

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTE UNIVERSITE GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Guillaume CORDONNIER

Thèse dirigée par Marie-Paule CANI, Professeur des universités,
Ecole Polytechnique,
et codirigée par Éric GALIN, Professeur des universités,
Université de Lyon

préparée au sein du Laboratoire Jean Kuntzmann
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Modèles à couches pour simuler l’évolution
de paysages à grande échelle

Layered Models for Large Scale Time-
Evolving Landscapes

Thèse soutenue publiquement le 6 décembre 2018,
devant le jury composé de :

Monsieur François SILLION
Directeur de Recherche, Inria, Président
Monsieur Pierre POULIN
Professeur, Université de Montréal, Rapporteur
Monsieur Jean-Michel DISCHLER
Professeur, Université de Strasbourg, Rapporteur
Monsieur Bedrich BENES
Professeur, Purdue University, Examinateur
Monsieur Jean BRAUN
Professeur, GFZ German Research Center for Geosciences, Examinateur
Madame Marie-Paule CANI
Professeur, École Polytechnique, Directrice de thèse
Monsieur Eric GALIN
Professeur, Université de Lyon, Co-directeur de thèse

A ma famille.

Résumé

Le développement des nouvelles technologies permet la visualisation interactive de mondes
virtuels de plus en plus vastes et complexes. La production de paysages plausibles au sein
de ces mondes devient un défi majeur, en raison de l’importance des éléments de terrain et
des écosystèmes dans la qualité et le réalisme du résultat. S’y ajoute la difficulté d’éditer de
tels éléments sur des échelles spatiales et temporelles aussi vastes que peuvent l’être celles
des châınes de montagnes. Cette édition se fait souvent en couplant des méthodes manuelles
et de longues simulations numériques dont le calibrage est complexifié par le nombre des
paramètres et leur caractère peu intuitif.

Cette thèse propose d’explorer de nouvelles méthodes de simulation de paysages à grande
échelle, avec pour objectif d’améliorer le contrôle et le réalisme des scènes obtenues. Notre
stratégie est de fonder nos méthodes sur des lois éprouvées dans différents domaines scienti-
fiques, ce qui permet de renforcer la plausibilité des résultats, tout en construisant des outils
de résolution efficaces et des leviers de contrôles intuitifs.

En observant des phénomènes liés aux zones de compression de la croûte terrestre, nous
proposons une méthode de contrôle intuitif de la surrection à l’aide d’une métaphore de
sculpture des plaques tectoniques. Combinée avec de nouvelles méthodes efficaces d’érosion
fluviale et glaciaire, celle-ci permet de sculpter rapidement de vastes châınes de montagnes.
Pour visualiser les paysages obtenus à échelle humaine, nous démontrons le besoin de com-
biner la simulation de phénomènes variés et de temporalités différentes, et nous proposons
une méthode de simulation stochastique pour résoudre cette difficile cohabitation, que nous
appliquons à la simulation de processus géologiques tels que l’érosion, jointe à la formation
d’écosystèmes. Cette méthode est déclinée sur GPU et appliquée à la formation du manteau
neigeux, en combinant des aspects au long cours (précipitations, changements d’état de l’eau)
et des aspects dynamiques (avalanches, impact des skieurs).

Les différentes méthodes proposées permettent de simuler l’évolution de paysages à grande
échelle, tout en accordant une attention particulière au contrôle. Ces aspects sont validés par
des études utilisateur et des comparaisons avec des données issues de paysages réels.

Mots-Clés

Modélisation - Simulation - Phénomènes Naturels - Paysages - Terrains - Ecosystèmes

Abstract

The development of new technologies and algorithms allows the interactive visualization
of virtual worlds showing an increasing amount of details and spatial extent. The production
of plausible landscapes within these worlds becomes a major challenge, not only because the
important part that terrain features and ecosystems play in the quality and realism of 3D
sceneries, but also from the editing complexity of large landforms at mountain range scales.
Interactive authoring is often achieved by coupling editing techniques with computationally
and time demanding numerical simulation, whose calibration is harder as the number of
non-intuitive parameters increases.

This thesis develops new methods for the simulation of large-scale landscapes. Our goal
is to improve both the control and the realism of the synthetic scenes. Our strategy to in-
crease the plausibility consists of building our methods on physically and geomorphologically-
inspired laws: we develop new numerical methods, which, combined with intuitive control
tools, improve user experience.

By observing phenomena triggered by compression areas within the Earth’s crust, we
propose a method for the intuitive control of the uplift based on a metaphor on the sculpting
of the tectonic plates. Combined with new efficient methods for fluvial and glacial erosion,
this allows for the fast sculpting of large mountain ranges. In order to visualize the resulting
landscapes withing human sight, we demonstrate the need of combining the simulation of
various phenomena with different time spans, and we propose a stochastic simulation tech-
nique to solve this complex cohabitation. This methodology is applied to the simulation
of geological processes such as erosion interleaved with ecosystems formation. This method
is then implemented on the GPU, combining long term effects (snowfall, phase changes of
water) with highly dynamics ones (avalanches, skiers impact).

Our methods allow the simulation of the evolution of large scale, visually plausible land-
scapes, while accounting for user control. These results were validated by user studies as well
as comparisons with data obtained from real landscapes.

Keywords

Modeling - Simulation - Natural Phenomena - Landscapes - Terrains - Ecosystems

Thanks

I first want to address a sincere thank to my supervisors, Marie-Paule Cani and Eric Galin,
for their support and advises during these three years (and more!). You contributed in a
large part to the successful completion of my PhD. I specially want to thanks Marie-Paule for
opening me the opportunity to visit several international groups and create very interesting
collaborations.

A special thanks too, for Jean Braun. Your advices and expertise where highly valuable
for my work. Thanks for your invitation to visit your geomorphology group in Potsdam for
two months. This was an amazing experience, and I believe that this visit, along with all our
interactions, opened me new horizons and will continue to bring fruitful results.

I also want to thanks my collaborators, James, Bedrich, Pierre, Eric and Adrien. It was
great working with you and I look forward our next collaborations.

I want to thanks my teammates, for patiently listening me exposing my scientific is-
sues, for all our discussions and the good time we had together. Thanks Ulysse, Grégoire,
Even, Maxime, Ameya, Pierre, Amélie, Sandra, Robin, Youna, Maguelonne, Julien, Antoine,
Aarohi, Pierre-Luc, Tibor, Camille (Grenoble). Thanks Thomas, Pierre, Thibault, Pauline,
Corentin, Dorian, Marie-Julie, Robin (Polytechnique). I also want to thanks the perma-
nent researchers for their advises and fruitful discussions. Thanks Damien, Pooran, François,
Mélina, Rémi, Stefanie, Jean-Claude, George-Pierre, Nicolas.

I have a special thought for all those who supported me and directed me during these
three years and before. My friends, my former teachers, and all of you who had a considerable
impact on my life.

A huge thanks to my family, my parents, Oliver and Clotilde. You built around me an
amazing place to live and a taste for what I work for.

A last but definitively not least thank to my wife, Guillemette, for all your support,
patience, and everything else. This PhD was a lot more comfortable for me than it was for
you, and still, you were always here for me. Thanks to my children, François and Agathe,
and you who I hope to meet someday, for all the happiness you are giving me.

vii

Contents

1 Introduction 1

1.1 Evolving landscapes in virtual environments 1

1.1.1 Virtual environments . 2

1.1.2 Landscapes . 2

1.1.3 Large scale mountains evolution . 3

1.1.4 Authoring . 4

1.1.5 Previous work in landscape generation 4

1.2 General overview . 5

1.2.1 Contributions . 5

1.2.2 Outline . 6

1.2.3 Publications . 7

2 State of the art on landscape modeling 9

2.1 Terrain representation . 10

2.2 Procedural terrain generation: modeling the effects 12

2.2.1 Fractal and noise-based terrains . 13

2.2.2 Focus on terrain features . 13

2.2.3 By example . 15

2.2.4 Methods from artificial intelligence . 16

2.3 Simulation of terrain evolution . 17

2.3.1 Small scale features . 17

2.3.2 Hydraulic erosion . 18

2.3.3 Thermal erosion . 19

2.3.4 Geologically based simulation . 20

2.3.5 Plate tectonics . 20

2.4 Ecosystems . 21

2.4.1 Modeling individual plants . 21

ix

Contents

2.4.2 Methods from Ecology . 22

2.4.3 Lagrangian simulation . 23

2.4.4 Statistical synthesis . 24

2.5 Snow . 25

2.5.1 Lagrangian snow simulation . 25

2.5.2 Physically-based Eulerian heat transfer 26

2.5.3 Procedural surface displacement . 27

2.5.4 Avalanches . 27

2.6 Full landscape authoring . 28

2.7 Conclusion . 29

I Large scale mountain formation 31

3 Combining uplift and fluvial erosion 33

3.1 Background and overview . 35

3.1.1 Geological background . 35

3.1.2 Algorithm overview . 37

3.2 Stream generation . 38

3.2.1 Stream graph initialization . 38

3.2.2 Stream tree computation . 39

3.2.3 Lake overflow . 39

3.3 Erosion . 43

3.4 Results . 44

3.4.1 Visual realism . 45

3.4.2 Rendering . 45

3.4.3 Performance . 46

3.4.4 Lake overflow . 47

3.4.5 Stream power erosion . 51

3.5 Conclusion . 56

4 Interactive manipulation of tectonically driven uplift 57

4.1 Overview . 60

4.1.1 Plate tectonics in geology . 60

4.1.2 Geologically-inspired interactive simulation 61

4.2 Earth crust as a viscous material . 63

4.2.1 Moving plates creation . 63

4.2.2 Viscous compression . 64

4.2.3 Uplift from thickness changes . 65

4.3 Earth crust as layered sheets . 65

x

Contents

4.3.1 Folding of layered materials . 66

4.3.2 Procedural fold generation . 66

4.3.3 Uplift update from folds . 69

4.4 Terrain surface generation . 69

4.4.1 Interactive terrain generation . 69

4.4.2 Rock layers at the surface . 70

4.5 Implementation, results and discussion . 72

4.5.1 Architecture . 72

4.5.2 Qualitative and quantitative results 74

4.5.3 Validation and discussion . 76

4.5.4 User study . 80

4.6 Conclusion . 80

5 Glacial erosion 83

5.1 Overview . 85

5.1.1 Glacial erosion in Geology . 85

5.1.2 Governing equations for glaciers . 86

5.1.3 Efficient simulation of glacial erosion 87

5.1.4 Secondary erosion . 88

5.1.5 Main algorithm . 88

5.2 Ice flux propagation over the terrain . 89

5.2.1 Path graph computation . 90

5.2.2 Ice flux propagation . 90

5.3 Steady-state and erosion . 91

5.3.1 Computations at each iteration . 92

5.3.2 Convergence . 94

5.4 Debris flow, fluvial and hill slope erosion . 95

5.4.1 Debris flow and fluvial erosion . 95

5.4.2 Hill-slope erosion . 95

5.4.3 Interactions with glacial erosion . 97

5.5 Results and discussion . 97

5.5.1 Validation experiments . 98

5.5.2 Efficiency and speed . 103

5.5.3 Limitations . 105

5.6 Conclusion . 106

II Combining landscape simulation with medium scale phenomena 107

6 Joint simulation of vegetation and erosion 109

6.1 Method overview . 111

xi

Contents

6.1.1 Layered landscape model . 111

6.1.2 Simulation . 112

6.1.3 Control . 114

6.2 Geomorphological events . 115

6.2.1 Rainfall and running water . 115

6.2.2 Temperature . 116

6.2.3 Lightning . 117

6.2.4 Gravity . 118

6.2.5 Fire . 118

6.3 Ecosystem events . 119

6.4 Implementation . 122

6.5 Results and discussion . 122

6.6 Conclusion . 132

7 Dynamic snow cover evolution 133

7.1 Overview . 135

7.1.1 Simulation method . 136

7.1.2 Categories of events . 138

7.2 Environmental conditions . 138

7.2.1 Temperature . 138

7.2.2 Wind . 140

7.3 Snow cover . 142

7.3.1 Snowfall . 142

7.3.2 Snow state changes . 143

7.3.3 Diffusion of powdery snow . 144

7.3.4 Wind transport . 144

7.4 Interactive phenomena . 145

7.4.1 Avalanches . 146

7.4.2 Ski tracks . 147

7.5 Implementation . 149

7.6 Results and discussion . 152

7.7 Conclusion . 156

8 Conclusion 159

8.1 Summary . 159

8.2 Future work . 160

xii

Chapter 1
Introduction

Contents

1.1 Evolving landscapes in virtual environments 1

1.1.1 Virtual environments . 2

1.1.2 Landscapes . 2

1.1.3 Large scale mountains evolution . 3

1.1.4 Authoring . 4

1.1.5 Previous work in landscape generation 4

1.2 General overview . 5

1.2.1 Contributions . 5

1.2.2 Outline . 6

1.2.3 Publications . 7

Exploring and dreaming - these two major engines that propelled mankind to the top of
evolution have reached another dimension within our new digital age. The generation and
manipulation of huge virtual environments became possible with the increase of computa-
tional power and the discovery of new algorithms, while the development of new visualization
technologies and of virtual reality makes them more accessible to both experts and the general
public. This leverages our ability to both explore and manipulate imaginary worlds, which is
needed in the entertainment industry, and also to study simplified versions of our own world
at any scale, which considerably extends the possible research outreach in natural sciences.
The temporal evolution of a virtual environment can have significant importance in both the
generation of its current state and in the study of relationships between its successive states.
In this thesis, we use the simulation of this temporal evolution as a key element to improve
both the plausibility of large scale landscapes and the efficiency of authoring tools.

1.1 Evolving landscapes in virtual environments

Landscapes form the foundations of natural virtual environments. In this thesis, we ex-
plore new solutions for creating and authoring landscapes and their evolution over large time
periods.

1

Chapter 1. Introduction

1.1.1 Virtual environments

With the increasing power of computers and the never ending demand of end-consumers
for digital content, the need for virtual environments has dramatically increased. These
are used as a context for the exploration and the manipulation of virtual objects. In the
entertainment industry, virtual environments can be used as a background for a story, and
in particular be instrumented to direct the context of that story: time period, mood, places,
characters, etc. This environment has a fundamental role in defining limits and points of
interest in interactive stories, as well as orienting the training proposed by serious games. In
the manufacturing industry or architecture, virtual environments are often used to highlight a
product, for commercial or informational purposes. Natural sciences generate approximated
versions of our world to validate their model for natural laws, and human sciences use virtual
environments as a research context, for example to understand the panel of behaviors observed
in reaction to emergency situations. In this thesis, we tackle the problem of the efficient
and controllable simulation of the temporal evolution of consistent large scale mountainous
landscapes for virtual environments. In the following, we will define these notions and the
subsequent challenges.

1.1.2 Landscapes

Landscapes play a fundamental role in virtual environments. Although sometimes considered
as a background element, they usually cover most of the sight space, and have a strong
influence on the general mood of the virtual world. The geometry of landscapes sets the limits
of the environment, and directs the explorer’s movements. It also influences the placement of
objects, which is crucial for both storytelling applications and for the commercial promotion
of products.

The term virtual landscape is generic and encompasses a wide range of definitions. In
this thesis, we restrict our scope to elements and inanimate life forms. A landscape can be
separated into several entities:

• The terrain, which is an essential part of the landscape as it is used to ground virtual
objects. Several representations exist for modeling the terrain and its surface is used for
visualization and as a support of the virtual environment. It can be internally segmented
into several groups of different materials (usually some variety of rock types).

• Water bodies are then placed in accordance to the terrain surface. These are large
areas of connected regions filled with water, either in a relative rest state (lakes, seas),
either in a dynamic state (rivers). Resulting from the advection of precipitations, they
also result in solid snow cover and glaciers in cold climates.

• Vegetation and rocks are separated into multiple plants (trees, shrubs, grass) or
mineral elements (stones and pebbles) that are scattered over the terrain surface. These
objects are important for the visual quality of the generated landscapes. We also
show that they exhibit deep and effective interactions with many of the natural events
responsible for the transformation of a landscape.

Challenge: A perennial challenge in the generation of landscapes is its realism, which is a
key ingredient to the immersion required by virtual environments. Many features are hard to

2

1.1. Evolving landscapes in virtual environments

generate accurately: dendritic erosion channels, vegetation and rock placements with respect
to slope and environmental resources, or large scale shapes such as the distribution of valleys
and ridges. We separate two factors that impact this realism. Visual plausibility is directly
evaluated by the human visual system and may depend on the observer’s experience. The
underlying neurological mechanisms are under debate, which makes visual plausibility hard
to quantify objectively. Physical consistency is generally not detected at first sight but has
a specific importance as it impacts the plausibility perceived in accordance with the user’s
knowledge: the water flows downstream, deciduous and conifer trees are sorted by increasing
altitude, etc.

1.1.3 Large scale mountains evolution

Landscapes show a wide range of pattern sizes; for some viewpoints, large mountain ranges
may even cover the same area on the screen than small details. Therefore, when considering
the targeted space and time scale, most generations methods have to choose a trade-off
between the precision of details and the extent of the generated landscape. Interestingly, there
is a correlation between longevity and size of natural features. This duality between spatial
and temporal scales induces a natural choice of time windows when simulating landscape
formation given the targeted spatial extent. This observation allows us to consider both
space and time indistinguishably in the following, in a unified scale concept. In this thesis,
we propose a multi-resolution approach, dividing the scale range into three main categories,
related to the lifetime of the observed landscape features.

At large scale, geological measures are considered. Landscapes result from millions of years
of earth deformation: the spatial domain encompasses the whole mountain range, where the
main features have a characteristic scale of several kilometers. Typical features include large
mountains or valleys carved by glaciers or by the long action of the water flow. The second
category encompasses a medium scale, where features are the distributions of rocks, plants
or snow cover, in a maximum extent of 10 km, and where the minimal detail size is above 1
to 10 m. This scale is accurate enough to show the main rock structures and to define plant
densities, shaped by events occurring over a few centuries. We must mention a smaller scale
with centimeter wide details. This includes the precise positioning and details of vegetation,
ground elements, or rock texturing. This scale is generally handled when rendering the
landscape, and thus is out of the scope of this thesis.

Tackling landscape generation at large scales open the possibility for modeling the natural
forces resulting in the formation mountainous ranges. We orient our study to the solution
of this particular problem, because the visual appeal of mountainous regions is sought for
in virtual worlds, and because the complexity of the underlying physical events makes it an
interesting open problem to investigate.

Since we do not consider human and animal activities in our definition, landscapes are
the result of slow natural processes, hardly observable in a human life span. Still, modeling
the evolution of the landscape over large, geological time scales have some important use
cases. In particular, a landscape at present day is the result of its past evolution, and
plausibly reproducing it can be achieved by accurately simulating the underlying natural
phenomena. Simulation approaches for landscape generation use the succession of natural
events to progressively shape the landscape. The resulting versions of the same landscapes
at different state of evolution can be used in many applications, for example to show the

3

Chapter 1. Introduction

outcome of different climatic or geological conditions on similar initial settings.

