, 5) (5, 8, 0) (3, 6, 5) (2, 5, 0) (1, 0, 1, 1, 1)

Artemisia (7, 9, .2) (2, 5, 0) (2, 8, .2) (2, 6, 0) (1, 0, 1, 1, 1)
Betula (7, 9, 3) (3, 5, 0) (4, 7, 3) (1, 6, 0) (1, 0, 1, 1, 1)

Carpinus (6, 7, 5) (6, 7, 0) (4, 5, 4) (3, 4, 0) (1, 0, 1, 1, 1)
Corylus (5, 6, 4) (5, 6, 0) (4, 5, 4) (3, 4, 0) (1, 0, 1, 1, 1)

Plantago (5, 9, .2) (1, 9, 0) (2, 7, .2) (2, 5, 0) (1, 0, 1, 1, 1)
Pinus mugo (7, 9, 3) (2, 4, 0) (3, 7, 3) (2, 7, 0) (1, 0, 1, 1, 1)

Quercus ilex (7, 9, 4) (7, 9, 0) (4, 7, 4) (2, 6, 0) (1, 0, 1, 1, 1)
Rubiaceae (3, 9, .2) (2, 9, 0) (2, 6, .2) (1, 9, 0) (1, 0, 1, 1, 1)
Fabaceae (6, 9, .2) (2, 9, 0) (2, 6, .2) (2, 8, 0) (1, 0, 1, 1, 1)

Table A.1: Plant parameters. Triplets denote (min,max, consumption) and geological
viability represents specific viability of a species per soil type (limestone, water, marl,
fallen rocks, alluvium)

113

Appendix A. Ecosystem parameters and notations

Group size Mass Presence in
Period 1 Period 2

Bison Priscus [10; 35] [700; 1000] 1.16% 0.88%
Cervus Elaphus [30; 45] [70; 250] 41.28% 10.62%

Dama Roberti [5; 14] [30; 80] 34.30% 1.77%
Equus Mosbachensis [6; 20] [227; 900] 1.74% 0.88%
Hermitragus Bonali [2; 23] [36; 90] 2.91% 0.88%

Ovis Ammon [2, 100] [130; 160] 5.81% 7.08%
Rangifer Tarandus [50; 150] [100; 300] 2.33% 69.03%

Ursus Arctos [80; 600] 1 1.77%
Ursus Spelaeus [200; 500] 1 1.16%
Lynx Spelaeus [11; 15] 1 1.16% 0.88%

Canis Mosbachensis [23; 80] [5; 9] 1.74% 0.88%
Vulpes Vulpes [3; 14] 1 1.16% 0.88%

Total 94.75% 95.55%

Table A.2: Animal parameters showing [min;max] for each category. The target presence
is also shown for both studied ecosystem.

114

Notation Meaning
FCL Food Chain Level
K Number of FCL− 1
Si Set of species in FCLi

sij Species j in FCLi

Ni Number of species in FCLi

Ri
j Set of resources used by species sij

R0 Set of natural resources used by plants
RAG Resource Access Graph
v, e RAG vertices and edges
q(r, v) Quantity of resource r available at v
eij(v1, v2) Traveling time of species sij along edge e(v1, v2)
n(s, r) Need or average consumption of resource r by species s
F(s, r) Fitness ranges [Fmin(s, r);Fmax(s, r)] for species s and resource r
fit(s) Fitness of species s
t Period of study

[rtmin; rtmax] Minimal and maximal values of r during the period t
C Confinement region

q(r, C) Quantity of resource r available in the region C
Ps(v) Probability of presence of an animal of species s on the RAG node v

Ps(v
′ | v) Probability of species s to go to node v′ if it is currently in node v
‖s‖ Number of specimen of species s
ms Average mass of species s
wvv′ Weight of the RAG edge between nodes v and v′

t(s, r) Average time spent by species s on a node r
P lanning(h) List of visited nodes and their timing for a specific herd h

Table A.3: Mathematical notations used in Chapter 5 .

115

Appendix B

Ecosystem user study

This appendix presents the detailed results of the user studies analyzed in Chapter 5. In
total, they have been performed on nineteen users, including nine expert paleontologists
and ten end users interested in the project from various domains and backgrounds.

User Gender Age Domain Career Expertise Completeness Control Realism
1 Male 18-25 VG, A Industry 5 4 4 4
2 Male 18-25 CG Academic 4 4 5 4
3 Female 18-25 CG Academic 3 5 4 4
4 Male 18-25 CG Academic 3 4 5 4
5 Female 26-39 CG Academic 4 4 4 5
6 Male 26-39 A, C Industry 3 5 3 3
7 N/A 40-65 M Industry 5 5 5 5
8 Female 18-25 A Industry 3 4 3 5
9 Male 18-25 CG Academic 3 5 5 5

10 Female 18-25 CG, A, C Industry 4 4 4 4
A=Animation, CG=Computer Graphics, C=Cinematography, M=Museography, VG=Video Games

Table B.1: User study results with ten end users with both academic and industry back-
grounds, and covering a wide variety of domains.

Expert Level of expertise Completeness User control Realism
1 5 5 5 5
2 4 4 5 5
3 4 5 4 5
4 2 3 4 4
5 5 4 4 3
6 2 3 3 4
7 2 3 3 3
8 4 4 4 4
9 4 4 5 3

Table B.2: User study results with nine expert paleontologists, with different levels of
expertise.