Challenge: The problem of simulating large scale landscape evolution on geological times
has received little attention in Computer Graphics. First, given the large temporal scale, it is
hard to obtain a simulation interactive enough to enable parameters exploration and feature
placement. Second, a large range of natural processes are responsible of landscape evolution,
it is necessary to carefully select which of them have physical meaning at the considered scales
and how they interact.

1.1.4 Authoring

Many applications require a fine tuning of the virtual environment to fulfill the desired pur-
pose. Without any automatic generation tool for both a plausible storytelling and the corre-
sponding virtual world, virtual landscapes have to be carefully sculpted by artists. This is still
done exhaustively by hand, a workload that increases dramatically with the growth of virtual
contents. In production pipelines, the user starts to sculpt the terrain surface with low level
primitives (usually noise). Then, a complex simulation adds physically based enhancements
such as erosion and can last for hours for large 10, 0002 cells terrains. Vegetation and natural
details are coarsely placed on the ground with respect to simple surface properties such as
slope and altitude, where they need to be manually adjusted to some more plausible and
interesting locations. Although providing maximal control, this work-flow comes at the cost
of a very low productivity. Thus, any new landscape generation technique should incorporate
higher lever user control that both allows for fast and intuitive editing and guarantee the
plausibility of the final result.

Challenge: Authoring terrains brings the same difficulty than many other applications in
Computer Graphics. Users are usually seeking for a tool that enables them to quickly shape
what they have in mind, and in the meantime allows them to edit even the more detailed
features. Authoring also gains in complexity when coupled with the two other challenges: the
tools must enforce the desired (preferably tunable) level of plausibility, and be compatible
with large scale settings.

1.1.5 Previous work in landscape generation

Two main categories of generation methods have coexisted in the landscape generation litera-
ture. They targeted either the generation of the effects, i.e., the observed features of the final
landscape, either the generation of the causes, i.e., the forces that trigger the long term evolu-
tion of the landscape. All these methods have tried to solve some of the challenges mentioned
above: large scale, controllability and plausibility of both visual and physical features.

Modeling the effects of processes that generate landscapes can be achieved by reproducing
particular patterns or features observed in our environment. This method has a long history
in Computer Graphics, with various approaches. Fractal noise combination (Ebert et al.
2002) instantaneously generates infinite terrain surface at the cost of realism and controlla-
bility. Some methods consider the edition of specific terrain features (Génevaux et al. 2015;
Hnaidi et al. 2010). Observations from hydrology (Emilien, Poulin, et al. 2015; Génevaux

et al. 2013) are used to build consistent terrain surface and water bodies. Designed for

4

1.2. General overview

controllability and sometime large scale applications, these methods often suffer from their
specific focus, which sacrifice the overall plausibility. Statistical analysis on landscape object
distributions (Emilien, Vimont, et al. 2015) or on existing terrain data (Gain et al. 2015;
Guérin et al. 2017), uses the complexity of real world data to reproduce plausible and control-
lable landscapes. The main issues come at larger scales, where it is hard to enforce physical
consistency.

Modeling the causes of landscape formation is inspired from simulation methods com-
monly used in Natural Sciences, where specific forces and laws are used to transform an
initial setting. In Natural Sciences, the goal is to validate the laws or to obtain parameters
from acquired data, whereas the goal in Computer Graphics is to generate plausible data to
augment the user’s immersion in a virtual environment. Simulation techniques for ecosystem
synthesis take inspiration from ecology and model plants as a resource-dependent density
distribution (Lane et al. 2002), or as competitive individual agents (Bradbury et al. 2015).
Terrains are also used as input of simulation methods that mainly address the problem of
surface enhancement from erosion. Two main types of erosion are usually considered. Cliff
weathering is averaged into a thermal erosion formulation on large scale landscapes (Mus-
grave et al. 1989) or detailed on a rock by rock basis (Ito et al. 2003). Various formulations
of hydraulic erosion have been used, simulating water and sediment flow by using either Eu-
lerian (Beneš et al. 2002; Benes et al. 2006; Musgrave et al. 1989; Pytel et al. 2013) or
Lagrangian (Krǐstof et al. 2009; Kurowski 2012) fluid simulation, which triggers a coupled
bedrock erosion.

To our knowledge, no attempt was previously made to simulate the formation of mountain
ranges. Controllability is often the weakest point of simulation methods, although some efforts
has been made to improve it. Indeed, these methods usually involve many parameters which
are tuned through several trials and errors. This process is tedious and demanding, because of
the large computation times needed by the simulation or because of the large number of time
steps. But when the right set of parameters has eventually been found, the results are both
visually plausible and physically consistent. Simulation techniques, especially of hydraulic
erosion, generally fail to generalize at large scales because of the precise physical simulations
used to model the water flow, which induce the need for a fine simulation grid leading to
unpractical computation times.

1.2 General overview

This thesis proposes a series of methods for simulating the temporal evolution of large scale
multi-layered landscapes. We cover several complementary problems, from the generation of
large scale mountain ranges to the interleaving of smaller scale natural processes.

1.2.1 Contributions

Our contribution addresses the main challenges listed above: large scale landscape simulation,
plausibility and control of the result.

Landscape simulation. A large part of this research was conducted in collaboration with
geomorphologists, specialized in the simulation of large scale earth surface processes. These

5

Chapter 1. Introduction

collaborations enabled us to understand and reuse state of the art knowledge about the
geological laws, which are both specifically designed to the considered scale (mountain ranges),
and adapted to the needs of Computer Graphics. We also address the cohabitation issue
between events in a large range of time scales, such as erosional effects and vegetation lifetime.
We improve the plausibility of our results by rooting each of the simulated effect in laws from
Natural Sciences, even if procedurally simplified for efficiency purpose. We also validate our
results through user studies and through a phenomenological verification: we select some of
the patterns which are known to be the result of the modeled process, and we check if it
emerges from our simulations. Lastly, we propose to use tectonic forces as a high level user
control tool for sculpting mountains. We also investigate the use of an editable timeline,
where both materials and events could be input at any point in space and time, and later
refined.

Multi-layered representation. These contributions benefit from the use of a multi-
layered representation of landscapes. At the large considered scales, fully volumetric struc-
tures such as cliffs, overhangs or arches are barely visible, which implies that our landscapes
can benefit from a planar parametrization: the different properties of the landscape are regu-
larly sampled on a 2D plane. The sampling is usually performed over a regular grid, although
other distributions are possible such as triangular irregular network, commonly used in ge-
olomorphology and geography. Many different properties of the landscapes are stored at the
observed points, the most important being the surface elevation (heightmap). We introduce
other elements such as ordered layers of rocks, vegetation density, glacier thickness, or any
space varying simulation properties. This representation serves several purposes: the mul-
tiple layers embed a part of volumetric information without paying the cost of a complete
3D data structure. The fixed, regular sampling allows for a fast access of the different prop-
erties at a given location, and is by definition, directly compatible with Eulerian physical
simulation methods. When the sampling is performed over a regular grid, the output is also
straightforward to plug in existing rendering software or game engines.

1.2.2 Outline

After visiting some of the methods previously introduced in Computer Graphics for landscape
simulation, we organize the contributions of this thesis in two parts, separated by the scales
at which we consider landscapes.

Large scale mountain formation. In a first part, landscapes are considered at geologi-
cal scales, enabling the formation of whole mountain ranges from the combination of fluvial
erosion and tectonic uplift (Chapter 3). Fluvial erosion is modeled thanks to the Stream
Power Law, borrowed from Geomorphology literature. We use an efficient implementation
that allows for large time steps. The computation of space varying uplift is then refined
according to geological knowledge on plate tectonics, considering successive layers at progres-
sively refined scales: global crust compression, subsequent folding and erosion. This results
in a sculpting tool that allows users to interactively shape mountain ranges in reaction to
tactile gestures mimicking tectonic forces (Chapter 4). In Chapter 5 we introduce another
erosion law that takes into account the abrasion of glaciers, fundamental at low latitude or

6

1.2. General overview

high altitude mountain ranges. We propose a new simulation method for the combination of
the steady state of glaciers and the implied erosion on large time steps.

Combining landscape simulation with medium scale phenomena. In a second part,
we narrow down the scale to consider the interleaving of various medium scale phenomena.
We propose a new simulation method for the interactive authoring of landscape through the
combination of many natural processes: vegetation life, fire, lightnings, hydraulic and thermal
erosion (Chapter 6). This stochastic simulation is based on a segmentation of the different
considered processes into atomic events, which are triggered randomly and are simulated
along a simple path. This framework is easy to implement, largely extensible, and proposes
a user control in space and time of both the events and the processed materials thanks to a
timeline. We extend this method with a GPU simulation and adapt it to the generation of
the snow cover (Chapter 7). This includes the handling of snow phase, wind, and measures of
snow stability. The simulation is augmented with shorter term dynamic effects: avalanches
and skiers. Chapter 8 concludes this thesis and explores some perspectives opened by the
presented research.

1.2.3 Publications

The work presented in this thesis has been subject to related publications:

Guillaume Cordonnier, Jean Braun, Marie-Paule Cani, Bedrich Benes, Eric Galin, Adrien
Peytavie, and Eric Guérin (2016). “Large scale terrain generation from tectonic uplift and
fluvial erosion”. In: Computer Graphics Forum 35.2, pp. 165–175 (Chapter 3)

Guillaume Cordonnier, Eric Galin, James Gain, Bedrich Benes, Eric Guérin, Adrien Pey-
tavie, and Marie-Paule Cani (2017). “Authoring landscapes by combining ecosystem and
terrain erosion simulation”. In: ACM Transactions on Graphics 36.4, pp. 134:1–134:12
(Chapter 6)

Guillaume Cordonnier, Marie-Paule Cani, Bedrich Benes, Jean Braun, and Eric Galin
(2018). “Sculpting mountains: Interactive terrain modeling based on subsurface geology”. In:
IEEE Transactions on Visualization and Computer Graphics 24.5, pp. 1756–1769 (Chapter 4)

Guillaume Cordonnier, Pierre Ecormier, Eric Galin, James Gain, Bedrich Benes, and
Marie-Paule Cani (2018). “Interactive generation of time-evolving, snow-covered landscapes
with avalanches”. In: Computer Graphics Forum 37.2, pp. 497–509 (Chapter 7)

Two publication are under review, one related to Chapter 5 on glacial erosion, and an
extension of the local minima problem for flow distribution mentioned in Chapter 3.

We collaborated to another work, that greatly inspired the vegetation part of Chapter 6,
but is not detailed in this thesis: James Gain, Harry Long, Guillaume Cordonnier, and
Marie-Paule Cani (2017). “EcoBrush: Interactive control of visually consistent large-scale
ecosystems”. In: Computer Graphics Forum 36.2, pp. 63–73.

7

Chapter 2
State of the art on landscape modeling

Contents

2.1 Terrain representation . 10

2.2 Procedural terrain generation: modeling the effects 12

2.2.1 Fractal and noise-based terrains . 13

2.2.2 Focus on terrain features . 13

2.2.3 By example . 15

2.2.4 Methods from artificial intelligence 16

2.3 Simulation of terrain evolution . 17

2.3.1 Small scale features . 17

2.3.2 Hydraulic erosion . 18

2.3.3 Thermal erosion . 19

2.3.4 Geologically based simulation . 20

2.3.5 Plate tectonics . 20

2.4 Ecosystems . 21

2.4.1 Modeling individual plants . 21

2.4.2 Methods from Ecology . 22

2.4.3 Lagrangian simulation . 23

2.4.4 Statistical synthesis . 24

2.5 Snow . 25

2.5.1 Lagrangian snow simulation . 25

2.5.2 Physically-based Eulerian heat transfer 26

2.5.3 Procedural surface displacement . 27

2.5.4 Avalanches . 27

2.6 Full landscape authoring . 28

2.7 Conclusion . 29

9

Chapter 2. State of the art on landscape modeling

Virtual landscapes have been studied extensively in the last decades (Natali et al. 2013;
Smelik et al. 2014). In this chapter, we present an overview of these researches and we

qualify them with respect to the three main challenges raised by this problem: plausibility,
scale, and user control. First, we consider terrain generation, which has received the most
attention in Computer Graphics. We present the different options for terrain representation,
which condition the data storage for the whole landscape. We then separate methods that
directly generate the effects of geomorphologic processes in the form of specific terrain fea-
tures (Section 2.2), and the methods that simulate the terrain evolution after modeling the
causes responsible for present day topography (Section 2.3). Subsequent sections focus on
the generation of ecosystems (Section 2.4) and snow cover (Section 2.5). Only few methods
address the problem of combining multiple of these aspects to improve the plausibility of
complete landscapes, as described in Section 2.6.

2.1 Terrain representation

Several strategies are used to represent terrains in computer memory, so that they can be
handled by generation algorithms. Choosing among one of these representation depends on
the applications and more importantly on the targeted scale.

Air density T [air](x,z)

Terrain surface
T [air] = T [rock] =0

Rock density T [rock](x,z)

Volume representation Surface representation

Terrain altitude
Tz (x)

z z

xx

Figure 2.1: Side view (xz) of volume and surface representations. Volume representation
(left): the terrain is defined by a density function for the different materials considered.
Terrain surface is obtained implicitly at the junction of an interior material (here rock) and
an exterior material (here air). When the surface is uniquely defined for each x, a surface
representation can be extracted (right).

We introduce a formal definition for a terrain, from which be can derive the representation
generally used in Computer Graphics. A terrain is characterized by a surface, but can also
embed multiple materials, as well as complex topological structures as caves and overhangs.
To account for this different volumetric aspect, we define a terrain thanks to a density func-
tion. For n different types of materials, including at least a terrain material and air, the
function representing a terrain maps a position to a vector describing the density of each of
the materials: T : R3 → Rn. Multiple definitions are valid for the density, a possibility is
to associate values, ranging continuously from negative (absence of material) toward positive
(presence of material). By assuming that the materials can not be mixed, impose the result-
ing density function to outputs a vector with a single non-zero element. The boundaries of a
material with identifier k is then given by the solution of an implicit equation T [k] = 0, and

10

2.1. Terrain representation

the interface between two materials, especially the terrain surface in contact with a material
representing the exterior (air, void, etc.) is obtained by the intersection of two such functions
(Figure 2.1, left). This technique is an application of the general formulation of implicit sur-
faces, widely used in Computer Graphics to represent objects boundaries. The visualization
of the terrain is generally obtained thanks to ray tracing or by converting it to a mesh rep-
resentation (Lorensen et al. 1987; Wyvill et al. 1986). In some cases, an interface does not
self-overlap when vertically projected, which means that the equation Ti(x, z) = Tj(x, z) = 0
solved for z has a unique solution, for all x in the horizontal terrain boundary. The sur-
face thus follows an explicit representation, mapping a 2D horizontal position to an altitude:
Tz : R2 → R (Figure 2.1, right).

Although some analytical formulations exist for this equation, terrains are generally
shaped thanks to numerical computations, especially when simulations or user control are
considered. To store the altitudes in computer memory, a discrete terrain representation is
used: (X , Tz(X)), where X is a set of horizontal 2D positions, and the altitude is interpolated
between the discrete points. In many applications, X is chosen as the nodes of a regular
grid X = {(i dx, j dx), (i, j) ∈ [0, n− 1]× [0,m− 1]}, where dx is the cell spacing and (n,m)
the number of sampling points per dimension. This discretization, along with the associated
elevation, is called heighfield. It has a small memory footprint because X can be deduced
easily from dx,mn and n, and neighborhood lookup is straightforward.

Triangular Irregular Networks (Peucker et al. 1978) is an alternate way of storing altitude
data at the nodes of a planar graph. The locations of the nodes are distributed randomly
with some regularity in their spacing (blue noise), and the edges are chosen to form only
triangles between nodes. At the cost of a higher memory consumption, this representation
is straightforward to convert to a mesh and thus easily pluggable in any rendering or visu-
alization engine. The irregularity of the sampled points makes it an interesting choice when
distinct features have to be represented at various scales (especially in the case of highly
varying surface curvature), and hides artifacts which are often observed in regular grids.

Material layers

z

x

z

x

Material piles

Figure 2.2: The thickness of multiple materials is stored in each cell in layered (left) or pile
(right) representations. The main difference is that the ordering of the materials is shared by
all cells in a layered representation, whereas it is free within the piles. Additional air blocks
can be interleaved in the piles, enabling the representation of caves to caves and overhangs.

A semi volumetric extension was introduced by Benes et al. 2001 to handle multiple
material layers thanks to a planar data structure (usually heightfields) for each interface
between materials: Tz(X) ∈ Rl, where l is the number of layers (Figure 2.2, left). The
altitude values of a material can be stored relatively to the previous layer and thus embeds

11

Chapter 2. State of the art on landscape modeling

a local thickness. We mainly use this representation in our methods, because of the large
scale possibilities offered by planar representations and because the static setting of layers
is well suited to represent geological materials. We extend on this by adding other types of
layers, such as resources (moisture and illumination), or object densities (vegetation, rocks).
A limitation of that representation is that the order of materials in a cell is prescribed by the
global ordering of the layers.

Figure 2.3: Volumetric rep-

resentation of terrain through

piles of materials. Void layers

are used to model arches and

overhangs. (Peytavie et al.

2009).

More accurate volumetric solutions are also considered in
the literature, generally only applicable to lower scale scener-
ies. Gamito et al. 2001 applies a 3D displacement W : X →
R3 on heightfields to enable overhangs. The resulting terrain
is obtained by TW = {(x, y, Tz(x, y) +W(x, y)), (x, y) ∈ X}.
This method is efficient in modeling precise cliffs, as long
as the targeted result is topologically equivalent to a sur-
face. An approach dual to the previously described layered
representation consists in vertically stacking a pile of ma-
terials at each grid point (Peytavie et al. 2009): Tz(x, y) ∈
(R,N)l(x,y), (x, y) ∈ X , where l(x, y) is the sample dependent
number of elements in a pile and N is a set of material types.
By using a specific void (or air) material, this method can rep-
resent arches and overhangs (Figure 2.2, left and Figure 2.3).
Fully volumetric solutions require to associate materials to
3D positions, usually in voxels (cells of a regular 3D grid).

Some optimizations alleviate the large storage cost of such structures, for example by using
Sparse Voxel Octrees Laine et al. 2011. Although fundamental for the accurate representa-
tion of many close view natural features, we do not consider such precise representations.
By considering terrain at large scale, we can neglect volumetric features, which enable us to
capture mountain formation with the maximum possible horizontal extent.

Recent works propose an alternative to discrete representation. Génevaux et al. 2015
segment different atomic terrain features, called primitives, as leaves of a mathematical tree.
Junctions in the tree embeds operators, explaining how the features combines, for example
by blending, carving, or warping. Parsing the tree leads to an implicit function defining
the terrain surface, which enables interactive edition and visualization thanks to ray-tracing.
Editing the primitive tree is done either by hand, either by analyzing real data to produce
both the primitives and the operator tree as proposed by Guérin, Digne, Peytavie, et al.
2016. These approaches are very convenient for generating large scale landscapes with a
small memory footprint. As we demonstrate in Chapter 3, this representation can be coupled
with a discrete one to add local details.

In this thesis, we choose a discrete planar layered representation. Planarity is justified
by the large considered scale, discretization (with TINs or regular grid) is needed by the
numerical simulations and the layers nicely fits to the natural ordering of geological structures.

2.2 Procedural terrain generation: modeling the effects

Several algorithms specialized at the generation of terrains are designed by observing terrain
features as they are now, regardless of their past evolution. We call this approach modeling
the effects. In particular, many methods use fractals to mimic the self-repeatability of nature

12

2.2. Procedural terrain generation: modeling the effects

(Section 2.2.1), focus on the reproduction of specific terrain features (Section 2.2.2), copy
existing terrain data by example (Section 2.2.3), or rely on artificial intelligence methods
(Section 2.2.4).

2.2.1 Fractal and noise-based terrains

Fractals (Mandelbrot et al. 1983; Voss 1991) are important mathematical tools for represent-
ing natural scenes, from the observation that many features show some similarity at various
scales. Many approaches have been designed to use fractal generation for terrains (Ebert
et al. 2002)).

Figure 2.4: A fractal terrain

made by combining noise func-

tions (Ebert et al. 2002).

Subdivision schemes are used to progressively refine
a terrain. Starting from an initial coarse state, the ter-
rain is progressively subdivided, and the altitude values
for the new points are interpolated with respect to their
neighbors (Fournier et al. 1982). Simple rules are used to
choose the interpolation neighbors and randomly displace
the newly added point. The whole class of algorithms is
called midpoint displacement. The interpolation rules vary
from the classical diamond-square algorithm (Miller 1986)
where new points are computed with respect to four neigh-
bors, successively chosen among the axis-aligned and diag-
onal neighbors, to more complex methods by Lewis 1987
who advocate for the use of a small linear system, achiev-
ing less artifacts and a richer variety of resulting terrains.
A second category of techniques, called multi-fractal com-
bines different noise functions (Lagae et al. 2010), progressively refining the scale. This falls
in the more general formulation of fractional Brownian motion (Mandelbrot et al. 1968). The
use of a limited number of simple equations allows for the fast creation of nearly infinite
terrains, easily rendered on the GPU Schneider et al. 2006.

A common problem among these approaches is the lack of direct control. Many attempts
were made to translate the user’s intent into fractal parameterizations. By analyzing real
terrains, Lawick et al. 1995 and Belhadj 2007 extract a limited number of noise parameters,
that are locally tuned by the user to generate the desired terrain. Sketches (Kamal et al.
2007; Talgorn et al. 2018), or brushes (Carpentier et al. 2009) are the preferred control tool
to locally parametrize generation algorithms.

These methods are very efficient at generating extremely large landscapes, sometimes
within milliseconds. On the other hand, both plausibility and control are hard to achieve, in
spite of the decades of research on the subject. We use these techniques, especially multi-
fractal noise, mainly to introduce natural irregularities in the parameters of our simulations
(e.g., erosion strength, tectonic forces, etc.).

2.2.2 Focus on terrain features

Several methods try to tackle the problem of terrain generation by reproducing specific,
isolated terrain features. We separate two main categories of landforms: general landform

13

Chapter 2. State of the art on landscape modeling

features and hydrology network. Visualizing terrain features generally benefits from vectorial
representations, as demonstrated by Bruneton et al. 2008.

Figure 2.5: Terrain edited

through feature curves (Hnaidi

et al. 2010).

Landform features. Rusnell et al. 2009 focus on the
profile of featured. The user sketches the profiles of gen-
erators: mountains, hills or craters, and place them in the
terrain. Then, a least cost path is computed in a weighted
graph formed by connecting these generators to compute
the network of secondary ridges, leading to the generation
of various and easily controllable landscapes. Ridges and
profiles of cliffs can also be used as the main control tool,
as proposed by Hnaidi et al. 2010, where the user’s strokes
representing preeminent features are interpolated by using
a diffusion equation, augmented with some noise. This is
extended by Bernhardt et al. 2011 who introduces a vecto-
rial representation of terrain features and copy-paste tools

inspired from vector-graphics softwares. Thanks to a coupled CPU-GPU computation, the
user can observe the results of the edition in real time. Another possibility is to interpolate
the terrain between constraints induced by a ridge network (Ariyan et al. 2015) drawn in 2D
by the user, and where elevation are automatically deduced thanks to random walk with con-
trollable probability distributions. Recent work includes the generalization to fully volumetric
terrains, enabling the sketching of overhangs and arches (Becher et al. 2017). These methods
provide a favorable amount of user control, but the plausibility is limited by the user’s skills.
Furthermore, although the user can generally edit any specific detail of the generated terrain,
this process can be demanding if the features where not designed for these particular cases.
With optimizations, these methods adapt generally well to large scale applications. In this
thesis, we chose brushes and sculpting metaphor to guide simulations as these can be used
to paint parameters map and define physical forces, but we could inspire from sketch based
approaches to define the target of inverse simulation methods.

Figure 2.6: Large scale ter-

rain modeled from an hydrology

map (Génevaux et al. 2013).

Hydrology. A common observation in terrain modeling
is that valleys are carved by rivers; thus hydrology is a
major factor directing the distribution of terrain features.
Early works propose to apply L-systems to guide the sub-
division of a terrain mesh while ensuring the emergence
of a river network (Prusinkiewicz et al. 1993). This idea
has been recently extended to planet-scale river networks
thanks to a GPU accelerated adaptive refinement of the
terrain at the camera location (Derzapf et al. 2011). Other
generation methods first compute a hydrology network and
interpolate the terrain surface between river curves. Bel-
hadj et al. 2005 introduce an inverse midpoint displacement
method for the interpolation, while Génevaux et al. 2013

automatically generate a large scale hydrologically plausible river network from a user given
hydrology map and coarse terrain elevations, before generating the terrain surface to primi-
tive trees. A precursor work from Kelley et al. 1988 use steady state observation for stream

14

2.2. Procedural terrain generation: modeling the effects

erosion to produce a terrain shaped by fluvial erosion, and the results are similar the ones
we present in Chapter 3, the main difference being that their river network is computed
geometrically while ours is induced by the simulation, thus leading to more diverse results.
Some approaches specifically target the generation of rivers and waterfalls Emilien, Poulin,
et al. 2015 or canyons De Carli et al. 2014. While hydrology based methods are generally
well adapted to large scale simulation and the river graph is a powerful control tool, the
interpolation of plausible landforms between rivers is usually their main weakness, especially
where terrain features does not result from the action of water, for example when glaciers or
wind events actively shape the terrain.

The strength of feature-based terrain generation methods comes from the visual preem-
inence of these features, inducing a natural artistic control on the generated result. But
these methods generally fail at reproducing plausible terrains, because of the lack of geo-
logical knowledge embedded in the underlying models. Embedding feature-based control of
simulation parameters could be a solution to take benefit of both methods. We explore this
possibility for the local control of sculpted mountain ranges in Chapter 4, and further research
would leverage the possibilities induced by this combination.

2.2.3 By example

Inspired from texture synthesis techniques, a solution for improving the plausibility of terrains
is to generate them from real data. These by example methods are separated in to too broad
categories, the ones that aim to deform a given topography, and the ones that generate a new
terrain by combining data from multiple sources.

Figure 2.7: Brushes and

strokes used to control example

based terrain synthesis (Gain et

al. 2015).

Terrain deformation approaches use a single DEM,
modified to match the user’s intents. Passos et al. 2013
compute silhouettes of a terrain from different viewpoints,
and try to find the best match between one of these silhou-
ettes and a sketch drawn by the user from a first person
view. Subsequent terrain additions due to new sketches
are blended thanks to a gaussian convolution kernel. An
alternative consists in deforming the example terrain to
match the input sketches. By using the unknown depth of
the silhouette as an optimization variable, Tasse et al. 2014
minimize the amount of deformation needed to reach the
target stroke. In addition, this method uses T-junctions of
the sketch to infer an ordering of the silhouettes. These ap-
proaches generally work well near the user’s original view-
point and where the amount of deformation is small.

Terrain synthesis, inspired by texture synthesis techniques, uses many input data ac-
quired from real terrains, and blend them together to achieve both controllable and plausible
results. Classical patch based texture synthesis is used by Zhou et al. 2007: overlapping
patches of terrains are cut and combined along seams. The placement of patches is guided by
terrain features such as crest lines and valley profiles, which can be edited by the user. The
seams are directed by a graph cut algorithm and hidden by a smoothing procedure. This is

15

Chapter 2. State of the art on landscape modeling

improved by Tasse et al. 2012 who parallelize parts of the algorithm on the GPU and use a
more accurate method for merging seams by assuring a continuity of the gradient. Control
is also improved by adding height information to the user input strokes. Patch-based terrain
synthesis is replaced by a pixel based approach by Gain et al. 2015: terrain pixels are chosen
by comparing their neighborhood with pixels in the input exemplar. Beside improving the
quality of results, this method achieves interactive performances and provides an important
addition in the terrain control tools. Another solution (Guérin, Digne, Peytavie, et al. 2016)
takes advantage of the hierarchical primitive terrain representation to learn and synthesize
specific patterns, enabling application ranging from terrain synthesis to detail enhancements.

Figure 2.8: Terrain gener-

ated by a generative Adverse-

rial Network fed with a simple

user-drawn sketch (Guérin et al.

2017).

Deep learning has also been used to learn the cor-
respondences between terrains and network of ridges or
rivers (Guérin et al. 2017). A Generative Adversarial Net-
work is trained on these features, automatically extracted
from real landscapes, and applied to user drawn curves
representing ridges or rivers. Several additional control el-
ements are added, such as level sets for elevation or altitude
clues. They also propose to learn the results of erosion to
accelerate the application of erosional post process.

These methods show a paradox in the plausibility of
their results. While by-example techniques inherit the local
visual plausibility of the exemplar they are built on, the
physical plausibility is generally lost: terrain features could
still be placed in locations where they could not physically
appear. In particular, using a water flow algorithm to add
water bodies in example-based terrains may fail because of

inconsistencies in river flow directions. This specific issue is solved thanks to our simulations,
but we lose some of the detailed visual accuracy captured from real data by using example
based techniques. An interesting junction between both approaches would be learn simulation
parameters. A second issue prevents these methods to be applied in more complex sceneries
where multiple geological layers must be synthesized (for example to render sedimentary fold
lines as explained in Chapter 4): whereas real terrain elevations are available on the whole
Earth at a 30m sampling, such data is less accessible for stratigraphic information or specific
landscape data (plants, rocks, etc.).

2.2.4 Methods from artificial intelligence

Some authors inspired from techniques commonly used in artificial intelligence to generate
terrains. For example, genetic algorithms are used to combine terrain features while both
preserving the user’s intent and gameplay considerations such as accessibility (Frade et al.
2010). This method does not focus on plausibility but provides original control tools and
automatically produce various yet similar outputs. Doran et al. 2010 use software agents,
each of them with a particular purpose: shaping mountains, hills or coastline. These agents
randomly walk on the terrain and shape specific features based on the neighboring terrain
geometry. A focus is made on the control parameters of these agents, as well as on the variety
of landform they are able to produce. We use a similar idea in our stochastic framework pre-

16

2.3. Simulation of terrain evolution

sented in Chapter 6, although we also provide more guaranties on plausibility by specifically
considering geological and ecosystem related phenomena.

2.3 Simulation of terrain evolution

Simulation-based approaches model the temporal evolution of the terrain subject to geomor-
phological agents, in many cases by solving systems of partial derivative equations. The
goal is generally to improve the plausibility of existing terrains, although some techniques
aim at creating terrains from scratch. This subject has been extensively studied in Geology,
although not with the same goal: the physical accuracy is of critical importance when consid-
ering measurable spatial and temporal patterns, although visual plausibility and control are
generally less considered. A large range of scales is encompassed in geological simulations,
from microscopic chemical processes to earth-wide tectonics. It is well known that mountain
ranges are formed from the compression of tectonic plates, moved by the convective process
of fluid rocks inside Earth mantle (McClay 1992), which inspired our work in Chapter 4. The
induced uplift, or mountain elevation rate, is combined with erosion laws, leading to present
day valleys profile and mountains distribution (Tucker et al. 2010). We specifically consid-
ered fluvial erosion in Chapter 3, modeled with the widely adopted Stream Power Law (Lague
2014a), and we addressed the issue of glacial erosion (Montgomery 2002) in Chapter 5. More
information on the geological foundations will be given in each chapters.

In the following, we describe simulation techniques used in Computer Graphics. Note that
no method in this field has achieved to model the effects of glacial erosion, although leading
to extremely preeminent features on the majority of high mountain ranges. We tackle this
issue and propose a new efficient method for glacial erosion in Chapter 5.

2.3.1 Small scale features

Figure 2.9: A goblin,

generated by spheroidal

weathering (Beardall et

al. 2007).

Although the research in this thesis targets large scale sceneries,
reviewing simulation methods specifically designed for small scale
features (from a few meters to a few centimeters) is still important,
for three reasons. First, the underlying simulations schemes can be
shared between different ranges of scales, because of fundamental
similarities in the nature of the physical processes involved and the
representation of the data. Second, large scale simulation generally
averages the effects of smaller one, an observation that could result
in a validation mechanism. Third, several small scale phenomena
have a strong impact on larger setting. In particular, phenomena
at different scales could be interleaved as we propose for temporal
scales in Chapters 6 and 7, or parameters of phenomena acting
at a large spatial extent could be derived from finer simulations.
Furthermore, when generating a close view of a large landscape,
small features becomes visible, which augment the needed range of
scales needed by a complete simulation.

Weathering is the first stage of erosion. It is widely used in
Computer Graphics (Mérillou et al. 2008) to enhance the plausi-
bility of any aging 3D model. This has been applied to stone by

17

Chapter 2. State of the art on landscape modeling

considering a slab data structure: a small volumetric region around a surface (Dorsey et al.
1999). Flow of moisture, dissolution, transport and deposition are considered in this region.
Interestingly, this erosion method is similar to larger-scale hydraulic erosion. Although ad-
dressing the weathering of statues, this technique is quite general and a similar idea is used
to compute volumetric goblins by spherical weathering (Beardall et al. 2007): starting from
a pile of rock layers with various resistance to erosion, the algorithm places a bubble at the
location of voxels in contact with the air and erodes them in function of the amount of air in
the bubble. Different results are obtained by varying the initial shape of the eroded column
and of the erosion bubble. Erosion and corrosion where further simulated by Wojtan et al.
2007 at the junction between solid objects modeled thanks to level sets and a particle-based
fluid. Erosion is modeled by considering the shear stress at the solid-fluid interface, and the
eroded sediments are progressively deposited along the path of the fluid. Hydraulic erosion
and spherical weathering are both considered by Tychonievich et al. 2010 who used a volu-
metric data structure to store the terrain: a Delaunay deformable mesh, resulting in small
scale yet plausible eroded terrains.

2.3.2 Hydraulic erosion

Several methods argue that the most preeminent landform features result from the action of
water on the terrain, especially on steep ranges under temperate climatic conditions. Hy-
draulic erosion results in deep channels joining in dendritic patterns, and is widely used to
improve the visual plausibility of virtual mountains. Furthermore, it is generally linked with
a simulation of water flow, that can be used to automatically generate consistent water bodies
on top of the generated terrain. Several erosive forces are considered, from chemical dissolu-
tion which depends on the amount of infiltrated water, to mechanical abrasion often modeled
as a function of the height of running water, sometimes dampened by the load of suspended
sediment.

An Eulerian representation for a flow field is a representation where the flow quantities
are sampled at fixed locations. It is usually preferred, because the sampling can follow the
same discretization as the altitude value of the terrain. Musgrave et al. 1989 introduce the
concept of hydraulic erosion, applied to fractal terrains generated by a fractional Brownian
method. In their erosion model, erosion happens in function of the amount of water, creating
suspended sediments. The excess of water is propagated toward neighboring cells carrying
the sediments which are progressively deposited. Alternatively, water flow can be computed
thanks to hydrology networks, for example obtained with a midpoint displacement method
by Nagashima 1998, on top of which the erosion and deposition processes are simulated.
Subsequent works introduce more accurate physics to enhance the plausibility of the water
motion, by using shallow water simulations (Beneš et al. 2002) or Navier-Stokers equations
on a 3D voxel grid (Benes et al. 2006). The visual accuracy of these methods benefits from
the physicality of the underlying simulations, but the choice of a regular grid as a support for
the simulation sometimes comes with visible artifacts, which we reduce by using a Triangular
Irregular Network in Chapter 3.

18

2.3. Simulation of terrain evolution

Figure 2.10: Hydraulic erosion

by a river, using Smoothed Par-

ticles Hydrodynamics (Krǐstof et

al. 2009).

A lagrangian representation conserves the flow prop-
erties along the trajectory of flow particles. Chiba et al.
1998 assumes that the amount of erosion depends on the
speed of the water particles, which are physically modeled
with no interactions between particles. Advances in fluid
simulation has been incorporated by Krǐstof et al. 2009,
considering Smoothed Particle Hydrodynamics (SPH) for
water flow and shear stress based erosion. The terrain itself
has also been considered with particles of granular mate-
rial Hudák et al. 2011, where more precise water-soil in-
teractions such as the proportion of water absorbed drives
the simulation of mass movement erosion events. SPH are
also used to model the formation of meanders due to al-
luvial deposition (Kurowski 2012), controlled through an exaggerated Coriolis force. The
main advantage of Lagrangian over Eulerian representation lies in the extended plausibility
of the result, because the fluid simulation is not constrained by a regular grid, that often
leads to directional artifacts. Conversely, these methods require more computational time for
neighborhood lookup needed by particles-particles and terrain-particles interactions.

Erosion control and efficiency have for long been the stumbling point of erosion tech-
niques. Some methods try to reduce the cost of the physical simulation while conserving
its validity (Benes 2007; Neidhold et al. 2005), while several authors use parallel and GPU
implementations (Beneš et al. 2001; Jákó et al. 2011; Mei et al. 2007). This allows the
introduction of erosion brushes (Št’ava et al. 2008) or strokes (Vanek et al. 2011). These
tools are powerful for setting the erosion parameters, this is why we use as similar control
methodology in Chapters 3, 6 and 7.