117

Bibliography

[AD05] Monssef Alsweis and Oliver Deussen. Modeling and visualization of sym-
metric and asymmetric plant competition. Eurographics workshop on Nat-
ural Phenomena, page 7, 2005. 15

[AD06] Monssef Alsweis and Oliver Deussen. Wang-tiles for the simulation and
visualization of plant competition. In Advances in Computer Graphics,
volume 4035, pages 1–11. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006. Series Title: Lecture Notes in Computer Science. 16

[ADWDB] Animal-Diversity-Web. https://animaldiversity.org/, DB. Accessed:
2020-01-22. 87

[Aur87] Franz Aurenhammer. Power diagrams: properties, algorithms and appli-
cations. SIAM Journal on Computing, 16(1):78–96, 1987. 43

[BAS09] Bedrich Benes, Nathan Andrysco, and Ondrej St’ava. Interactive modeling
of virtual ecosystems. page 8, 2009. 14

[BBJA02] O. Burchan Bayazit, Jyh-Ming Lien, and N.M. Amato. Roadmap-based
flocking for complex environments. pages 104–113. IEEE Comput. Soc,
2002. 23

[BBT+06] Pascal Barla, Simon Breslav, Joëlle Thollot, François Sillion, and Lee
Markosian. Stroke pattern analysis and synthesis. Computer Graphics
Forum, 25(3):663–671, 2006. 12

[BE03] B. Benes and E.D. Espinosa. Modeling virtual ecosystems with the proac-
tive guidance of agents. In Proceedings 11th IEEE International Workshop
on Program Comprehension, pages 126–131, May 2003. ISSN: 1087-4844.
26, 27, 28

[BMJ+11] Bedrich Benes, Michel Abdul Massih, Peter Jarvis, Dadniel G. Aliaga, and
Carlos A. Vanegas. Urban ecosystem design. In I3D, pages 167–174, 2011.
26

[BSK+15] Gwyneth Bradbury, Kartic Subr, Charlampos Koniaris, Kenny Mitchess,
and Tim Wayrich. Guided ecological simulation for artistic editing of plant
distributions in natural scenes. Journal of Computer Graphics Techniques,
4(4), 2015. 15

119

https://animaldiversity.org/

Bibliography

[BSK16] Adam Barnett, Hubert P. H. Shum, and Taku Komura. Coordinated crowd
simulation with topological scene analysis. Computer Graphics Forum,
35(6):120–132, September 2016. 23

[BvdPPH11] Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Hei-
drich. Displacement interpolation using lagrangian mass transport. ACM
Trans. Graph., 30(6):158:1–158:12, December 2011. 70

[BWWM10] John Bowers, Rui Wang, Li-Yi Wei, and David Maletz. Parallel poisson
disk sampling with spectrum analysis on surfaces. ACM Trans. Graph.,
29(6):166:1–166:10, December 2010. 8

[CBG08] Franck Courchamp, Ludek Berec, and Joanna Gascoigne. Allee effects in
ecology and conservation. Oxford University Press, 2008. 103

[CEG+18] Guillaume Cordonnier, Pierre Ecormier, Eric Galin, James Gain, Bedrich
Benes, and Marie-Paule Cani. Interactive generation of time-evolving,
snow-covered landscapes with avalanches. Computer Graphics Forum,
37(2):497–509, May 2018. 82

[CGG+17] Guillaume Cordonnier, Eric Galin, James Gain, Bedrich Benes, Eric
Guérin, Adrien Peytavie, and Marie-Paule Cani. Authoring landscapes by
combining ecosystem and terrain erosion simulation. ACM Trans. Graph.,
36(4):134, 2017. 15, 26, 28, 87, 92

[CGW+13] Jiating Chen, Xiaoyin Ge, Li-Yi Wei, Bin Wang, Yusu Wang, Huamin
Wang, Yun Fei, Kang-Lai Qian, Jun-Hai Yong, and Wenping Wang. Bilat-
eral blue noise sampling. ACM Trans. Graph., 32(6):216:1–216:11, Novem-
ber 2013. 8

[Ch’11] Eugene Ch’ng. Realistic placement of plants for virtual environments.
IEEE Computer Graphics and Applications, 31(4):66–77, July 2011. Con-
ference Name: IEEE Computer Graphics and Applications. 15

[Ch’13] Eugene Ch’ng. Model resolution in complex systems simulation: Agent
preferences, behavior, dynamics and n-tiered networks. SIMULATION,
89(5):635–659, May 2013. 26

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans-
actions on Graphics (TOG), 5(1):51–72, January 1986. 8

[DAPB08] Funda Durupinar, Jan Allbeck, Nuria Pelechano, and Norman Badler. Cre-
ating crowd variation with the ocean personality model. page 6, 2008. 19

[DGA04] Brett Desbenoit, Eric Galin, and Samir Akkouche. Simulating and model-
ing lichen growth. Computer Graphics Forum, 23(3):341–350, September
2004. 14

120

Bibliography

[DHL+98] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomir Měch, Matt
Pharr, and Przemyslaw Prusinkiewicz. Realistic modeling and rendering of
plant ecosystems. In Proc. of Sigg., SIGGRAPH ’98, pages 275–286. ACM,
1998. 14, 15

[DMCN+17] T. B. Dutra, R. Marques, J.B. Cavalcante-Neto, C. A. Vidal, and J. Pet-
tré. Gradient-based steering for vision-based crowd simulation algorithms.
Computer Graphics Forum, 36(2):337–348, May 2017. 20

[DMLG02] J.-M. Dischler, K. Maritaud, B. Lévy, and D. Ghazanfarpour. Texture
particles. Computer Graphics Forum, 21(3):401–410, 2002. 8

[DSZ17] Oliver Deussen, Marc Spicker, and Qian Zheng. Weighted linde-buzo-gray
stippling. ACM Trans. Graph., 36(6):233:1–233:12, November 2017. 8

[ENMGC19] Pierre Ecormier-Nocca, Pooran Memari, James Gain, and Marie-Paule
Cani. Accurate synthesis of multi-class disk distributions. In Computer
Graphics Forum, volume 38, pages 157–168. Wiley Online Library, 2019.

[ENPMC19] Pierre Ecormier-Nocca, Julien Pettré, Pooran Memari, and Marie-Paule
Cani. Image-based authoring of herd animations. Computer Animation
and Virtual Worlds, 30(3-4):e1903, 2019.

[EVC+15] Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and
Bedrich Benes. Worldbrush: interactive example-based synthesis of proce-
dural virtual worlds. ACM Transactions on Graphics, 34(4):106:1–106:11,
July 2015. 9, 10, 16, 17, 30, 34, 39, 50, 55

[FRDC06] Laurent Favreau, Lionel Reveret, Christine Depraz, and Marie-Paule Cani.
Animal gaits from video. Graphical Models, 68(2), 2006. 18

[GD13] Qin Gu and Zhigang Deng. Generating freestyle group formations in
agent-based crowd simulations. IEEE Computer Graphics and Applica-
tions, 33(1):20–31, January 2013. 24

[GGG+16] Eric Guérin, Eric Galin, François Grosbellet, Adrien Peytavie, and Jean-
David Génevaux. Efficient modeling of entangled details for natural scenes.
Computer Graphics Forum, 2016. 16, 26

[GLCC17] James Gain, Harry Long, Guillaume Cordonnier, and Marie-Paule Cani.
Ecobrush: Interactive control of visually consistent large-scale ecosystems.
Eurographics, 36(2), 2017. 9, 10, 15, 16, 17, 30, 43, 47, 50, 53

[GPEO12] T Geijtenbeek, N Pronost, A Egges, and M H Overmars. Interactive charac-
ter animation using simulated physics. Computer Graphics Forum, page 23,
2012. 19

121

Bibliography

[GPG+16] Francois Grosbellet, Adrien Peytavie, Éric Guérin, Eric Galin, Stéphane
Mérillou, and Bedrich Benes. Environmental objects for authoring proce-
dural scenes. In Computer Graphics Forum, volume 35, pages 296–308.
Wiley Online Library, 2016. 26

[GSP+07] Ran Gal, Olga Sorkine, Tiberiu Popa, Alla Sheffer, and Daniel Cohen-Or.
3D collage: expressive non-realistic modeling. In Proceedings of the 5th
international symposium on Non-photorealistic animation and rendering -
NPAR ’07, page 7, San Diego, California, 2007. ACM Press. 11

[GvdPvdS13] Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen.
Flexible muscle-based locomotion for bipedal creatures. ACM Transactions
on Graphics, 32(6):1–11, November 2013. 19

[HBDP17] Torsten Hädrich, Bedrich Benes, Oliver Deussen, and Sören Pirk. Interac-
tive modeling and authoring of climbing plants. Computer Graphics Forum,
36(2):49–61, May 2017. 14

[HKS17] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural
networks for character control. ACM Transactions on Graphics, 36(4):1–
13, 2017. 19

[HLT+09] Thomas Hurtut, Pierre-Edouard Landes, Joëlle Thollot, Yann Gousseau,
Remy Drouillhet, and Jean-François Coeurjolly. Appearance-guided syn-
thesis of element arrangements by example. In Proceedings of the 7th In-
ternational Symposium on Non-photorealistic Animation and Rendering,
pages 51–60. ACM, 2009. 9, 10, 12, 30

[HM95] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.
Physical Review E, 51(5):4282–4286, May 1995. arXiv: cond-mat/9805244.
19

[HPZS02] Jim Hanan, Przemyslaw Prusinkiewicz, Myron Zalucki, and David Skirvin.
Simulation of insect movement with respect to plant architecture and mor-
phogenesis. Computers and Electronics in Agriculture, 35(2-3):255–269,
August 2002. 27

[HSK14] Joseph Henry, Hubert P. H. Shum, and Taku Komura. Interactive forma-
tion control in complex environments. IEEE Transactions on Visualization
and Computer Graphics, 20(2):211–222, February 2014. 25

[Hug03] Roger L. Hughes. The flow of human crowds. Annual Review of Fluid
Mechanics, 35(1):169–182, January 2003. 21

[HWYZ20] Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang. Autocomplete
element fields. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–13, Honolulu HI USA, April 2020.
ACM. 11