We see a common drawback of erosion methods in the targeted scale. They are very
efficient at modeling terrains at small to medium scale, when water flow algorithms are valid.
When targeting larger scale applications, the width of rivers is often below the size of a
discrete grid cell. This is why we consider an integrated drainage information in Chapter 3
in a new fluvial erosion technique.

2.3.3 Thermal erosion

Another main erosional feature comes from the combination of rock weathering and gravity
driven landslide events, generally called thermal erosion in Computer Graphics, because of
the weathering power of the abrupt day-night changes of temperature in high altitudes.

Thermal erosion is inseparable from hydraulic erosion, because it reduces the high slopes
generated by the water induced carving of deep and thin trenches. This have been observed
since the early introduction of both hydraulic and thermal erosion by Musgrave et al. 1989.
Thermal erosion is often approximated at large scale by removing rocks above a given critical
slope (from the assumption that mountains are made of granular materials). Broken rocks
are shifted and deposited in the neighboring cells. Different critical slopes can be given to
bedrock and eroded materials, as simulated by Benes et al. 2001 while using the first layered
model for terrain erosion. Several landforms are explained mainly by this process, as table
mountains (Beneš et al. 2005) where hydrology has less importance. Several approaches also

19

Chapter 2. State of the art on landscape modeling

try to model rock erosion with more precision, for example by considering blocks of rocks
virtually separated by directional faults (Ito et al. 2003). The simulation consists in removing
joints between blocks chosen by considering gravity forces, resulting in more plausible rock
cliffs.

We extensively use thermal erosion to model small landslide effects, and we improve it
on Chapter 5 by incorporating the erosive contribution of the falling rocks themselves when
they impact the ground, a process called debris flow erosion. We also mention an efficient
implementation of hill slope erosion, which models weathering effects thanks to a diffusion
equation.

2.3.4 Geologically based simulation

Although many studies root themselves in technique from fluid mechanics, this is less the
case when considering geomorphological laws. An early work from Roudier et al. 1993 tries
to follow this direction. Although the general idea is quite similar to classical Eulerian
hydraulic erosion, they propose two important modifications. First, they integrate the amount
of rainwater to compute the abrasive runoff, which is common in geology to model the shear
stress applied by water on the ground on large spatial and temporal scale. We use this
idea in our fluvial erosion model (Chapter) 3), where we call the outcome of this integration
the drainage area. They also use several other geological processes: alluvial deposition,
gravity creep or rock dissolution, characterized by parameters dependent on the rock type in
a volumetric representation. We automatize the formation of folded rock layers with varying
rock competence in Chapter 4.

2.3.5 Plate tectonics

Although responsible for the formation of the vast majority of mountain ranges, plate tec-
tonics have only been used by Michel et al. 2015 to generate a procedural terrain from a 2D
vector map of mountain summits. There, the terrain is divided into tectonic plates by using
Voronoi-based tessellation and an image processing method is used to generate simple multi-
scale folds along plate borders, without taking any layered earth-crust model into account.
In contrast, in Chapter 4, we introduce the first 3D interactive simulation of plate tectonics,
thanks to a deformable approach that couples a viscous model with multi-scale folding of
multi-layered rocks. Our model provides a more accurate simulation of plate collision and
folding processes.

The simulation of terrain formation has been widely studied because of the implied visual
plausibility and physical consistency. It has mainly been used as a post-process to improve
the realism of handcrafted or noise-based mountains. Hydraulic erosion is generally preferred
for the induced very specific dendritic features, and is combined with thermal erosion that
soften the slopes. The main drawback of simulations is generally the lack of control, and in
particular the impossibility of authoring features that cannot be explained by the underlying
equations. In the first part of this thesis, we extend on these methods by providing more
geological foundations, which enable the fast creation of complete mountain ranges. We also
use geological knowledge on plate tectonics to propose new control tools.

20

2.4. Ecosystems

2.4 Ecosystems

Inspired from Botanic and Ecology, several methods aim at representing vegetation at differ-
ent level of details. Although we give a slight overview of the modeling of individual plant
geometry, our focus is on the generation of large scale ecosystems, either through simulation
or statistical synthesis. More information on vegetation synthesis can be found on the book
of Deussen et al. 2006.

2.4.1 Modeling individual plants

Even when targeting large scale landscapes, the precise modeling of individual plants can
have some benefit for visualization and rendering, or because the deep interaction between
the finest details of the plant and surrounding context may have some important visual effects
in the overall landscape.

Figure 2.11: Diamant

plant interactively cre-

ated from artist sketch

and feature knowl-

edge (Prusinkiewicz

et al. 2001).

Early work (Bloomenthal 1985) proposes simple models for
modeling plants with generalized cylinders to model trunk and
branches. The distributions of branches follows simple stochastic
patterns, which have latter been extended to give a generic algorith-
mic definition trough L-systems (Lindenmayer 1968; Prusinkiewicz
et al. 2012), a formalism that allows simple formulations of a large
variety of branching systems.

Several methods specifically target the design of plants.
Prusinkiewicz et al. 2001 use artist-sketched silhouette coupled with
botanical knowledge to enable the creation of realistic plants. Al-
though mainly controllable through sketches, some expert knowl-
edge is needed for more advanced operations, such as the definition
of a new specie. This is the cost for achieving a large variety of
extremely plausible vegetation instances. A similar idea is used
by Wither et al. 2009 where the silhouette of a plant is sketched
from coarse to fine, first giving the overall geometry and progres-
sively refining the details of branches and leaves. This control tool
allows for an intuitive, fast and expressive authoring of the plant,
but gives less guaranties to the plausibility of the generated re-
sult. Another point of view is followed by Benes et al. 2009, in an
approach where the simulation of growing plants is contained by
a user-specified 3D envelop. As with many controlled simulation
techniques, the plausibility is balanced with a limited control, here
on the overall geometry of the plant.

One advantage observed when modeling each plant instance is
the ability to adapt the result to the surrounding environment. Měch et al. 1996 extend the
L-system formalism to incorporate bi-directional exchanges with the environment into a new
framework called open L-systems. Soler et al. 2001 accurately simulate the radiant energy
transfer in a model where plants compete both for space and for light. A recent work (Hädrich
et al. 2017) uses simulation on the GPU to interactively grow climbing plants. The realism
of the results is increased by the synergy with the environment and the GPU implementation
enable an interactive feedback from user inputs.

21

Chapter 2. State of the art on landscape modeling

Overall, these methods aim at precisely modeling of a handful of plants, and applying
them to large scale landscapes would result in an extremely realistic vista. Unfortunately, it
would require enormous amounts of generation time, often wasted because the user will never
see the details of the majority of the plants in dense ecosystems. An original approach is
proposed by Bornhofen et al. 2009, who show synergies between plant growth and landscape
scale forest modeling. Plants grow and evolve with respect to environmental and competition
conditions, and ecosystems are generated with the new plants parameters. This approach
allows to generalize ecosystem generation to weakly documented species or virtual settings.
In the following, we will consider a more classical approach to build large scale ecosystems,
where the plants are abstracted behind a density map or a list of their positions. In particular,
we will first see how this approach is rooted in specialized literature.

2.4.2 Methods from Ecology

A large amount of ecosystem simulations in Computer Graphics is rooted into experiments
from Ecology and Botanic. An extensive survey on specialized ecosystem modeling would be
out of the scope of this thesis. Therefore, we propose only some examples of the different
research directions pursued in these fields. More details can be found in (Shifley et al. 2017,
focused on forest dynamics) and (Wullschleger et al. 2014, about Plant Functional Types
formalism).

Due to the strong interactions between large scale vegetation coverage and climate change,
many work use Eulerian simulations to understand the response of forests after changes
in climatic conditions. For example, an early work from Prentice et al. 1993 takes into
account many characteristics of different species, such as limiting seasonal temperatures,
foliage assimilation or swapwood transpiration, in function of environmental conditions, such
as temperature, moisture or CO2 levels to phenomenologically grow the vegetation. A single
tree is modeled per grid cell, and competes with its neighbors for light and resources. This
simple representation allows to simulate large landscapes during centuries, and to have a
broad idea of the impact of climatic changes on ecosystems.

Large scale Dynamic Global Vegetation Models extend this approach to Earth sized land-
scapes. Foley et al. 1996 discretizes the planet into 2◦ (∼ 200 km) cells and use a multi-level
method to simulate the ecosystem behavior. Environmental conditions (water, carbon, en-
ergy) are simulated on an hourly basis, and the result is integrated other a year, as an input
for a global ecosystem simulation. A synthesis of different kind of Dynamic Global Vegeta-
tion Models is shown by Sitch et al. 2008, which compares their predictions after dramatic
changes in climate to show the possible outcomes and their uncertainty. As an exception in
this range of methods, Sato et al. 2007 do not use an Eulerian simulation but instead propose
to model precisely plant position and geometry to more accurately capture light competition
in 30× 30 m areas. These areas are grouped in larger regular grid to reach the global scale.

When lower scales are considered, it is common in ecology to use statistics based on field
observations to accuracy sample plants. Law et al. 2009 explore different measures applied to
spatial points theory to compute a plant distribution from various observations in field work.
This distribution is used to extract important ecological information. A possible outcome
in Computer Graphics is the automatic synthesis of similar landscapes through computed
plants distribution. This will be further discussed in Section 2.4.4.

These methods specifically target large scale ecosystems. Their purpose is to provide

22

2.4. Ecosystems

a high biological plausibility and are validated by comparing biomass evolution with real
world-data. However, it is not straightforward to apply them in Computer Graphics because
of their induced complexity which precludes user control and artistic beautification.

2.4.3 Lagrangian simulation

Since the early days of virtual ecosystems, a Lagrangian trend has been preferred, where
each plant is represented by a particle. By using a simulation approach, the plants are seeded
at random locations, propagate, compete for resources, and eventually die. The simulations
also account for external resources (temperature, sun, moisture, slope, wind, etc.) and for
biological models for plant growth and competitions.

Figure 2.12: Asymmetric com-

petition prevent small species to

grow under larger ones (Alsweis

et al. 2005).

A seminal work by Deussen et al. 1998 introduced this
Lagrangian representation for plants in Computer Graph-
ics. This simulation method takes as input a user painted
density map or randomly seeds the plants. The competi-
tion is only considered for space, in an approach called
self-thinning where collisions between plants slow down
the growth and smaller plants die. Vigorous plants scat-
ter new seeds, which are positioned thanks to an open
L-system formulation. A similar simulation approach is
used by Lane et al. 2002, with an emphasis on the com-
bination of simulation at different scales (multilevel com-
munities) in particular, an extension is proposed to the
L-systems methodology, called multi-set L-systems, which
is applied to a set of strings representing multiple trees.
This work also investigates the generation of tree samples
from density map (see below). Asymmetric competition,
where larger plants steal resources from weaker ones, is in-
troduced by Alsweis et al. 2005. The plants grow in accordance to the disposable amount of
resource from a user given map. Both symmetric and asymmetric competitions are considered
based on a simple radial interaction (resources are shared in the overlapping area of disks
representing the extent of the plants). This single resource map is extended by Ch’Ng 2011
to handle variations in soil, monthly sunlight and temperature, with extremal conditions for
these variables, out of which the plant cannot survive. This is the strategy adopted by Gain
et al. 2017, who use four extremal variables for the fitness to environmental conditions: the
extremes at which the plant dies, and inner values surrounding the optimal conditions.

Control is provided only through resource maps and competition parameters, which makes
the precise definition of the user’s intent a hard task. Recent work (Bradbury et al. 2015)
tried to alleviate this issue by providing higher level controls such as copy paste, typify or
density change. Conditions are automatically updated to account for the user’s instructions,
and the simulation is continued to eventually reach a consistent state closer to the artistic
intent.

It must be noted that very few methods incorporate human intervention in the develop-
ment of ecosystems. Virtual agents have been considered to improve user control thanks to
a set of habits (Benes et al. 2003), continuous functions that define the per-species behavior
that an agent must follow when stochastically walking in the virtual environment. Another

23

Chapter 2. State of the art on landscape modeling

work considered ecosystems in urban environments, where previous simulations are used in
wild regions and procedural rules guides plants gardening in urban areas.

The plausibility of such simulations is generally balanced by their complexity, which
makes large scales ecosystems hard to generate. We do not adopt these approaches in our
landscape generation model. We preferred data structures more easily pluggable with classical
terrain representations, because we focus on the interactions between the different landscape
elements. In the following, we will see how statistical methods can help to generate large
scale ecosystems.

2.4.4 Statistical synthesis

Larger scale scenes can be populated thanks to the synthesis of statistical distribution. Rather
than simulating the progressive growth of plants with all the implied interactions and natural
pruning, these methods aims at generating an instant landscape from statistical knowledge of
the distributions of plant properties (mainly position and size) for different species, depending
on environmental conditions and neighboring vegetation.

Simple techniques are proposed by Deussen et al. 1998, who use half toning on a density
image as a starting condition for a Lagrangian simulation (see above), or Andújar et al.
2014 who use dart throwing techniques to prevent trees from being sampled below a critical
distance to their neighbors.

Figure 2.13: Result of condition

dependent disk based vegetation

synthesis on Grand Canyon (Gain et

al. 2017).

More control on the per species interactions is pro-
posed by Lane et al. 2002, where the plants are pro-
gressively sampled on a probability map. Each new
plant updates the map thanks to a deformation ker-
nel, which can have different formulation depending of
the plant type. The kernel can, for example, reduce
or augment the seeding probability of another plant
being seeded depending on its distance. A typical ker-
nel would reduce the probability near a sampled plant,
while increasing it in a small ring at a given radius.
This kernel favors groves or clumps of vegetation.

Wang tiles are aperiodic tiles with a colored bor-
der, such that a tiling is made by associating tiles with
the same border color. Alsweis et al. 2006 fills them

randomly by using a Field-of-Neighbourhood plant distribution model, where each plant in-
fluences its neighboring region. Several versions of a tile are given to match different resource
level, which enable the tiling to generate areas with different densities according to the user’s
intent.

Statistical synthesis is efficient at quickly populating large scale landscapes, at the cost
of a reduced plausibility and hard user control. We can think of two solutions for improving
both. A first approach is proposed by Gain et al. 20171, built on previous simulations meth-
ods to compute accurate simulations on 100× 100 m sandboxes with various environmental
conditions (sun, moisture, slope, temperature). Statistical point process (Emilien, Vimont, et

1While I co-authored this work, it will not be presented on the contribution part of this manuscript; it is
therefore summarized here.

24

2.5. Snow

al. 2015; Hurtut et al. 2009) are extended to handle interactions between the canopy and the
roots of the different plants and is used to analyze the result of these simulations and deduce
conditions dependent distributions. Plants are then synthesized on large 10× 10 km terrains
depending on local conditions. Control is proposed by interactively exploring the space of
conditions, leading to high level brushes similar to the one proposed by Bradbury et al. 2015,
while providing instant feedback. First, complex coarse simulation can be held on discrete
grids, and the results of the simulation are forwarded as input to synthesis techniques, which
compute the actual tree placement. We will follow this lead in Chapter 6.

in summary, ecosystem modeling has been explored in Computer Graphics for decades,
leading to the development of two main trends: the simulation of competing plants in a La-
grangian representation, and the synthesis of statistical distributions. The choice between
both mainly depends on the targeted scale: simulation based methods generally capture more
realistic vistas at the cost of a reduced scale. Filing the gap between the two approaches, we
prefer a coarse simulation on a regular grid, used as the input of a statistical synthesis. Fur-
thermore, except for rare methods that will be detailed in Section 2.6, ecosystem simulation
does not take into account other natural processes such as rock falls. We propose to extend
the plausibility of the generated scenes by considering how ecosystems interact with erosional
processes in Chapter 6. In the next section, we will climb to higher altitudes to find another
important feature of mountain ranges: the snow cover.

2.5 Snow

Figure 2.14: Stanford

Bunny covered with a sim-

ulation wind blown snow

and accumulated thanks to

a level set approach (Hinks

et al. 2009).

Snow is a major element on high mountains. Accurately model-
ing snow distribution greatly improves the temporal variability
of a landscape between seasons, as well as the spatial variability
of the winter sceneries. Indeed, although snow can be perceived
as a binary mask, the presence of snow is driven by competing
physical phenomena such as heat transfer, mass movements or
wind effects on a steep topography.

Existing methods for the modeling of snow cover fall into
three broad categories: particle-based, physically-based heat
transfer, and procedural surface displacement.

2.5.1 Lagrangian snow simulation

Many works discretize the snow into particles and simulate their
temporal evolution subject to wind and scene geometry. Early
work (Nishita et al. 1997) proposed to consider snow as skeletal
points (blobs). The induced implicit surface defines a smooth
upper boundary for snow cover. A probabilistic snow cover is
introduced by Fearing 2000 who samples snow elements on the surfaces, and compute inverse
trajectories to the source clouds. Particle likelihood is obtained by accounting for collision,
and the snow surface is generated using importance sampling. A final stabilization step
is performed to account for a natural angle of repose for the snow, by simulating micro
avalanches. This approach has been later extended by considering a 3D fluid simulation of

25

Chapter 2. State of the art on landscape modeling

the wind, which transports and deposits snow elements to eventually form snowdrifts and
depressions.

Wind is a major factor for the buildup of the snow cover and has been considered by
many modeling strategies. Early work use cellular automata-based approximations Masselot
et al. 1995. Latter studies (Moeslund et al. 2005) simplify the Navier-Stokes equations (in-
compressible Euler equations) on a 3D regular grid (voxels) to compute the wind speed field,
responsible for the advection of snow particles. Wind and gravity also move snow in the work
from Wang et al. 2006, who chose to model snow by following the Boltzmann law of statistical
physics. A probability distribution of wind speed is stored in a voxel grid where this equation
is solved, and instantiated to model the actual wind field. A parallelization of the simplified
Navier-Stokes equations is proposed by Saltvik et al. 2007 to achieve real-time feedback on
large scenes, and a level set approach (Hinks et al. 2009) improves the plausibility of the
accumulation patterns.

Material Points Methods (MPM) have been introduced to Computer Graphics by Stom-
akhin et al. 2013 to simulate snow dynamics. Snow particles are represented in a classical
Lagrangian way, accompanied by a static Eulerian implicitly handling of fractures and self-
collisions. The complexity of snow rheology is handled thanks to an elasto-plastic model.

There are also benefits in a hybrid treatment of snow that separate static structure from
dynamic elements implemented with particles. Sai-Keung et al. 2015 use voxels and spring-
connected particles, while Dagenais et al. 2016 use an heightfield and two type of snow
particles: dense snow modeled as granular materials, and volatile snow mist simulated as an
incompressible fluid. This representation allows for rigid objects to interact with the snow.

Particle based methods achieve astonishing plausibility, but are limited to small scale
scenes with an upper limit of about 100 × 100m. They also follow the curse of simulation
methods, where user control is limited to the setting of external conditions and scene geom-
etry, and to the complex and time consuming tuning of parameters.

2.5.2 Physically-based Eulerian heat transfer

Figure 2.15: A partially frozen

lake obtained with voxel-based heat

transfer (Maréchal et al. 2010).

Physical phenomena such as phase change and heat
transfer are of paramount importance when considering
snow on longer term seasonal periods. Vortex driven
snow falls (Muraoka et al. 2000) build a snow layer on
small scenes. Sun and thermal radiations are accounted
for in a heat transfer simulation responsible to the ir-
regular melting of snow. Different thermal behaviors
are observed depending on the flake type, itself built in
function of the different possible environmental condi-
tions.

Maréchal et al. 2010 go further by simulating snow-
fall altogether with conductive, convective and radia-
tive thermal transfers using a finite volume method over
a voxel grid. This accounts for the complexity of phase

changes where snow melts to become water or water freezes into ice, as well as a variety of
environmental conditions such as cloud cover, day night cycles or variations of air tempera-
ture.

26

2.5. Snow

The simulation of heat transfer increases the realism of dynamic landscapes, but comes
at a high computational cost, since it requires to solve complex radiative transfer equations
on a memory-heavy volumetric representation of the scene. Therefore, only small scenes are
considered and user control is weakened. In Chapter 7, we also consider this dependence of
snow cover upon radiative transfer and state change, and we extend it to larger scale sceneries
thanks to a planar layered representation.

2.5.3 Procedural surface displacement

Other phenomenological approaches achieve a faster generation of the snow cover by applying
a small offset on top of the surface of objects. Shadow buffer techniques are used to build
a snow map probability on complex objects (Tokoi 2006). The implied distribution is used
to progressively offset the snow cover, which undergoes small displacements to model lateral
snow stabilization. A similar method is proposed by Reynolds et al. 2015 who use accumula-
tion buffers on dynamic scenes. Height span maps are used to convert complex geometry onto
vertically stacked layers(Festenberg et al. 2009): surfaces are classified as air-solid transition
if their normals point toward the sky direction, or as solid-air transition otherwise. The snow
cover evolves interactively on the air-solid layers based on statistical considerations, later
improved with a diffusion process (Festenberg et al. 2011).

These methods are targeted at small scale sceneries, and few approaches consider large
scales terrains. In an attempt to model mountain sceneries from aerial images, Premože et al.
1999 proposed a simple model of snow cover taking into account temperature varying with
altitude, sun occlusion and vegetation. Lighting considerations are improved by a model
from (Foldes et al. 2007), where snow is dissipated thanks to combinations of ambient oc-
clusion and direct sunlight. Wind can be approximated by using a pre-computed Radiance
Transfer scheme to back up the effects of directional wind on the scene geometry and induce
the snow cover (Moriya et al. 2010).

Only a few methods focused on improving the direct generation of the surface of the snow
cover, and approaches targeting the extent of a whole landscape are limited either by a small
targeted scale, either by the small number of snow related phenomena. Furthermore, they
do not take into account large scale dynamic effects such as avalanches.

2.5.4 Avalanches

Figure 2.16: A slab snow

avalanche modeled with Mate-

rial Points Method parametrized

with field observation (Gaume et

al. 2018).

While some models exist in the specialized literature to
explain snow motion in avalanches, for example by simu-
lating powder-snow in 2D vertical cuts (Étienne et al. 2004;
Rastello et al. 2004), this problem has been weakly studied
in Computer Graphics. Tsuda et al. 2010 propose one of
the very few methods for simulating avalanches. The au-
thors particularly target mixed-motion avalanches, made
from an upper powdery suspension layer and a lower dense-
flow layer which behaves similarly to fluids. The upper
layer is modeled on a density grid, while the lower one is
handled by particles. A third layer corresponding to the
snow cover (called accumulated snow layer in the paper) is

27

Chapter 2. State of the art on landscape modeling

also modeled with particles. Both these three layers interact with each other, capturing the
complex behavior of avalanche motion.

In a recent work, Gaume et al. 2018 use the Material Points Method previously considered
for simulating snow (Stomakhin et al. 2013). The plastic behavior of snow is parameterized
thanks to field observations, especially the stress threshold above which the snow fractures,
they are able to model slab snow avalanches formed by the rupture of a weak snow layer
below a strong one. Their method does not only provide a strong advance in the physical
modeling avalanches, which is an important step towards the difficult prediction of slab snow
avalanches, it also results in a visually interesting simulation of avalanches that could be used
by the Graphics industry.

These methods strongly rely on simulations, which relegates them to narrow scale scener-
ies. We propose a simpler avalanche model in Chapter 7, enabling the simulation of avalanches
on large terrains. Therefore, our avalanche model benefits from the computation of a sta-
bility map, jointly evolving with the snow cover throughout the season. The stability map
influences both the starting probability of an avalanche and the amount of snow it can carry
away. In the next section, we will consider methods that go deeper in the modeling of the
interactions between the different aspects of a landscapes.

2.6 Full landscape authoring

Figure 2.17: Distributions of

trees, rocks and grass are learned

from a user specified example

and adapt to the terrain slopes.

(Worldbrush Emilien, Vimont,

et al. 2015).

Only a handful of techniques consider several aspects of
a landscape together in an unified modeling framework.
Capturing the interactions between these aspects allows
an improved plausibility as well as an easier control, be-
cause it reduces the needs for back and forth iterations
between the different layers of a landscape: a modification
that happens on one layer, e.g., the vegetation, can have
cascading influence on the other layers, e.g., terrain, rocks,
snow, etc.

The interactions between water bodies such as rivers,
waterfalls or lakes, and the underlying terrain where ac-
counted for in the work of Emilien, Poulin, et al. 2015.
The user paints the trajectories of rivers with different
tools for each of the considered water body. The river
network is computed automatically by following hydrolog-
ical knowledge and the terrain is locally adapted to ensure
the physical consistency of the water flow.

Emilien, Vimont, et al. 2015 use statistical analysis to
train brushes that holds stochastic distributions of features, such as trees, rocks, houses and
roads in a set of user specified palettes. Statistics can be correlated to wider scale phenomena
such as the local slope of the terrain, proximity to a river, etc. Several tools inspired from
painting software are proposed to edit a target landscape. In particular, distribution can
be painted and regions deformed, the underlying objects are updated while preserving the
statistical distribution thanks to histograms of pairwise interactions. A histogram is computed
for each pair of types of object and embeds the distribution of distances between objects. This

28

2.7. Conclusion

method enhances user control of both 2D artwork maps and 3D virtual worlds (taking into
account terrain surface), with a method able to shape large scale landscapes. A limitation
lies in the lack of plausibility constraints: the distributions are learned from user painted
maps, and the plausibility of the results is only ensured by the artistic skills of the user.

Another example-based method (Argudo et al. 2017) targets large scale sceneries by stor-
ing detailed real landscapes features in a dictionary. A high resolution landscape including
detailed terrain features and vegetation is then synthesized on top of a coarse terrain rep-
resentation. By including multiple layers of slope, sun exposure and water drainage, this
method enables the user controlled generation of landscapes on multiple biomes, such as var-
ious forests, deserts and mountains. The by-example approach results in strong local visual
plausibility, but in a weaker global physical consistency, in particular where the river networks
are considered. Furthermore, this approach needs to be coupled with some efficient methods
to generate the coarse terrain.

In a more recent work,Grosbellet et al. 2016 provide a general architecture for detailing
small but complex scenes, by allowing objects in the environment (such as lampposts, trees,
and fountains) to affect scalar parameter fields (such as temperature, fallen-leaf density and
humidity), which ultimately dictate the decoration of the objects themselves with snow, ice
and fallen leaves. The use of procedural laws for the hierarchical interactions between the
scene objects and the environment eases user control thanks to local environment parameters
and allows near interactive performance. The decoration of small scales sceneries is also
addressed by Guérin, Galin, et al. 2016, in an approach where small details (leaves, rocks,
dead branches) are instantiated without collision following user painted density fields.

The existing landscape generation methods suffer either from a reduced physical consis-
tency, either from a small targeted scale. The second part of this thesis tackles these issues:
thanks to a 2D planar representation, we are able to focus on larger scales. By simulating the
interleaved phenomena responsible from the shaping of landscapes, we improve both visual
plausibility and physical soundness.

2.7 Conclusion

Landscape generation encompasses a broad range of methods, ranging from the generation
of terrains to the modeling of ecosystems and snow cover, but several directions are yet to
be explored. By tackling the issue of simulating the temporal evolution of landscapes, we
try to improve the plausibility of large scale landscapes while accounting for user control.
In particular, to the best of our knowledge, no previous work in Computer Graphics tried
to model the formation of whole mountain ranges. We build on methods from Geology to
achieve this, by combining tectonically driven uplift (Chapter 4) with fluvial (Chapter 3) and
glacial (Chapter 5) erosion. We also observe that many solutions exist to individually model
the phenomena responsible for landscape features, but few attempts were made to simulate
them jointly. We propose a new method to achieve this interleaved simulation, applied to
the combination of geological effects and vegetation (Chapter 6) and of the different events
involved in the evolution of snow cover (Chapter 7).

29

Part I

Large scale mountain formation

31

Chapter 3
Combining uplift and fluvial erosion

Contents

3.1 Background and overview . 35

3.1.1 Geological background . 35

3.1.2 Algorithm overview . 37

3.2 Stream generation . 38

3.2.1 Stream graph initialization . 38

3.2.2 Stream tree computation . 39

3.2.3 Lake overflow . 39

3.3 Erosion . 43

33

Chapter 3. Combining uplift and fluvial erosion

3.4 Results . 44

3.4.1 Visual realism . 45

3.4.2 Rendering . 45

3.4.3 Performance . 46

3.4.4 Lake overflow . 47

3.4.5 Stream power erosion . 51

3.5 Conclusion . 56

Mountain ranges are major constituents of virtual landscapes. Recent 3D applications
are surrounded by extremely large virtual sceneries, increasing the need for the modeling
of plausible mountains at large scale. This chapter presents the generation of large scale
terrains (at the order of 100 km large ranges). It extends our work on fluvial erosion, an
improvement from a first version published at Eurographics in 2016 (Cordonnier et al. 2016).
While the first version promoted fluvial erosion as one of the major natural processes that
sculpts mountain ranges, we propose a more efficient implementation of geological equations,
enabling for simple, yet effective user control.

Previous work in Computer Graphics mainly considered simulation of hydraulic erosion
as a decoration tool, a post processing steps in a landscape modeling workflow (see Chapter 2,
Section 2.3.2). This process is well recognized for the realism of the induced landform features,
especially the dendritic distribution of channels. In spite of the large amount of research on
the subject, hydraulic erosion has never been used to fully generate mountain ranges. This can
be explained by the complexity of the underlying flow simulations that prevented large time
steps, therefore precluding the use of temporal scales at the extent of mountains formation.
We use a simple integrated formulation of fluvial erosion that alleviates this issue and ables
us to compute the mountain elevation from a flat terrain to a fully grown mountain range.

We observe that erosion processes do not only impact the aspect of the terrain surface,
but are also combined with uprising tectonic forces to deeply carve valleys, resulting in the
shaping of mountain ranges at large scale. These tectonic forces are grouped in a common
phenomenon, called uplift (Beaumont et al. 1992). The role of the interaction between the
uplift and the erosion has been extensively studied in geomorphology and expressed through
different models, such as the stream power law (Whipple et al. 1999). We adapt this theory
to Computer Graphics needs, by providing an easily controllable mechanism that generates
large scale realistic terrains conforming to a global geomorphological process.

Our method specifically simulates the generation of both visually plausible and physically
consistent large scale landform features and patterns. The input to our algorithm is an
uplift map painted by the user that locally defines the speed at which mountains are lifted.
From this input, and a random planar graph covering the region on the map, we iterate
through elevation updates for graph nodes, using the stream power equation to simulate
the interaction between tectonic uplift and fluvial erosion processes. The original implicit
implementation from Braun et al. 2013 is extended to efficiently model water flowing from
lakes. This simulation process produces a stream graph derived from the initial graph. The
graph is augmented with stream directions along edges and elevation information at the
nodes. The graph can either be converted into an elevation map by interpolating the elevation
information between streams for real-time visualization, or converted into a primitive-based
terrain model with a high level of detail embedding riverbeds, ridges and valleys, using a

34

3.1. Background and overview

combination of parameterized terrain primitives introduced by Génevaux et al. 2015 and
automatic terrain amplification (Guérin, Digne, Peytavie, et al. 2016).

Our contributions are:

• A new geologically inspired method for efficient erosion simulation

• A user controlled uplift map that drives the generation of complete, large scale mountain
ranges.

• A new algorithm to compute water path out of topographic depressions (lakes).

This last contribution is an addition to the original article (Cordonnier et al. 2016), and will
be published in a specialized journal.

3.1 Background and overview

Iterations of erosion
and uplift

Vector representation
Stream map,

elevations

Uplift map

Stream tree
creation

Erosion equation
solver

Domain Ω Simulation loop

2U : Ω½ R ! R

Smooth Gaussian
elevation

Procedural feature
based primitives

Large scale model

Figure 3.1: Our algorithm takes the uplift map as input and repeatedly applies stream tree
creation and erosion. The output is encoded in a vector-based representation which is then
converted into a procedural terrain construction tree.

We extend the way hydraulic erosion is modeled in Computer Graphics to capture its
action at large spatial and temporal scales by including fluvial erosion. At such scales, erosion
due to streams cannot be considered without also taking into account mountain development.
This section recalls geological background that provides a basis for the following overview of
our method.

3.1.1 Geological background

Uplift and faults. Terrains result from the combined action of tectonic uplift of the Earth’s
surface and erosion. Collisions between continental plates, as well as subduction of ocean
plates under continental ones, cause the continental crust to shorten and thicken. This
results in the growth of mountains along the main boundaries between plates. Faults and
folds appear in regions where the crust undergoes the highest stress (Willett et al. 1993).

35

Chapter 3. Combining uplift and fluvial erosion

In geology, the term uplift is used to denote the local speed at which a mountain grows.
Because growth occurs between the series of parallel faults, considering the uplift as locally
uniform between these faults is a legitimate approximation. The complex landform features
found in nature are mainly the result of the interaction between the uplift factor and fluvial
erosion, i.e., the action of water forming streams that carve the terrain while it grows.

Fluvial erosion is the erosion of the bedrock material and its transportation downhill
by streams. It is caused by the shear stress exerted by running water and the sediment
it contains onto the bed of a stream. The interaction between the fluvial erosion and the
tectonic uplift has been studied for many years in geology and is often modeled by the stream
power equation Whipple et al. 1999:

∂ h(p)

∂t
= u(p)− k A(p)m s(p)n (3.1)

The stream power equation states that the rate of change of surface topography h(p) at a
position p is controlled by the balance between the surface uplift u(p) and the fluvial erosion,
which is a function of the local slope s(p) and the drainage area A(p). The local slope s(p)
is defined as the surface topographic gradient:

s(p) = ∇h(p).

The constants m and n depend on rock strength, climate, and the topology of river networks.
While the values of those parameters are poorly understood, the ratio m/n is constrained by
the shape of the stream profiles and is thought of being m/n ≈ 0.5 Whipple et al. 1999. As in
most geomorphological studies, we use n = 1 and m = 0.5. Moreover, some geological studies
attempt to tune these parameters by example Croissant et al. 2014 and a recent survey Lague
2014b studies the limit of geological knowledge regarding the parameters of the stream power
equation.

A(p)

p

Figure 3.2: The drainage area

A(p) is defined as the planar region

where streams flow to point p.

The drainage area A(p) is the upstream area drain-
ing through point p, assuming that water flows along
the topographic gradient (Figure 3.2). In our imple-
mentation, the terrain is represented by a geometric
graph G connecting points sampled over the terrain do-
main. The drainage area A(p) is the area associated
to the set of points {q ∈ G} strictly above p such that
there exists one path of strictly increasing height start-
ing form p and ending at q. The factor k is an erosion
constant that depends on many factors, such as lithol-
ogy (the composition of the soil/bedrock), vegetation,
climate, and climate variability.

Note that, when applied at the right temporal and
spatial scales (typically between 105 and 107 years and

a few tens to hundreds of kilometers), the stream power equation does not only model ero-
sion, but also captures the way a complex relief emerges from a supposedly flat part of the
continental crust Howard 1994.

36

3.1. Background and overview

3.1.2 Algorithm overview

Graph G

S
tr

ea
m

 t
re

es

cr
ea

ti
o
n

D
ra

in
a
ge

 a
re

a

sl
o
p
e

ev
a
lu

a
ti

o
n

L
oc

al
 m

in
im

a

co
n
n
ec

ti
on

E
ro

si
on

eq

u
a
ti

o
n
 s

o
lv

er

Domain Ω
Uplift map U

Stream Trees T Modified Trees

New connecting arc
inducing topology change

Ak
sk

Stream Data

Graph with updated elevations hk(t+δt)

Slope
Drainage area

h (t)k

Elevations

Figure 3.3: Overview of the stream power resolution algorithm: given an initial domain
Ω and a random planar graph G over Ω, we build the set of stream trees representing the
drainage structure of Ω and solve the stream power equation to update the elevation hk(t)
from the drainage and the uplift map U .

The input to our algorithm (Figure 3.1) is the uplift map U defining the speed at which
the terrain is elevated by tectonics. We define it as a piece-wise uniform distribution of
values over the domain Ω. It is given by the user through gray-scales images. The output is
a vector-based representation of the terrain resulting from the interaction between the uplift
and the fluvial erosion, and in the case of the final high quality rendering, a set of procedural
feature elements.

Our algorithm proceeds in two main steps: erosion simulation computed on planar graph G
embedding elevation and flow information, called the stream graph, and conversion of this
graph into an elevation model M representing the terrain.

Erosion simulation. Starting from the input domain Ω where the uplift U 6= 0, we initialize
the stream-graph G as a random planar graph defined by triangulating uniformly distributed
terrain sample points pk in Ω. We set the initial elevation of the nodes hk of G to zero. We
then iterate until we get plausible elevation information (or water flow directions) associated
to each node (or arc) of G. This is done by iterating the following steps as long as the system
has not reached steady state (Figure 3.3):

1. A set of oriented stream trees T covering the graph G is extracted according to the
current elevations hk(t) of the nodes to model the direction of running water.

2. The set of stream trees T is augmented by adding new arcs modeling water from lakes
overflowing into streams, yielding a modified stream tree T̃ .

3. The drainage area Ak(t) is computed for every node in the trees T̃ , and the local
slope sk(t) is evaluated from the current elevations hk(t).

4. The stream power equation (3.1) is solved to compute the new elevation values hk(t+δt)
from the uplift map U and the new values of Ak(t) and sk(t).