122

Bibliography

[IMIM08] Takashi Ijiri, Radomı́r Mêch, Takeo Igarashi, and Gavin Miller. An
example-based procedural system for element arrangement. Computer
Graphics Forum, 27(2):429–436, 2008. 8, 12

[JCC+15] Kevin Jordao, Panayiotis Charalambous, Marc Christie, Julien Pettré, and
Marie-Paule Cani. Crowd art: density and flow based crowd motion de-
sign. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion
in Games, pages 167–176. ACM, 2015. 22

[JCP+10] Eunjung Ju, Myung Geol Choi, Minji Park, Jehee Lee, Kang Hoon Lee,
and Shigeo Takahashi. Morphable crowds. page 1. ACM Press, 2010. 21

[JPCC14] Kevin Jordao, Julien Pettré, Marc Christie, and Marie-Paule Cani. Crowd
sculpting: A space-time sculpting method for populating virtual environ-
ments. In Computer Graphics Forum, volume 33, pages 351–360. Wiley
Online Library, 2014. 22

[KBG+13] Mubbasir Kapadia, Alejandro Beacco, Francisco Garcia, Vivek Reddy,
Nuria Pelechano, and Norman I. Badler. Multi-domain real-time planning
in dynamic environments. page 115. ACM Press, 2013. 23

[KHHL12] Manmyung Kim, Youngseok Hwang, Kyunglyul Hyun, and Jehee
Lee. Tiling motion patches. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’12,
pages 117–126, Goslar Germany, Germany, 2012. Eurographics Associa-
tion. 22

[KO04] A. Kamphuis and M.H. Overmars. Motion planning for coherent groups of
entities. pages 3815–3822 Vol.4. IEEE, 2004. 23

[KO12] I. Karamouzas and M. Overmars. Simulating and evaluating the local
behavior of small pedestrian groups. IEEE Transactions on Visualization
and Computer Graphics, 18(3):394–406, March 2012. 24

[Koo10] S. A. L. M. Kooijman. Dynamic Energy Budget Theory for Metabolic
Organisation. Cambridge University Press, 2010. Google-Books-ID:
R8OCVR9rOhUC. 27

[LCF05] Yu-Chi Lai, Stephen Chenney, and ShaoHua Fan. Group motion graphs.
In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’05, pages 281–290, New York, NY, USA, 2005.
ACM. 21

[LCHL07] Kang Hoon Lee, Myung Geol Choi, Qyoun Hong, and Jehee Lee. Group
behavior from video: a data-driven approach to crowd simulation. In Pro-
ceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 109–118. Eurographics Association, 2007. 21

123

Bibliography

[LCMP19] Axel López, François Chaumette, Eric Marchand, and Julien Pettré. Char-
acter navigation in dynamic environments based on optical flow. Computer
Graphics Forum, 38(2):181–192, 2019. 20

[LD06] Ares Lagae and Philip Dutré. Poisson sphere distributions. In Vision,
Modeling, and Visualization, pages 373–379, 2006. 10, 34

[LGH13] Pierre-Edouard Landes, Bruno Galerne, and Thomas Hurtut. A shape-
aware model for discrete texture synthesis. In Computer Graphics Forum,
volume 32, pages 67–76. Wiley Online Library, 2013. 10, 11, 12

[Lin68] Aristid Lindenmayer. Mathematical models for cellular interactions in de-
velopment II. Simple and branching filaments with two-sided inputs. Jour-
nal of Theoretical Biology, 18(3):300–315, March 1968. 13

[LNW+10] Hongwei Li, Diego Nehab, Li-Yi Wei, Pedro V. Sander, and Chi-Wing Fu.
Fast capacity constrained voronoi tessellation. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D
’10, pages 13:1–13:1, New York, NY, USA, 2010. ACM. 8

[Lor10] Michel Loreau. From populations to ecosystems: Theoretical foundations
for a new ecological synthesis (MPB-46), volume 50. Princeton University
Press, 2010. 27

[LP02] Brendan Lane and Przemyslaw Prusinkiewicz. Generating spatial distri-
butions for multilevel models of plant communities. Graphics Interface,
page 13, 2002. 15

[LPLL19] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. Scalable
muscle-actuated human simulation and control. ACM Transactions on
Graphics, 38(4):1–13, July 2019. 18, 19

[LSM+19] Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel,
and Tobias Ritschel. Deep point correlation design. ACM Transactions on
Graphics (TOG), 38(6):226, 2019. 10

[LWSF10] Hongwei Li, Li-Yi Wei, Pedro V. Sander, and Chi-Wing Fu. Anisotropic
blue noise sampling. ACM Trans. Graph., 29(6):167:1–167:12, December
2010. 8

[MAAI17] Domingo Mart́ın, Germán Arroyo, Rodŕıguez Alejandro, and Tobias Isen-
berg. A survey of digital stippling. Comput. Graph., 67(C):24–44, October
2017. 8

[MALI10] Domingo Mart́ın, Germán Arroyo, M. Victoria Luzón, and Tobias Isen-
berg. Example-based stippling using a scale-dependent grayscale process.
In Proceedings of the 8th International Symposium on Non-Photorealistic