37

Chapter 3. Combining uplift and fluvial erosion

This iterative process stops when a stabilization criterion is met, i.e., when the changes in
elevation |hk(t + δt) − hk(t)| are below a given threshold. In practice, we observe that the
obtained steady state is often approached in real mountains. This criterion ensure that the
generated terrain embeds a fully growth mountain range. The initial state can be different
from a flat terrain, in which case few iterations with a low time step can also be used as other
previous erosion techniques for improving the plausibility of terrains generated by noise. The
resulting stream graph G has the same topology as the initial graph, but embeds a map of
streams and elevation information for all nodes.

Conversion of the stream graph into a terrain model. We propose two methods for
generating the terrain model as a global elevation function h : Ω ⊂ R2 → R from the stream
graph G. The first, which can be used to visualize the simulation at interactive rates, uses a
simple interpolation scheme to define h from the elevations hk.

The second method targets off-line high-quality rendering and generates a detailed terrain
from the data embedded in the stream graph. This is achieved by combining procedural
function-based primitives representing landform features as described in Génevaux et al.
2015, which enables us to add visual details such as ridges, valleys, and river beds.

3.2 Stream generation

In this section, we describe how the stream graph is generated and how stream trees are
extracted from it (Figure 3.3).

3.2.1 Stream graph initialization

We use a coarse triangulation of the domain Ω to initialize the (undirected) stream graph G.
More precisely, points pk are generated by using a Poisson distribution over Ω and the
edges of the graph are created by computing a constrained Delaunay triangulation of pk,
where constraints are used to fit the borders of the domain. Although our algorithm could
also be applied to a regular grid, the randomized triangular graph generates more plausible
results because the edges of the graph better represent possible directions for local streams.
Moreover, Poisson sampling ensures the coverage of the domain and guarantees a minimum
distance between points. Its association with a Delaunay triangulation provides edges of
quasi-uniform length, enabling us to set the level of detail at which terrain features will be
generated.

In addition to its position pk, each graph node Nk holds an initial height hk = 0, an
uplift value uk = U(pk), and local values derived from the erosion parameters k, m and n.
Note that hk is set constant for nodes lying on the border of the domain Ω. These nodes are
tagged as external nodes and serve as river mouths, i.e., points at the sea level, and are the
outflows of Ω.

Finally, we compute a Voronöı tessellation of Ω and assign an area value ak to the
nodes Nk, defined as the area of the Voronöı cell surrounding Nk. The area ak is used
to evaluate the amount of rain directly received by the node Nk in the computation of the
drainage area (Figure 3.2).

38

3.2. Stream generation

3.2.2 Stream tree computation

Computing a set of (directed) stream trees that cover the graph (the first step of the simulation
loop in Figure 3.3) and updating them at each iteration is the key for efficiently computing
the drainage areas needed for solving in the stream power Equation (3.1).

We define the set of directed stream trees T as follows. For each node Nk, considering
that water only flows from Nk to its neighbor Nl with the steepest downward slope, which
we call the receiver of Nk, we connect Nk to Nl by an arc (a directed edge). Since these
connections cannot create loops, they result in a set of trees that are oriented from leaves
(i.e., the nodes that are not receivers for any other node) to the root nodes (i.e., lakes or
outflows from the Ω). By construction, the set T covers G, in the sense that all the nodes
of G are included, although only a subset of the edges from G is represented by arcs in T .
Note that during the first iteration, when all nodes are of height zero, no arc is created and
each node is initialized by a tree with only a root node.

3.2.3 Lake overflow

The stream trees T cannot be used directly to simulate water flow over Ω because these trees
are not connected, and the water would stop at internal root nodes that represent lakes.

This water routing problem has been studied in Geography and Hydrology (Barnes et al.
2014; Jenson et al. 1988; Lindsay 2016; Zhou et al. 2017), where heightfields are used
to compute drainage networks. Holes appear on the terrain, either coming from natural
depressions, either from the artifacts captured during the acquisition of altitude values (often
by satellite imagery). These holes trap the flow, which yields inconsistent and resolution
dependent drainage. Several methods try to solve the problem by modifying the heightfield
and filling the holes (Depression Filling, Barnes et al. 2014) or carving breaches to allow for
the water to flow out (Depression Carving, Lindsay 2016).

Recent work (Barnes et al. 2014) uses a priority queue to virtually flood the terrain. The
algorithm starts at the boundaries of the domain Ω, and progressively parses the nodes in
the order given by the priority queue, which is filled by the neighbors of the parsed nodes.
When unparsed nodes have lower elevation than parsed ones, a depression is detected and
filled. This method was recently improved by considering less nodes in the priority queue or
with parallel implementation (Barnes 2016; Wei et al. 2018; Zhou et al. 2017), but is still
bounded by a O(n log n) complexity.

Braun et al. 2013 proposed a O(n
√
n) step to achieve correct drainage computation. Al-

though less efficient, this algorithm is straightforward to plug in the stream graph formulation,
as opposed to the state of the art algorithms which need to be applied as an invasive prepro-
cess to the elevations. We built on both approaches and developed a linear time algorithm,
adapted to the stream graph.

This algorithm takes advantage of the fact that the graph formed by connecting all neigh-
boring basins is planar. Computing water outflow can be translated to a minimum spanning
tree problem on this graph, whose planarity allows for a linear time solution.

Abstraction of the lake flows. Lakes are located at the root nodes Nl ∈ T that are not
on the boundary of Ω (local minima). We assign the unique identifier L(Nk) = l to Nl and
to all the nodes nk belonging to the same tree (i.e., in the drainage area of Nl), to represent

39

Chapter 3. Combining uplift and fluvial erosion

water passing through these nodes and flowing to the lake nl. We call this set of nodes a
basin. As the water level rises, some of these upper nodes will be absorbed by the lake before
water overflows.

Our goal is to model overflow between these different lakes down to the river mouths. We
create a directed super graph of lakes GL, where each basin (group of nodes in G with the
same identifier L(N) = l) is represented by a single node named from its identifier l. Extra
nodes are created to represent river mouths (root nodes at the border of Ω) and their stream
tree.

Stream graph G
Lakes graph GL

i

j

Xi

Ni

Xj

Nj

j Ni

i
Nj

i

j

e(i,j)

Figure 3.4: Left: nodes Nk belonging to the stream tree of root Ni (yellow) share the basin
identifier L(Nk) = i. Middle: a pass, defined as the lowest pair (Xi,Xj) connecting two lakes
in G. Right: Lakes are abstracted as nodes of GL, connected by an undirected edge if there
exists a pass between them.

We call a pass the lowest pair (X ,Y) ∈ G of two neighboring nodes X and Y belonging
to different basins L(X) 6= L(Y). Formally, a pass (Ni,Nj) between two basins identified by
l0 and l1 needs the height of its nodes to satisfies: ∀k, l such that L(Xk) = l0 and L(Xl) = l1,
max(hi, hj) ≤ max(hk, hl). This max(hi, hj) is called the pass height. The pass is a connection
between both basins; it corresponds to a saddle point in terms of elevation in the stream
graph G. Basins are connected by adding an arc (L(X), L(Y)) for each pass (X ,Y) as shown
in Figure 3.4. Because it is not yet clear in which direction the water will flow, the arc is
undirected.

Extraction of the lake connections. We solve the problem of flow routing by selecting
and orienting some of the edges in GL. Without loss of generality, we assume the existence of
a single boundary basin (if more exist, they can be connected together with a elevation pass
of altitude −∞).

The key observation is that the water will use a path of minimum energy to flow from
any basin to the boundary. Thus, all the edges followed by the water flow are connected, and
form no loop: these edges can be regrouped in a tree TL covering GL. The potential energy
needed for the water to flow from a basin into another one is proportional to the altitude
value of the pass between both basins. Minimizing the total energy of the system is then

40

3.2. Stream generation

equivalent to finding TL, the minimum spanning tree of GL (Figure 3.5), where the weight of
the edges of GL are the altitude of the associated passes.

Initial bedrock elevation Basins linkage Tree computation

Figure 3.5: Illustration of the water flow resolution on a synthetic case. The initial terrain
is computed thanks to a Voronoi diagram: a set of points at random locations are set to
altitude 0, and the elevation is obtained by locally computing the distance to the nearest
sample point (left). The basins are first segmented and each pair of basins are connected
through a single pass (middle). Then, the minimum spanning tree algorithm is used to select
some of these connections, giving the final flow direction. In the rightmost figure, the basins
undergo a moderate erosion and we show the water level in blue.

Several algorithms exist to find a minimum spanning tree. In (Cordonnier et al. 2016),
we used a modification of Prim’s algorithm, but without properly introducing the minimum
spanning tree formalism. Following Kruskal’s algorithm, it is also possible to order the edges
of GL based on their weight, and parse them thought an Union-Find data structure to select
the branches of the tree by progressively growing connected components.

We note that GL is planar by construction: each basin of GL corresponds to a connected
region of nodes of G, and the edges are dual to the borders between neighboring basins. Mareš
2002 proposes an algorithm to computed minimum spanning trees of planar graphs in linear
time. The idea is that half of the nodes in a planar graph have at most 8 neighbors. Boruvka’s
algorithm is then modified to computed the minimum spanning tree (Algorithm 3.1).

Algorithm 3.1: Minimum Spanning Trees on planar graphs (Mareš 2002).

while There remains nodes in GL do
while There is a basin B that has less than 8 neighbors do

Add the edge with the lowest neighboring pass to TL;
Contract the edge (if the edge links the basins b and c, remove b and append

all remaining neighbors of b to c);

end
Clean the graph: bucket sort all edges lexicographically to remove parallel edges;

end

Note that the obtained tree is undirected, i.e., it shows where the water flows but not the
flow direction. This information can be obtained by rooting the tree: we start at the outflow,
and then parse the tree, progressively setting parsed node as outflows of their unparsed
neighbors.

41

Chapter 3. Combining uplift and fluvial erosion

Stream tree correction. We generate a new version of T , denoted as T̃ , which includes
the pass information from the previous step. Recall that a basin of TL is associated to a local
minimum Ni in G. Moreover, an arc e(i, j) of GL is associated to a pass (Xin,Xout), where
Xout is a node of G in the direction of the outflow of lake i (toward lake j).

The simplest correction that can be applied to T is the addition of a new directed arc
e(Ni,Xout) ∈ G for each arc e(i, j) ∈ GL (Cordonnier et al. 2016, Figure 3.6). Note that extra
care must be taken when Xin is higher than Xout : in that case, Ni is set to flow in Xin and
Xin flow in Xout.

Set of Trees TL

ji
e(i,j)

Stream graph G

(Nj, Xj)

XjXi
NjNi

Figure 3.6: An arc e(i, j) in TL (left) is converted into an arc in T̃ by connecting the bottom
of the lake i (Ni in G) to the pass belonging to lake j (Xj in G).

This simple solution has an important drawback. The water directly jumps from the local
minimum to the pass, which breaks the connectivity of the stream tree. This impacts the
implicit solution of the stream power equation: if a time step of large erosion is applied, only
the pass node is eroded (and the water level decreases), while we would want a succession of
neighbors of the pass nodes to be eroded as the water level decreases. For that, we propose
two other algorithms, one parented to depression carving (Lindsay 2016) and another to
depression filling (Barnes et al. 2014).

The idea behind the depression carving strategy is to force the flow to follow the shortest
path from the local minimum to the pass. The carving metaphor comes from the fact that
applying a large time step of erosion would carve a thin, deep trench at the ouflow of the
lake. This shortest path is already defined by the receivers, but in the reverse order: from the
pass to the bottom of the lake. The correction algorithm requests a parse of the successive
receivers between the pass and the local minimum, progressively reverting the receivers.

The depression filling strategy (Algorithm 3.2) makes the assumption that the depression
is filled by some material. We compute receivers by filling the depression, starting at a pass
and progressively connecting all the unparsed neighbors to the parsed ones, in a breadth
first order, as long as the nodes are below water level (pass altitude). The parsing of the
basins is ordered from sea to crest, to ensure that the water level is accurate. The receiver
of a parsed node is chosen with respect to a cost function, which we define as the minimal
distance between a node and the pass. This choice does not give the perfect ordering that
would be given by an Euclidean distance function with obstacles on a regular grid, but is

42

3.3. Erosion

simple and accurate enough.

Algorithm 3.2: Depression filling.

receiver(Nin) = N out ;
queue.append(Nin) ;
while queue not empty do
N = queue.pop front() ;
cost(receiver(Nin) =∞ ;
foreach neighbors Nnb of N in the basin, such as hNnb

≤ hN do
if Nnb is not in queue then

queue.append(Nnb);
else if Nnb has already been parsed and cost(Nnb) < cost(receiver(N)) then

receiver(N) = nnb;

end

end

In practice, we prefer the filling strategy as the resulting erosion patterns more easily leads
to natural mountain features. The carving strategy would be beneficial in situations where
the flow information below water level needs to be preserved, for instance if the algorithm was
to be improved with sedimentation. The effects of these strategies are shown in Figure 3.12.

3.3 Erosion

This section describes the last two steps of our iterative algorithm: drainage and slope com-
putation, and solving the stream power Equation (3.1).

Area a1
Area a2

Area a0

N1
N2

N0

Figure 3.7: Drainage area of the

leaf node N1 is A1 = a1, where a1
is the area of the cell surrounding

the vertex. For the node N0 of

lower elevation, A0 = a0+A1+A2.

Drainage and slope. Let Nk denote a node of the
graph-covering stream trees T̃ and C(Nk) the set of its
children nodes. The drainage area Ak can be computed
using the recursive formula:

Ak = ak +
∑

xl∈C(Nk)

Al.

To compute Ak efficiently, we perform a breadth first
traversal of the tree, storing each node in parsing order
in a set P . Then we compute the drainage area for each
node of P , parsed in the reverse order, i.e., from leaves
to the root (Figure 3.7). This enables us to compute A
in linear time.

Given a node Xk, we use its receiver Xl stored in T̃
to compute the slope. Let ‖pk − pl‖ denote the distance
between nodes Xk and Xl located at points pk and pl in
the horizontal plane, we have:

s(pk) =
hk − hl
‖pk − pl‖

43

Chapter 3. Combining uplift and fluvial erosion

Solving the stream power equation. The stream power Equation (3.1) can be solved
efficiently by using an implicit scheme. For a node Xi of receiver Xj , it can be rewritten as:

hi(t+ δt)− hi(t)
δt

= ui − kAmi
(
hi(t+ δt)− hj(t+ δt)

‖pi − pj‖

)n

Assuming n = 1 (Section 3.1.1), ans setting K =
δt k Ami
‖pi − pj‖

this equation can be solved as

follows:

hi(t+ dt) =
hi(t) + δt ui +K hj(t+ δt)

1 +K
(3.2)

This scheme requires that hj(t + δt) should be computed before hi(t + δt), which is made
possible by parsing the previously computed trees from root to leaves. Thus, the implicit
solver has an O(n) complexity.

Correction based on thermal erosion. While the simulation of the stream power equa-
tion works efficiently for carving the bottom of the rivers, other phenomena may be predom-
inant in some cases, in particular for low drainage areas. In such cases, the stream erosion
equation produces unrealistic sharp and high peaks.

We correct this effect by using a thermal erosion mechanism (Musgrave et al. 1989).
Thermal erosion embeds the set of processes that causes rocks to break because of the thermal
shocks caused by the infiltrated water and changes in temperature. We take this process into
account by limiting the slopes to a prescribed value (usually 30o).

Stability and Convergence. The implicit solver ensures unconditional stability, enabling
very large time steps. But the maximal value for a time step is bounded by the accuracy of
the solution, because of the changes of connectivity of the stream tree. In practice, values up
to 105 years work fine, for grid containing up to 1, 0002 cells.

We aim to reach topographic steady state, as this results into plausible fully grown moun-
tain ranges. While tracking changes in the topology of the stream graph is an accurate
predictor, we often cut down the number of iterations (in practice to 100−300 steps) because
the system quickly gets in a state visually similar to the steady state. Future work is needed
to study local steady state (in the extent of the valley), as a visual steady state criterion.

3.4 Results

Our system is developed in C++ and uses OpenGL and GLSL for rendering. High quality
image output were directly streamed to Vue 2015 R© (http://www.e-onsoftware.com). All
examples in this paper were created on a desktop computer equipped with an Intel Core i7
CPU, clocked at 3GHz with 16GB of RAM.

In all experiments, unless stated differently, we use a terrain size of 50× 50 km2. We set
the maximum tectonic uplift to U = 5.0 10−4 my−1 (meters per year), which is the average
uplift among earth mountains. The erosion rate depends on many factors, such as precipi-
tation and rock strength. In order to get a more intuitive setting, we follow the relationship
between height, uplift, and erosion detailed in Section 3.4.5. We set the erosion rate to

44

3.4. Results

k = 5.61 10−7 y−1 for mountains to culminate at about 2 000 m. We set the time step at the
geological scale δt = 2.5 105 y to ensure a fast convergence while avoiding the appearance of
high unnatural cliffs.

3.4.1 Visual realism

Real dataset Synthesized terrain

Figure 3.8: Comparison of a real terrain and a digital model produced by our fluvial erosion
simulation.

We compared our stream-erosion simulation to real mountain data sets where fluvial
erosion is the dominant factor: the San Gabriel mountains in California (data from
http://www.usgs.gov/). Figure 3.8 shows a side by side comparison of real terrain and a
result produced by our method. This confirms that our method can successfully generate
coherent and plausible large scale dendritic patterns.

3.4.2 Rendering

We implemented three methods for rendering of our terrains. The first two approaches lend
themselves for interactive modeling and provide a fast visual feedback, whereas the third
method relies on a more computationally demanding conversion of the stream graph data-
structure into a set of procedural primitives and targets visualization at a high level of detail.

The first interactive rendering method is achieved by generating a mesh from the stream
graph by using Phong tessellation (Boubekeur et al. 2008). We flatten the shading of the
edges traversed by a stream to emphasize the path of water, and we color the nodes depending
on the drainage area to show the river network. We also visualize lakes by comparing the
pass height with the height of all the points flowing into the bottom of the lake. An example
is shown in Figure 3.9.

The second interactive rendering method consists in defining the surface of the terrain as
an elevation function defined as the sum of Gaussian kernels centered at each node multiplied
by the node height. The height is then normalized by the sum of the kernels at that point.
This results in a smoother geometry than the Phong tessellation, but it is harder to emphasize
the water network.

The third method is not interactive because it is based on a high level of detail terrain
representation. This representation is obtained by converting the stream-graph model into

45

http://www.usgs.gov/

Chapter 3. Combining uplift and fluvial erosion

Figure 3.9: Comparison of two of the rendering methods used in our approach. The images
show a far view (left) and a close-up of real-time tessellation (top) and procedural primitives
(bottom).

a hierarchical primitive-based model, as described in (Génevaux et al. 2013; 2015). This
model combines parameterized terrain primitives representing the different landform features
(ridges, valleys, and rivers) into a hierarchical construction tree. This identification of land-
form features and the selection of the corresponding primitives is performed automatically by
analyzing the coarse terrain elevation map produced by the stream power erosion process as
described by Guérin, Digne, Peytavie, et al. 2016. Rivers are carved by using the elevation
and drainage information embedded in the graph (Figure 3.9).

3.4.3 Performance

samples One time step (s) Time to steady state(s)

10 000 0.031 6.4

40 000 0.177 35.4

90 000 0.401 78.0

160 000 1.273 252.0

Table 3.1: Simulation time as a function of the number of samples. Convergence is obtained
after around 200 time steps.

Table 3.1 reports the performance of our method as a function of the number of sampling
points. Although we did not fully optimize the implementation, our method provides inter-
active feedback at every time step which enables us to visualize a simulation at interactive
rates and to tune parameters.

The number of iterations needed to obtain a fully-formed mountain chain is difficult to
estimate because it depends on a number of input parameters (see the discussion below).

46

3.4. Results

In our experiments, the mountains where fully shaped after 50 iterations and the geometry
stops evolving after 100 − 300 iterations, as shown in Figure 3.10. A solution to accelerate
convergence could be to progressively refine the sampling grid. Note that this refinement
needs to be uniform, in order to preserve the possible emergence of local stream and the
details in the shape of rivers.

1 iteration 10 iterations

50 iterations 300 iterations

Figure 3.10: Different steps of our fluvial erosion algorithm. The mountains are formed at
∼ 50 iterations, and steady state is reached after 100 to 300 steps.

3.4.4 Lake overflow

Failing to capture the flow in local minima leads to an important under-prediction of the
eroded volume, as shown by Figure 3.11. A 1024 × 256 terrain is filled with a 500 m flat
areas augmented with a small random perturbation, at the exception of the leftmost column,
which is set at altitude 0 and exclusively defines the boundary. The erosion simulation is
run 70 times with 1, 000 years time steps, with and without local minima correction. As
shown by Figure 3.11, ignoring local minima results in a slower migration of the cliff. This is
explained by a lower average drainage area, which starts at the cliff edge and does not cover
all the remaining parts of the landscape, and by an inaccuracy in the implicit solution on
large drainage: the erosion is limited in distance by a new local minimum at each step.

A simple experiment is performed to show the impact of the different methods for correct-
ing receivers on an erosion time step. This example has been built on a regular grid with an
8-neighboring connectivity, but the results are similar on an irregular triangular network. The
initial terrain is made of an inverted pyramid in a 100× 100 regular grid, with a prescribed
slope set to 45◦. A single node at the middle top is given altitude 0 (also the altitude of the
base of the pyramid), and is set to be the boundary node (Figure 3.12 (top left)). A single

47

Chapter 3. Combining uplift and fluvial erosion

0 10 km

Without Correction

With Correction

Figure 3.11: Simulation of erosion of 500 m high escarpment on a 1024× 256 terrain. The
nodes of the leftmost column are the only 0 altitude boundary nodes. We show the result of
70 time steps of 1, 000 years each, without (top) and with (bottom) connecting the lakes.

time step of 5, 000 years of erosion is performed with three different strategies for correcting
the receivers in the flooded area:

Simple correction: the receiver of the local minimum is directly set to the higher node
of the pass (here one of the neighbors of the outflow), and the receiver of this node is
assigned to the outflow node. This simple strategy does not benefit from the implicitness
of the stream power equation resolution: only the pass node is widely eroded due to
the large drainage of the basin (Figure 3.12 (top right)).

Carving: the path obtained by following the receivers from the pass to the local minimum
is inverted, as if a trench had been carved. The resulting erosion follows this path,
actually carving a subset of this hypothetical trench (Figure 3.12 (bottom left)).

Filling: the receivers of the flooded area are all modified as if the water surface was replaced
by a small slope. This results in a star like pattern centered at the outflow (Figure 3.12
(bottom right)). The number and disposition of branches of the star are due to the
8-neighboring lookup for the cells.

A particular attention should be drawn to the performance of the algorithm introduced
to solve the flow routing problem (Section 3.2.3), because this part was the main bottleneck
of previous implementations Braun et al. 2013 and Cordonnier et al. 2016. We compare our
algorithm (Linear time version using (Mareš 2002) and Kruskal ’s algorithm for computing
a minimum spanning tree) with state of the art depression filling techniques (Barnes et al.
2014; Wei et al. 2018, Figure 3.13). First, we show how the algorithms perform on a fixed
size 16, 000, 000 nodes terrain, with an increasing number of local minima. The initial terrain

48

3.4. Results

Initial bedrock elevation Simple correction

FillingCarving

Figure 3.12: Demonstration of the effects of receivers correction on erosion (single time
step of 5, 000 years of erosion). The initial terrain is a square hole with constant slopes on the
sides (top left with contour plot), with a single boundary node at altitude 0 on the middle
of the upper edge. The simplest correction connects the local minimum to the pass (top
right). Depression carving (bottom left), and depression filling (bottom right). Water level
after erosion is shown in blue. This example was generated on a 8-neighborhood regular grid,
which explains the star-like pattern obtained after applying the depression filling strategy.

is at steady state without depressions, and we progressively add distinct artificial single-node
holes, up to 2.5% of the total number of nodes. The behavior of our results is similar to
the ones of Wei et al. 2018, but the algorithm from Barnes et al. 2014 shows a decrease of
computation time when the number of local minima increases. This is consistent, because
they use a priority queue only for nodes outside of a depression. When the number of nodes
increases, the simplicity of this algorithm makes it very efficient. In order to choose which
algorithm to use, we show the evolution of number of local minima on the 20 first steps of
erosion, starting from a flat terrain. We study the reaction to different uplifts, from uniform
to uniform plus 20% of Perlin noise. For all these uplift functions, the number of local
minima decreases and stabilizes after around 16 steps. The performance per step is obtained
by combining these two studies, and shows that for a large enough number of iterations, our
algorithm may be preferred.

49

Chapter 3. Combining uplift and fluvial erosion

Local minima (×105)

Time (s)

4

10

12

14

16

8

6

4

0 1 2 3

Our, O(n)
Our, Kruskal
Wei 2018
Barnes 2014

Simulation step
200 4 8 16

Local minima (×105)

0

1

2

3

4

12

0 %
7 %

15 %
20 %

Simulation step
204 8 16120

7

8

9

10

6

5
4

11

Time (s)

Our, 0 % noise
Our 20%
Barnes 2014, 0 %
Barnes 2014, 20 %

(a) One step performance (b) Local minima (c) Per step performance

Noise:

Figure 3.13: We evaluate the performance our algorithm using either the O(n log n)
Kruskal algorithm, or the O(n) algorithm proposed by Mareš 2002 for computing the mini-
mum spanning tree. These are compared with state of the art algorithms from Barnes et al.
2014 and Wei et al. 2018 for a single erosion time step on top of a 16, 000, 000 terrain already
pushed to steady state. The execution time is measured after adding distinct local minima
artificially, from 0 to 2.5% of the total number of nodes (a). To relate these performances
to an erosion simulation, we show the number of local minima (b) for the 20 first erosion
steps where a uniform uplift of 5 mm years−1 has been augmented with a pseudo-random
noise which amplitude varies from 0 to 20% of the global uplift. Combining both gives the
execution time per steps of the our O(n) algorithm and (Barnes et al. 2014) with different
noise proportions.

50

3.4. Results

3.4.5 Stream power erosion

Figure 3.14 shows the result of the stream power equation erosion, combined with small scale
details. on top of generating the large scale topography resulting from the combination of
uplift and erosion, or method generates an hydrology network consistent with the terrain
elevations. This network can be computed more generally on any input elevation.

The erosion parameters in the stream power erosion are not intuitive to set. Even in
geology, the impact of these coefficients is not well-understood. The erosion coefficient k and
the uplift u are both subject to a multiplication by dt, so only their ratio is relevant. However,
its value has a strong influence on the mountain height. We made a series of experiments in
order to find a relationship between this ratio and the maximum mountain height. It turned
out this relation is linear and the height in kilometers follows the rule hmax = 2.244u/k.

In our approach, we allow only the changes to the drainage area exponent m. Indeed,
only the ratio between m and n has a meaning that we can deduce from the equations. Let
us suppose we have reached an equilibrium state in a region where u and k are constant over
the space. The stream power Equation (3.1) becomes:

dh(p)

dt
= 0 = u(p)− k A(p)m s(p)n.

From that, we have s and A proportional:

s ∼ A−m/n.

We note x the distance between p and the corresponding outflow, and d the distance between
ep and a ridge. Then we assume that A is proportional to (d− x)2. Recall that s = dh/dx,
so we obtain:

dh

dx
∼ (d− x)−2m/n.

After integration, and imposing h(0) = 0, we have:

h ∼

d1−2m/n − (d− x)1−2m/n if m/n < 1/2
log(d)− log(d− x) if m/n = 1/2

1

(d− x)2m/n−1
− 1

(d)2m/n−1
otherwise

We use the result of these equations to choose the proper ratio m/n to shape the desired
river profile.

51

Chapter 3. Combining uplift and fluvial erosion

Figure 3.14: The graph representing the terrain was rendered by using a set of function
based primitives corresponding to different landform features which are parameterized by the
data embedded in the stream graph (Génevaux et al. 2015). This method provides varying
level of detail as can be seen in this successive zoom (from top to bottom).

52

3.4. Results

Constant

Smooth Piecewise

Disc–shaped

Figure 3.15: The uplift gradient has a strong influence on the resulting terrain.

The uplift has a strong influence on the resulting terrain and it is the main way the user
affects the final shape. As shown in Figure 3.15, the main impact is in the gradient of the
uplift values. The actual shape of the uplift does not have a strong influence, except on
the boundaries. Having the same uplift shape, a slowly decreasing gradient leads to a very
straight erosion in the gradient direction, whereas a set of steps of constant values gives more
random valleys with sudden jumps on the gradient in the mountain heights. We can also
observe that lower values of uplift lead to smaller valleys, and that the thermal erosion is
important with regular slopes for high uplift values.

The thermal erosion has an important influence on the shape of the valleys. It affects their
regularity as shown by Figure 3.16. If the maximum slope given for the mountain is 30◦,
which is the usual talus angle for thermal erosion (Musgrave et al. 1989), our erosion model
results in a layout of very regular geometric valleys.

Figure 3.16: Uniform maximum talus angle gives regular pattern (left), whereas modulating
the value by 3D Perlin noise gives more randomized results (right).

53

Chapter 3. Combining uplift and fluvial erosion

Figure 3.17: Choosing different maximum slope depending on the mountain height gives
plausible cliffs effect.

Figure 3.18: A fractal terrain (left) after the application of the stream power erosion (right).
Note the creation of new rivers and lakes.

54

3.4. Results

Figure 3.19: A flat terrain initialized with a carving river (top left) has been eroded with
height dependent slopes (close-up at bottom).

We experimented by forcing the maximum slope to follow a 3D Perlin noise with a high
persistence, to account for local different rocks strength. We choose the minimal and maximal
slope angles to be 6◦ and 54◦ respectively. This results in a more random distribution of the
erosion patterns in valleys as shown in Figure 3.16.

Furthermore, we can obtain interesting features by procedurally adjusting the thermal
slope. Figure 3.17 shows a landscape with small thermal slopes below a given height, but
higher slopes above it. This adds cliffs to the crests, which is typical for many mountains.

55

Chapter 3. Combining uplift and fluvial erosion

Stream power erosion without the uplift. The stream power erosion can be used
without the uplift and it adds a global hydrological realism to an existing scene as shown on
an example of a fractal terrain enhanced with erosion in Figure 3.18. As the erosion converges
toward a flat terrain, it is necessary to use small time steps and to stop the simulation after
only a few iterations.

Figure 3.19 shows that this method can model a large variety of landscape: starting from
a simple height map formed with two strokes and a gradient, we obtain a plausible canyon.
We chose a height dependent maximal slope for thermal erosion to obtain the succession of
cliffs and slopes in the result.

3.5 Conclusion

We presented a method for terrain generation that takes into account large scale fluvial
erosion. This is achieved by simultaneously considering uplift and erosion, a commonly
observed behavior of mountains in nature.

Contrary to previous erosion simulation methods, the user does not need to predefine an
initial mountain on which erosion is applied, and which may affect the visual realism. In our
approach the user paints a simple uplift map on a flat ground, enabling control of the shape of
the main mountain ranges after a few iterations. Our simulation algorithm runs at interactive
rates, and allows monitoring the results by tuning a single erosion parameter. Moreover, the
erosion itself can be used without the tectonic uplift and it improves realism of existing
terrain models. In addition to real-time visualization methods used during simulation, we
can convert the vector data we compute to high-quality procedural terrain elements with
detailed ridges and riverbeds.

Our algorithm has various limitations. Our validations are based only on visual observa-
tions and statements about the visual plausibility should be supported by some evaluation,
for example by testing with human subjects. However, a difficulty of a fair comparison with
real-world structures is that only main terrain structures should be compared, while users
may base their visual comparison on details. This lack of evaluation was partially alleviated
by the fact that this research has been conducted in collaboration with geologists, who pro-
vided at least some partial visual evaluation of the method. Another limitation is that the
system behavior depends on the parameters that are not well-understood even in geology.
While we attempted to provide meaning to those parameters and we document them meticu-
lously in Section 3.4, a further insight into their values, dependencies, and effects could bring
additional value to our approach. Some of those values could be, for example, measured in
real terrains.

This erosion method will be reused in the next chapters, where we will see how to combine
user gestures and state of the art knowledge on plate collision and crust folding to interactively
build a more geologically accurate uplift map (Chapter 4). The fluvial erosion presented here
will also be extended to take into account debris flow and hillslope erosion in Chapter 5, to
be combined with glacial erosion.

56

Chapter 4
Interactive manipulation of tectonically

driven uplift

Contents

4.1 Overview . 60

4.1.1 Plate tectonics in geology . 60

4.1.2 Geologically-inspired interactive simulation 61

4.2 Earth crust as a viscous material 63

4.2.1 Moving plates creation . 63

4.2.2 Viscous compression . 64

4.2.3 Uplift from thickness changes . 65

4.3 Earth crust as layered sheets . 65

4.3.1 Folding of layered materials . 66

4.3.2 Procedural fold generation . 66

4.3.3 Uplift update from folds . 69

4.4 Terrain surface generation . 69

4.4.1 Interactive terrain generation . 69

4.4.2 Rock layers at the surface . 70

57

Chapter 4. Interactive manipulation of tectonically driven uplift

4.5 Implementation, results and discussion 72

4.5.1 Architecture . 72

4.5.2 Qualitative and quantitative results 74

4.5.3 Validation and discussion . 76

4.5.4 User study . 80

4.6 Conclusion . 80

Earth surface in mountainous areas is mainly shaped by the competitive and simultane-
ous actions of the growth rate of mountains (uplift) and erosion (Chapter 3). The uplift is
constrained by tectonic events acting on the earth crust through different phenomena, con-
sistent among the various mountain ranges on Earth. Therefore, accurately computing
the uplift is important when simulating mountain growth.

Geologists have developed models for mountain uplift; either focused on the mechanics
of crustal deformation (Willett et al. 1993) or on computing the Earth’s surface response to
tectonic uplift (Braun et al. 2013). But their purpose was not to generate visually compelling
3D terrains at interactive rates. As we show in this chapter, bringing their observations to
Computer Graphics can be used to improve the quality of generated landscapes by enabling
the formation of large-scale landforms commonly observed in nature, while enabling direct
control of the results. In particular, uplift systems consist in a variety of consistent faults and
folds generated by tectonic events and dependent on subsurface geology, and are responsible
for patterns that can be observed at various scales, from eroded cliffs to regularly spaced
valleys.

In this chapter, we present a new volumetric model for the interactive generation of
visually-compelling, large-scale terrains aimed at Computer Graphics applications. This is
an extended version of the method published at TVCG 2018 (Cordonnier, Cani, et al. 2018).
We address the long-standing challenge of providing the user with interactive control of large-
scale terrains, such as shaping full mountain ranges, while automatically maintaining visual
consistency with phenomena observed in nature, including the modeling of multi-scale folds.
A key feature in our approach is the use of knowledge-based, phenomenological simulations
instead of complex physical simulation, and we show that the loss in accuracy is well balanced
by the gain in interactivity. We coin the term geologically-inspired simulation for these simu-
lation methods that exploit first-order phenomenological knowledge from geology. We do not
claim to reproduce the complexity of geological models (Braun et al. 2010), which incorporate
formal mechanical calculations coupled with sophisticated erosion models but require heavy
computations that prevent interactive control. Our geological approximations are justified by
the interactivity of our sculpting system and by the targeted result: a geologically-plausible
large scale eroded terrain surface that hides most of the higher order tectonic processes. Our
framework could also be used for interactive illustration purposes in geology.

When tectonic plates collide, the Earth’s crust is thickened in an incompressible manner,
which causes the surface to be uplifted by isostasy: considering that tectonic plates float on
the much less viscous and denser upper mantle like an iceberg floating on the ocean, any
variation in crustal thickness must be accompanied by relative vertical motion of the plate’s
surface. Collision between plates often leads to the formation of faults or dipping shear zones
that cut through the entire crust. Within the uplifting region, shortening is accommodated
by smaller scale folding. The wavelength of the folds depends on the stratigraphy of the crust,

58

i.e., the thickness of layers previously deposited at the surface of the Earth and their relative
competency. The surface uplift is balanced by fluvial erosion resulting in the formation of
dendritic drainage systems and valleys. The rate of river incision is controlled in part by the
competency of rocks, which means that the stratigraphy of the crust strongly influences the
shape of river profiles and valley walls and may lead, for example, to the formation of local
cliffs or ledges that stand out in the landscape.

Our multi-layered model of crustal material captures the combined effect of compression
and folding. We consider that, at the scale of the crust, rocks behave in a viscous manner
and deform by uniform shortening. This is similar to the thin-sheet approximation used in
geodynamical models (Ellis 1996), based on the observation that, deep in the Earth’s crust,
rocks deform by ductile creep at very low strain rate. In the upper part of the crust faulting
and folding take place. We use a procedural model to add multi-scale folds triggered by
the compression field, based on the specific features of the chosen subsurface stratigraphy.
The resulting deformation model is used to compute the uplift of the surface. This uplift
is then used in a real-time erosion model, enabling interactive visualization of the resulting
sculpting of the surface by erosional processes. The additional stratigraphic details of our
model (smaller scale layers) enable us to generate multi-scale folds and produce the final,
high quality terrain models used for final rendering.