124

Bibliography

Animation and Rendering, NPAR ’10, pages 51–61, New York, NY, USA,
2010. ACM. 8

[MHS+19] Milosz Makowski, Torsten Hädrich, Jan Scheffczyk, Dominic L. Michels,
Sören Pirk, and Wojtek Palubicki. Synthetic silviculture: Multi-scale mod-
eling of plant ecosystems. ACM Trans. Graph., 38(4):131:1–131:14, 2019.
15

[MLM+11] Gonçalo M. Marques, António Lorena, João Magalhães, Tânia Sousa, S. A.
L. M. Kooijman, and Tiago Domingos. Life engine - creating artificial life
for scientific and entertainment purposes. In George Kampis, István Karsai,
and Eörs Szathmáry, editors, Advances in Artificial Life. Darwin Meets von
Neumann, volume 5778, pages 278–285. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011. Series Title: Lecture Notes in Computer Science. 27

[MNR+17] Darryl I MacKenzie, James D Nichols, J Andrew Royle, Kenneth H Pollock,
Larissa Bailey, and James E Hines. Occupancy estimation and modeling:
inferring patterns and dynamics of species occurrence. Elsevier, 2017. 27

[MP96] Radomı́r Měch and Przemyslaw Prusinkiewicz. Visual models of plants
interacting with their environment. In Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques, pages 397–410.
ACM, 1996. 14

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. In Acm Transactions On
Graphics (Tog), volume 25, pages 614–623. ACM, 2006. 13

[MWT11] Chongyang Ma, Li-Yi Wei, and Xin Tong. Discrete element textures. In
ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pages 62:1–62:10, New
York, NY, USA, 2011. ACM. 10, 11, 12, 51, 53

[NENMC20] Baptiste Nicolet, Pierre Ecormier-Nocca, Pooran Memari, and Marie-Paule
Cani. Pair correlation functions with free-form boundaries for distribution
inpainting and decomposition. Eurographics 2020 short paper proceedings,
page 4, 2020.

[ÖG12] Cengiz Öztireli and Markus Gross. Analysis and synthesis of point distri-
butions based on pair correlation. ACM Transactions on Graphics (TOG),
31(6):170, 2012. 9, 30, 32, 34, 35, 38, 39, 51, 53, 78

[OPOD10] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and Stéphane Donikian.
A synthetic-vision based steering approach for crowd simulation. ACM
Transactions on Graphics, 29(4):1, July 2010. 20

[PAB07] Nuria Pelechano, Jan Allbeck, and Norman Badler. Controlling individual
agents in high-density crowd simulation. ACM SIGGRAPH Symposium on
Computer Animation, page 12, 2007. 19

125

Bibliography

[PGMZ12] Tao Pei, Jianhuan Gao, Ting Ma, and Chenghu Zhou. Multi-scale de-
composition of point process data. GeoInformatica, 16(4):625–652, 2012.
39

[PGT08] Julien Pettre, Helena Grillon, and Daniel Thalmann. Crowds of Moving
Objects: Navigation Planning and Simulation. ACM SIGGRAPH Com-
puter Graphics, page 6, 2008. 23

[PH95] Przemyslaw Prusinkiewicz and Mark Hammel. The artificial life of plants.
Artificial life for graphics, animation, and virtual reality, page 39, 1995.
13, 27

[PLH+90] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, James S. Hanan,
F. David Fracchia, and Deborah Fowler. The algorithmic beauty of plants.
Color Research & Application, 18(2), 1990. 13

[PM01] Yoav Parish and Pascal Müller. Procedural modeling of cities. In Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques, pages 301–308. ACM, 2001. 13

[PMKL01] Przemyslaw Prusinkiewicz, Lars Mündermann, Radoslaw Karwowski, and
Brendan Lane. The use of positional information in the modeling of plants.
In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’01, pages 289–300. ACM Press, 2001.
14

[PPD07] Sébastien Paris, Julien Pettré, and Stéphane Donikian. Pedestrian reactive
navigation for crowd simulation: a predictive approach. Computer Graphics
Forum, 26(3):665–674, September 2007. 20

[QCHC17] Hongxing Qin, Yi Chen, Jinlong He, and Baoquan Chen. Wasserstein blue
noise sampling. ACM Trans. Graph., 36(5), October 2017. 10

[Rey87] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. ACM SIGGRAPH Computer Graphics, 21(4):25–34, August 1987.
19, 70, 99

[Rey99] Craig W Reynolds. Steering behaviors for autonomous characters. page 21,
1999. 19, 21, 23

[RFDC05] Lionel Reveret, Laurent Favreau, Christine Depraz, and Marie-Paule Cani.
Morphable model of quadrupeds skeletons for animating 3d animals. In
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation - SCA ’05, page 135. ACM Press, 2005. 18

[RÖG17] Riccardo Roveri, A Cengiz Öztireli, and Markus Gross. General point
sampling with adaptive density and correlations. In Computer Graphics
Forum, volume 36, pages 107–117. Wiley Online Library, 2017. 10, 51, 55

126

Bibliography

[RÖM+15] Riccardo Roveri, A. Cengiz Öztireli, Sebastian Martin, Barbara Solen-
thaler, and Markus Gross. Example based repetitive structure synthesis.
Computer Graphics Forum, 34(5):39–52, 2015. 10, 12, 51, 57

[RPH+20] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M. Kitani,
Dariu M. Gavrila, and Kai O. Arras. Human motion trajectory prediction:
A survey. The International Journal of Robotics Research, 39(8):895–935,
July 2020. arXiv: 1905.06113. 23

[RRS13] Bernhard Reinert, Tobias Ritschel, and Hans-Peter Seidel. Interactive by-
example design of artistic packing layouts. ACM Transactions on Graphics,
32(6):1–7, November 2013. 11

[SHL+17] Stephen R Shifley, Hong S He, Heike Lischke, Wen J Wang, Wenchi Jin,
Eric J Gustafson, Jonathan R Thompson, Frank R Thompson, William D
Dijak, and Jian Yang. The past and future of modeling forest dynamics:
from growth and yield curves to forest landscape models. Landscape ecology,
32(7):1307–1325, 2017. 27

[Sim94] Karl Sims. Evolving virtual creatures. pages 15–22. ACM Press, 1994. 18

[SJ13] Ben Spencer and Mark W. Jones. Progressive photon relaxation. ACM
Transactions on Graphics, 32(1):1–11, January 2013. 8

[SKSY08] Hubert P. H. Shum, Taku Komura, Masashi Shiraishi, and Shuntaro Ya-
mazaki. Interaction patches for multi-character animation. In ACM SIG-
GRAPH Asia 2008 Papers, SIGGRAPH Asia ’08, pages 114:1–114:8, New
York, NY, USA, 2008. ACM. 22

[SP19] Ci Song and Tao Pei. Decomposition of repulsive clusters in complex point
processes with heterogeneous components. ISPRS International Journal of
Geo-Information, 8(8):326, 2019. 39

[SPK+14] Ondrej Stava, Sören Pirk, Julian Kratt, Baoquan Chen, Radomir Měch,
Oliver Deussen, and Bedrich Benes. Inverse procedural modelling of
trees: Inverse procedural modeling of trees. Computer Graphics Forum,
33(6):118–131, September 2014. 14

[SRH+09] L. Skrba, L. Reveret, F. Hétroy, M-P. Cani, and Carol O’Sullivan. Animat-
ing quadrupeds: Methods and applications. Computer Graphics Forum,
28(6), 2009. 18

[SYLK18] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net:
CNNs for optical flow using pyramid, warping, and cost volume. In CVPR,
2018. 76

[TBDB] Tela-Botanica. https://www.tela-botanica.org/, DB. Accessed: 2020-
01-22. 87

127

https://www.tela-botanica.org/

Bibliography

[TCP06] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds.
ACM Transactions on Graphics, 25(3):1160, July 2006. 21

[TLH19] Peihan Tu, Dani Lischinski, and Hui Huang. Point pattern synthesis via
irregular convolution. Computer Graphics Forum, 38(5):109–122, August
2019. 10, 12, 55

[TYK+09] Shigeo Takahashi, Kenichi Yoshida, Taesoo Kwon, Kang Hoon Lee, Je-
hee Lee, and Sung Yong Shin. Spectral-based group formation control.
Computer Graphics Forum, 28(2):639–648, April 2009. 25

[vdBGLM11] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Re-
ciprocal n-body collision avoidance. In Bruno Siciliano, Oussama Khatib,
Frans Groen, Cédric Pradalier, Roland Siegwart, and Gerhard Hirzinger,
editors, Robotics Research, volume 70, pages 3–19. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011. 20

[vTCG12] Wouter G. van Toll, Atlas F. Cook, and Roland Geraerts. Real-time
density-based crowd simulation: Real-time density-based crowd simulation.
Computer Animation and Virtual Worlds, 23(1):59–69, February 2012. 23

[vTP19] Wouter van Toll and Julien Pettre. Connecting global and local agent
navigation via topology. In Motion, Interaction and Games, pages 1–10,
Newcastle upon Tyne United Kingdom, October 2019. ACM. 23

[WBCG09] Jamie Wither, Frédéric Boudon, Marie-Paule Cani, and Christophe Godin.
Structure from silhouettes: a new paradigm for fast sketch-based design
of trees. In Computer Graphics Forum, volume 28, pages 541–550. Wiley
Online Library, 2009. 14

[Wei10] Li-Yi Wei. Multi-class blue noise sampling. In ACM Transactions on
Graphics (TOG), volume 29, page 79. ACM, 2010. 10

[WZDJ14] Xinjie Wang, Linling Zhou, Zhigang Deng, and Xiaogang Jin. Flock morph-
ing animation. Computer Animation and Virtual Worlds, 25(3-4):351–360,
May 2014. 24

[XJY+08] Jiayi Xu, Xiaogang Jin, Yizhou Yu, Tian Shen, and Mingdong Zhou.
Shape-constrained flock animation. Computer Animation and Virtual
Worlds, 19(3-4):319–330, 2008. 24

[XK07] Jie Xu and Craig S. Kaplan. Calligraphic packing. In Proceedings of Graph-
ics Interface 2007 on - GI ’07, page 43, Montreal, Canada, 2007. ACM
Press. ISSN: 07135424. 11

[XWL+08] Xuemiao Xu, Liang Wan, Xiaopei Liu, Tien-Tsin Wong, Liansheng Wang,
and Chi-Sing Leung. Animating animal motion from still. ACM Trans.
Graph. (Siggraph Asia issue), 27(5), 2008. 18

128

Bibliography

[XWY+15] Mingliang Xu, Yunpeng Wu, Yangdong Ye, Illes Farkas, Hao Jiang,
and Zhigang Deng. Collective crowd formation transform with mutual
information-based runtime feedback. Computer Graphics Forum, 34(1):60–
73, February 2015. 24

[YGJ+14] Dong-Ming Yan, Jianwei Guo, Xiaohong Jia, Xiaopeng Zhang, and Peter
Wonka. Blue-noise remeshing with farthest point optimization. page 10,
2014. 8

[YLL+09] Dong-Ming Yan, Bruno Lévy, Yang Liu, Feng Sun, and Wenping Wang.
Isotropic remeshing with fast and exact computation of restricted voronoi
diagram. Computer Graphics Forum, 28(5):1445–1454, July 2009. 8

[YLvdP07] KangKang Yin, Kevin Loken, and Michiel van de Panne. SIMBICON: Sim-
ple Biped Locomotion Control. ACM Transactions on Graphics, page 10,
2007. 18

[YW13] Dong-Ming Yan and Peter Wonka. Gap processing for adaptive maxi-
mal poisson-disk sampling. arXiv:1211.3297 [cs], August 2013. arXiv:
1211.3297. 8

[ZHWW12] Yahan Zhou, Haibin Huang, Li-Yi Wei, and Rui Wang. Point sampling
with general noise spectrum. ACM Trans. Graph., 31(4):76:1–76:11, July
2012. 9, 12

[ZSKS18] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive
neural networks for quadruped motion control. ACM Transactions on
Graphics, 37(4):1–11, August 2018. 19

[ZZC+14] Liping Zheng, Jianming Zhao, Yajun Cheng, Haibo Chen, Xiaoping Liu,
and Wenping Wang. Geometry-constrained crowd formation animation.
Computers & Graphics, 38:268–276, February 2014. 24

129

Titre : Création d’écosystèmes cohérents et animés : Apprentissage efficace à partir de données partielles

Mots clés : informatique graphique, modélisation, animation, simulation de foules, création, apprentissage

Résumé : Grâce aux récentes améliorations de
puissance de calcul, les mondes virtuels sont main-
tenant plus vastes et complexes que jamais. Alors
que ce type de contenu se généralise dans de
nombreux médias, les utilisateurs attendent une
expérience de plus en plus réaliste. En conséquence,
de nombreuses recherches ont été effectuées sur
la modélisation et la génération de terrains et de
végétation, et parfois leurs interactions. Néanmoins,
les animaux ont reçu moins d’attention et sont sou-
vent étudiés en isolation. Avec le manque d’ou-
tils d’édition intuitive, ces problèmes font de la
modélisation d’écosystèmes une tâche difficile pour
les artistes, qui se retrouvent limités dans leur liberté
créative, ou forcés d’ignorer le réalisme biologique.
Dans cette thèse, nous présentons des nou-
velles méthodes adaptées au design et à l’édition
d’écosystèmes virtuels, permettant la liberté créative
sans pour autant renoncer à la plausibilité biologique.
Notre approche a pour objectif de fournir des ou-
tils basés sur des données concrètes pour permettre
une édition efficace des écosystèmes, tout en ne
nécessitant qu’un nombre peu élevé de données. En
incorporant les connaissances existantes sur la biolo-

gie à nos modèles, nous sommes capables de garan-
tir à la fois la cohérence et la qualité des résultats.
Nous présentons des méthodes dédiées à l’ins-
tantiation précise et intuitive d’éléments statiques
et animés. Comme les éléments statiques peuvent
présenter des interactions complexes, nous propo-
sons une méthode précise, basée sur l’exemple et
adaptée aux recouvrements. Nous appliquons un
concept similaire à l’édition de troupeaux, en utilisant
des photographies ou vidéos comme entrée d’un al-
gorithme de synthèse par l’exemple. À une échelle
plus large, nous utilisons des données biologiques
pour formuler un processus unifié gérant l’instantia-
tion globale et les interactions de long terme entre
la végétation et les animaux. En plus de garantir la
cohérence biologique, ce modèle offre un contrôle sur
le résultat via l’édition des informations à toute étape.
Nos méthodes fournissent contrôle et réalisme durant
le processus de création d’écosystèmes, en prenant
en compte les éléments statiques et dynamiques,
ainsi que leurs interactions à plusieurs échelles. Nous
validons nos résultats à l’aide d’études utilisateur,
ainsi que des comparaisons avec des données réelles
ou d’experts.

Title : Authoring consistent, animated ecosystems: Efficient learning from partial data

Keywords : computer graphics, modelling, animation, crowd simulation, authoring, learning

Abstract : With recent increases in computing power,
virtual worlds are now larger and more complex than
ever. As such content becomes widespread in many
different media, the expectation of realism has also
dramatically increased for the end user. As a result,
a large body of work has been accomplished on the
modeling and generation of terrains and vegetation,
sometimes also considering their interactions. Howe-
ver, animals have received far less attention and are
often considered in isolation. Along with a lack of au-
thoring tools, this makes the modeling of ecosystems
difficult for artists, who are either limited in their crea-
tive freedom or forced to break biological realism.
In this thesis, we present new methods suited to
the authoring of ecosystems, allowing creative free-
dom without discarding biological realism. We provide
data-centered tools for an efficient authoring, while
keeping a low data requirement. By taking advantage
of existing biology knowledge, we are able to guaran-
tee both the consistency and quality of the results.
We present dedicated methods for precise and in-

tuitive instantiation of static and animated elements.
Since static elements, such as vegetation, can ex-
hibit complex interactions, we propose an accurate
example-based method to synthesize complex and
potentially overlapping arrangements. We apply a si-
milar concept to the authoring of herds of animals,
by using photographs or videos as input for example-
based synthesis. At a larger scale, we use biological
data to formulate a unified pipeline handling the glo-
bal instantiation and long-term interactions of vegeta-
tion and animals. While this model enforces biological
consistency, we also provide control by allowing ma-
nual editing of the data at any stage of the process.
Our methods provide both user control and realism
over the entire ecosystem creation pipeline, covering
static and dynamic elements, as well as interactions
between themselves and their environment. We also
cover different scales, from individual placement and
movement of elements to management of the entire
ecosystem. We validate our results with user studies
and comparisons with both real and expert data.

Institut Polytechnique de Paris
91120 Palaiseau, France

	1 Introduction
	1.1 Ecosystems in Computer Graphics
	1.1.1 Control
	1.1.2 Main challenges in populating landscapes
	1.1.3 Unified ecosystems

	1.2 General overview
	1.2.1 Outline
	1.2.2 Publications

	2 State of the art
	2.1 Distribution analysis and synthesis
	2.1.1 Point distributions
	2.1.2 Multi-class and shape aware solutions
	2.1.3 Discussion

	2.2 Modeling vegetation
	2.2.1 Generation of plants
	2.2.2 Simulation
	2.2.3 Statistical approaches
	2.2.4 Discussion

	2.3 Animation of creatures and crowds
	2.3.1 Animation of individual creatures
	2.3.2 Crowd simulation
	2.3.3 Crowd animation
	2.3.4 Path planning
	2.3.5 User control and authoring
	2.3.6 Discussion

	2.4 Ecosystems and self-interacting models
	2.4.1 Joint modeling of terrain and vegetation
	2.4.2 Interactions between animals and vegetation
	2.4.3 Biology-inspired models
	2.4.4 Discussion

	2.5 Conclusion

	3 Object placement in static landscapes
	3.1 Technical background
	3.1.1 Data and assumptions
	3.1.2 Analysis and synthesis of point distributions with PCFs

	3.2 Learning from arbitrary domains
	3.2.1 Compensation of missing points
	3.2.2 Quantitative results
	3.2.3 Application to distribution inpainting
	3.2.4 Application to distribution decomposition

	3.3 Interactions between multiple classes
	3.3.1 Validation

	3.4 From points to disks
	3.4.1 Distinguishing important configurations
	3.4.2 Saliency-based distance between disks
	3.4.3 Processing disk distributions

	3.5 Improving convergence
	3.5.1 Variance-aware PCFs
	3.5.2 Control of convergence

	3.6 Results and applications
	3.6.1 Parameters
	3.6.2 Comparison with previous methods
	3.6.3 Results
	3.6.4 Computation times
	3.6.5 Limitations and discussion

	3.7 Conclusion

	4 Towards animated worlds
	4.1 Herd animation from photos: overview
	4.1.1 Authoring interface
	4.1.2 Method and challenges

	4.2 Analysis and synthesis of static herds
	4.2.1 Data extraction from a single image
	4.2.2 A PCF-based method for interactions
	4.2.3 Editable descriptors
	4.2.4 Synthesis algorithm
	4.2.5 Descriptors as control tools

	4.3 Herd animation
	4.3.1 Global herd trajectory
	4.3.2 Generating individual movement

	4.4 Results and discussion
	4.4.1 Results
	4.4.2 Limitations

	4.5 Towards herd animation from video
	4.5.1 Extracting meaningful data from video clips
	4.5.2 Avenues for animated synthesis methods

	4.6 Conclusion

	5 Authoring complete ecosystems
	5.1 Case study: effect and visualization of skiers
	5.1.1 Context
	5.1.2 Skiers in snow-covered landscapes
	5.1.3 Discussion

	5.2 Populating a complex ecosystem: overview
	5.2.1 Input and output
	5.2.2 The Resource Access Graph
	5.2.3 Processing pipeline

	5.3 Resource Access Graph
	5.3.1 Definitions
	5.3.2 Initialization with the vegetation layer
	5.3.3 Animal accessibility maps
	5.3.4 Computing the next level

	5.4 Competition algorithm
	5.4.1 Survival constraints
	5.4.2 Solving for a Food Chain Level

	5.5 Ecosystem-aware landscapes
	5.5.1 Generating a map of trails
	5.5.2 Daily itineraries and 3D instantiation

	5.6 Results and discussion
	5.6.1 Interactive editing and exploration
	5.6.2 Results
	5.6.3 Validation with expert users
	5.6.4 Limitations

	5.7 Conclusion and future work

	6 Conclusion
	6.1 Contributions
	6.2 Future work

	Appendices
	A Ecosystem parameters and notations
	B Ecosystem user study
	Bibliography