Our method allows the hands-on interactive design of mountain ranges: the user can
quickly draft and then progressively refine large scale terrains through gestural control, while
ensuring that the generated mountain ranges are consistent with first-order geological pro-
cesses. We choose sculpting control because it has long been one of the main expressive
modeling metaphors (Galyean et al. 1991). In addition to physically-based virtual plas-
ticine (Dewaele et al. 2004), sculpting systems have proven to be successful for editing as
rigid as possible objects (Sorkine et al. 2007) or shapes with nested features (Stanculescu
et al. 2013) as well as structured shapes, such as architectural models (Milliez et al. 2013).
In a typical interactive session, the user sculpts and refines multi-layered earth-crust mate-
rial as if it were plasticine, using displacement gestures applied using finger interaction on a
multi-touch display. The first gestures define the tectonic plates and their relative motion.
The resulting collision causes surface uplift and the growth of mountains, where the speed of
growth is stored in an uplift map. The combination of the uplift and of an existing fluvial
erosion simulation is visualized at interactive rates, enabling the user to refine his/her design.
Enough data is generated to enable high quality rendering of the resulting terrain at different
scales, showing the effect of a non-uniform input stratigraphy on valley flanks. These results
could not be obtained with any example-based terrain synthesis methods because of the lack
of stratigraphic information in scanned real terrain databases.

We validated our method by comparing our results to simulations from geology and to real
terrain data. We show that various phenomena that take place at different scales are correctly
captured, including the asymmetric large-scale shape of mountain ranges or the small scale,
stratigraphically-controlled folds that appear along eroded cliffs. We also conducted a user
study with artists and non-artists which confirmed the usability of our sculpting tool. Our
contributions are:

• A new multi-layered model embedding stratigraphic information enabling for the in-
teractive coupled simulations of crustal compression, folding of sedimentary layers and
surface erosion.

59

Chapter 4. Interactive manipulation of tectonically driven uplift

• An expressive control tool for the sculpting of tectonic forces through user gestures on
a tactile device.

• A validation of our results thought user study and comparisons with both simulation
from geology and real data.

4.1 Overview

In this section we describe the geological background used as the basis for our approach and
the choice of our algorithms and data structures.

4.1.1 Plate tectonics in geology

Continental collision is often the end product of the closure of an oceanic basin driven by
subduction of the oceanic plate beneath one of the two continents. When continental plates
collide, subduction of the lower part of one plate continues (left plate in Figure 4.1), while
the upper layer (the continental crust) made of lighter, granitic rock resists subduction and
experiences compression. This compression is accommodated by the formation of a main
crustal-scale fault or shear zone, located above the stable, non-subducting plate, that accu-
mulates the deformation by thrusting (Willett et al. 1993). In other situations, for example
where the crust is hotter, the deformation is more diffuse and the crust deforms as a thin
viscous layer (Ellis 1996). In all cases, this causes uniform uplift of the crustal block and we
model this growth by approximating the crust as a viscous material (Section 4.2).

Simultaneously, this block deforms internally by smaller scale faulting and folding. Due
to past tectonic events and/or the deposition of sedimentary rocks at the Earth’s surface, the
continental crust is commonly composed of a number of horizontal rock layers of different
mechanical properties. On top of the basement, made of metamorphic and igneous rock, layers
of sedimentary rock are deposited over millions of years, due to the erosion of older mountains
or to the deposition of carbonate shells in ancient oceans. When compressed during plate
collisions, the difference in mechanical properties between the sedimentary layers makes them
fold rather than thicken. We compute the multi-scale folding from a thin sheet approximation
of the crust (Section 4.3).

Crust

Asthenosphere

Lithosphere

Main fault
MountainsFolded Sedimentary layers

Tectonic uplift

Mantle

Figure 4.1: Colliding tectonic plates: plate experiencing subduction (left) with uplift and
folding of crust material while the lithosphere plunges down, main fault (middle), and stable
plate (right).

60

4.1. Overview

As a result, mountain ranges are typically asymmetrical, with uplift and folding leading
to high topography and steep surface slopes on one side of the mountain where the main
structure is located, and more subdued elevations and lower slopes on the other side (i.e., the
right of Figure 4.1). The fact that continental crust is made of a number of different rock layers
causes different fold scales to appear (top left of Figure 4.1). The surface slopes resulting
from these complex patterns of surface uplift lead to concomitant surface erosion controlled
by the rate of fluvial incision (Braun et al. 2013) which, in turn, results from the shear stress
imposed by debris transported by fast flowing rivers on the bedrock (Section 4.4).

4.1.2 Geologically-inspired interactive simulation

Our goal is to enable the sculpting of large scale terrains (hundreds of kilometers) at inter-
active rates, where the user’s time corresponds to millions of years in real temporal domain.
The corresponding simulated time is around 5 million years in our examples.

Crust as viscous material
(Φ, q) → u0

Crust as layered sheets
(Φ, q, L, u0) → u

Terrain generation
(u, erosion) → z

Ti u0 u

Refinement

User gestures

Figure 4.2: User gestures define tectonic plate movement that is used to simulate earth
crust as if it was made of a viscous material. The compression and thickness change first
yields a coarse uplift map u0 and then a thin layered strata that produces a refined uplift
map u. Fluvial erosion then produces the final terrain elevation z. The overall simulation is
interactive and allows for real-time authoring by hand gestures.

User input gestures on a multi-touch input device define the shape of tectonic plates and
put them in motion (see Figure 4.2). The user first places a reference hand on the table to
define the first tectonic plate, serving as an anchor and intended to be stationary. He/she
then moves the second hand in contact with the table to define and set the motion of the
second plate (defined as a Voronoi region associated with the second hand) and can repeat
this gesture to add new plates. Each time a plate is created, crust material is considered
to move rigidly in the convex hull of finger positions, and finger motion is interpolated to
define a single, rigid transformation Ti, interpreted as the rate at which the plate moves per
time unit (Section 4.2). Assuming that, at this scale, i.e., when geological temporal scales
are remapped into a few seconds, the Earth’s crust deforms like a soft, viscous material and
inertial forces can be neglected, this motion is unaffected by the collision process and can
therefore be assumed to remain constant over time–except when the user applies further edits.
The output is a transport field denoted as Φ.

61

Chapter 4. Interactive manipulation of tectonically driven uplift

Elevation

Layers Li Sub-layers
≠ µ,τ ≠ k,θmax

Figure 4.3: The initial stratigraphy: rock layers Li have different mechanical properties,
whereas sub-layers differ by erosion parameters only.

Subsurface stratigraphy (Figure 4.3) is defined prior to the simulation using a multi-
layered, volumetric model of the Earth’s crust: n layers of rock L = {Li}, i = 1, . . . , n are
defined with corresponding thicknesses 0.1 ≤ τi ≤ 5 km and viscosity µi (a measure of the
competence of the rock). They represent variations in rock type and mechanical strength at
a variety of scales. Thinner layers are used to represent sedimentary material located above
thicker, basal rock layers that represent the layering of the crust, for example separating it
into a quartz-rich upper crust and a feldspar-rich lower crust. In our implementation, layer
thicknesses are spatially uniform, although extending our method to have them vary locally
would be straightforward.

To increase visual realism, each layer can be subdivided into 1− 10 sub-layers of varying
resistance against erosion (k, θmax). This represents the fractal nature of natural stratigraphy
where large competence contrast is likely across thick layers that are themselves composed of
thinner layers of reduced competence contrast.

Geologically-inspired simulation consists of a simulation loop that uses three consecu-
tive actions to compute the terrain deformation at each time step (Figure 4.2).

1. From the user-defined transport field Φ, we compute the elevation rate (or uplift) u0 of
the terrain caused by the compression between tectonic plates, assuming that the earth
crust behaves as an incompressible viscous material in the considered geological time
step (Section 4.2).

2. We then compute the uplift field ui of each layer of rock according to the associated
multi-scale folding processes. This is performed using an efficient procedural method
based on results from the theory of folding of layered materials (Section 4.3).

3. We apply fluvial erosion (Chapter 3, Section 4.4) to shape the terrain during mountain
growth due to uplift. This results in a time dependent surface elevation z(p, t), in
which we keep track of the original rock layer at each node position, for rendering
purposes.

Time steps. Recall that we are sculpting animated material: the mountains grow and
are eroded while they are sculpted. Therefore, there are two temporal loops: the geological
simulation loop based on the current user input (which gives us a stationary compression field
and thus stationary uplift and folding, then combined with erosion), and the user interaction
loop (Figure 4.2). The compression field, the folds, and then the uplift need to be recomputed

62

4.2. Earth crust as a viscous material

only when a new interaction takes place (e.g., when the motion of the plates is modified).
Even when not recomputed, they are used to update the terrain elevation at each frame.
The geological time simulation step (Section 4.2) is not the same as the time-step for any of
these loops: it is a theoretical time step used for computing the stationary compression field
from the current plates motions. Its value is not important since it expresses a stationary
situation.

4.2 Earth crust as a viscous material

Shortening of the crust is the first phenomenon to be accounted for when tectonic plates
collide. The crust at this scale can be assumed to behave as a viscous material, resulting in
thickness changes and uplift. To capture this phenomenon, we use a 2D physical simulation
that computes a transport field Φ(p) in the region of influence between plates. The transport
field is a map Φ : R2 → R2 that describes where each point moves subject to the tectonic
forces. It is coupled with a geometric volume preservation method to generate the uplift.

1. Regions Ai 2. Influence regions

Figure 4.4: Gestural control: Three moving plates are created and refined by using successive
hand motions and their rigid part are set to the convex hull of the interacting fingers (1).
The region of influence of each plate is defined as the part of the plane that is closest to its
rigid part (2).

4.2.1 Moving plates creation

Every plate is characterized by its supporting region Ai where the earth crust displacement
is rigid. The associated transformation Ti (a rotation and a translation) represents the rigid
displacement of the underlying crust material during a simulation step. While Ai does not
move over time and Ti is constant, the continuous displacement of crust material causes
surface uplift and mountain growth in colliding regions.

To define a new plate, the user moves his/her hand in contact with the touch table. We
provide visual feedback by displaying an arrow from the initial position cik of each finger to
its final position, i.e., when contact with the table ends. The support region Ai is defined
as the convex hull of the initial finger positions cik. Without loss of generality, the vector
Φ(cik)−cik, corresponding to each arrow, is interpreted as the motion of the underlying earth
crust during a given geological simulation step ∆t.

Since the user gesture may not be fully rigid, the plate’s rigid transformation Ti is com-
puted from the user defined set of transport directions at control points Φ(cik) by using least
squares minimization:

argmin
∑
k

‖Φ(cik)− Ti cik‖2.

63

Chapter 4. Interactive manipulation of tectonically driven uplift

The term Φ(cik), and the corresponding arrows are then updated from Ti so that the arrows
always depict the rigid motion of the crust material under the rigid part of the plate during a
geological step ∆t. The user can use extra gestures to add new arrows and edit Ti accordingly.

When crust material moves away from the regions Ai to collision regions, the assumption
of rigid motion is no longer true. We call the influence region of each plate the portion of
the crust closest to the associated Ai. We interpolate the displacements Ti to compute the
transport field Φ in those regions of influence.

4.2.2 Viscous compression

The transport field Φ describes the local movement of earth crust material during ∆t under
the action of tectonic forces, and is computed as the interpolation of the transformations
Ti given by the user. At the space and time scale of our simulation, the earth crust can be
approximated as a thin plate of viscous material that shortens under the action of plate motion
and collision (Figure 4.4 (b)) (Ellis 1996). At this scale rock deformation is isochoric and
the viscous deformation can be assumed to be incompressible such that horizontal shortening
yields thickness changes.

The transport field. To simulate the 2D compression, we adapt an existing model of
viscous virtual plasticine (Dewaele et al. 2004). The amount of viscous crust material q is
stored in a 2D regular grid, to be transported from cell to cell through Φ. The grid is defined
by a step dx and an orthogonal frame (ex, ey). Each grid cell is represented by its center xi,
and qi represents the volume of crust rock inside the cell. The area of the grid cell is denoted
by acell.

A2

A3

π(p,A1)

d(p,A1)
p

A1

Figure 4.5: Transport at

p is interpolated between

support regions A1, A2 and

A3, depending on the pro-

jection π(p, Ai) of p onto

Ti and distance d(p, Ai)

between p and Ti.

In our implementation, computations are performed on a
1024 × 1024 resolution grid. Directly implementing a forward
displacement approach yields unnatural patterns similar to
Moiré’. Therefore, we solve this problem by computing the in-
verse of the displacement field Φ−1 for transporting material.
For each grid point p inside the transformed rigid area Ti(Ai)
the inverse of the transport is set to the rigid transformation

Φ−1(p) = T−1i p. (4.1)

Outside the region Ai, the field Φ−1 is computed by using an in-
terpolation based on a distance weighting operator. Let d(p, Ai)
denote the distance between p and region Ai and π(p, Ai) the
projection of p onto the region Ai (Figure 4.5). We define:

Φ−1(p) = p +
∑
i

T−1i π(p, Ai)− π(p, Ai)

d(p, Ai)e
/
∑
i

1

d(p, Ai)e
(4.2)

and we set the exponent e = 0.9 to get a smooth falloff of the influence of the distance.

Crust material transportation. We use Φ−1 to compute the amount of crust material q
in grid cells after the geological step ∆t, i.e., when plate material is transported from the tip

64

4.3. Earth crust as layered sheets

to the end of the arrows (Figure 4.4).

Let q0 be the initial amount of material in each grid cell. In order to obtain the amount of
material q(xi) in a cell ci at the end of the plate’s motion, we use the inverse transformation
Φ−1 to compute the original positions of the four corners of ci before motion, which defines a
quadrangle of area ai. Then we compute the value of q in the cell ci after the simulation step:
q(xi) = q0 ai/acell. The initial amount of material is factored later to compute the uplift,
so its value does not have any physical meaning. We reduce the equation to dimensionless
quantities by setting q0 = 1.

4.2.3 Uplift from thickness changes

Crustal deformation is isochoric, i.e., crust material retains a constant volume over time. The
local thickness of the crust is proportional to the volume of crust rock inside the associated
cell and to the amount of material q in the 2D grid. Therefore, variations in the amount of
material provide a map of thickness change rates: dq/dt = (q − q0)/∆t.

Since our simulation method does not capture the main fault formation process and the
resulting discontinuity in altitude (Section 4.1.1), we model them by a procedural approach.
We define the fault as an offset of the boundary of the compressed region on the stable plate
side that is computed as an iso-level of q. We then define the uplift due to compression as
u0 = 0 on the stable side of the fault and u0 = α dq/dt elsewhere. The coefficient α is a
scaling coefficient used to set the uplift to the appropriate geological time scale; in our system
we set α so that the uplift is 5.0 10−4m /y on average. This approach captures the asymmetric
nature of the earth crust compression. The resulting uplift map u0 is further improved by
incorporating folds, as described next.

Note that this procedure neglects two potentially important aspects of crustal shortening.
First, we neglect isostasy by imposing that the compression-induced shortening results in
surface uplift only. In most mountain belts, shortening also results in a vertical depression
of the base of the crust (and of the plate). Second, we do not prescribe a dip to the main
fault. In nature all compressive faults (or thrusts) dip at an angle of a few tens of degrees
with respect to the surface. The consequence of our approximation is that we do not ac-
curately compute the additional horizontal velocity field that arises from the deformation
process. We note, however, that such an approximation is also commonly used in the geo-
logical community as the effects of horizontal advection of landforms have only been recently
investigated (Castelltort et al. 2012).

4.3 Earth crust as layered sheets

The deformation and shape of mountain ranges are also controlled by folding of layers within
the crust under compression. More precisely, the crust is composed of several layers of rocks of
varying thickness and strength. Complex multi-scale folding occurs, where small folds appear
on top of larger ones. Since simulating this complex folding process would be computationally
demanding, we use a procedural model to capture this well understood behavior and then
rectify the uplift map u0, which only captures the viscous behavior of the crust.

65

Chapter 4. Interactive manipulation of tectonically driven uplift

4.3.1 Folding of layered materials

Folding is a mechanical instability that results from the growth of stress imbalance at the
interface between layers with different competence. Researchers in both geology (Yamato
et al. 2011) and Computer Graphics (Rémillard et al. 2013) have studied this phenomenon.
They rely on the observation that the wavelength of folds λ of a layer k of thickness τk and
viscosity µ embedded in a viscous material are correlated, which can be expressed by the
following equation (Schmalholz et al. 2000):

λk ∼
(
τk τk−1

)1/2(
µk/µk−1

)1/6
. (4.3)

Our work relies on this theoretical law as it provides a good approximation of the fold
formation process. Similar expressions would be obtained assuming an elastic or viscoelastic
rheology for the layers; the important point is that we make the wavelength of the folding in-
stability proportional to the thickness of the layer(s) and their competence contrast (viscosity
or elastic properties), both of which can be controlled as input parameters.

The user can define the wavelength of the folds that directly controls the folding effects.
The fold thickness is computed automatically.

4.3.2 Procedural fold generation

Although folds of appropriate wavelengths could be set to emerge from layered sheet sim-
ulation (Rémillard et al. 2013) or could be generated by combining elastic thin sheet ma-
terial (Narain et al. 2012) with smaller scale folds (Rohmer et al. 2010), we generate the
folds procedurally on top of the viscous simulation (Section 4.2). This allows us to achieve
interactive rates, which is key for seamless content creation with sculpting gestures. More-
over, directly reusing wavelengths from Equation (4.3) is sufficient to ensure visually plausible
folds. Therefore, we introduce a procedural modeling method for multi-scale folds.

Our method forces the folds to follow a set of lines orthogonal to the compression direction.
We constrain those lines to be separated by an average distance λ that is the theoretical
wavelength. The lines are chosen based on the compression direction extracted from the
transport field Φ. This choice corresponds to the places of maximum folding (called top
skeleton below), between which the folds are interpolated. This provides visually plausible
results consistent with the expected fold wavelength and height.

Extracting the compression field. We extract the folding direction and amplitude from
the crust compression field C by first converting the inverse transport Φ−1 given by Equa-
tions (4.1) and (4.2) into a deformation tensor field F:

F =
(
I−∇(Φ−1 − I)

)−1
.

The stretch tensor field U is computed by taking the square root of the Cauchy-Green de-
formation tensor (Rohmer et al. 2010). In our case, this can be written as U =

√
FTF. For

every cell, the 2× 2 matrix Ui can be diagonalized:

Ui = ν1 e1 eT1 + ν2 e2 eT2 ,

66

4.3. Earth crust as layered sheets

Vectors e1 and e2 are the unit eigenvectors in the plane and ν1 ≤ ν2 with real positive
eigenvalues. We compute a compression field C for the crust, defined in every cell i by:
Ci = (1−ν1) e1 if ν1 < 1 and Ci = 0 otherwise. The vector e1 is the direction of compression
and 1 − ν1 represents its strength. Geological events that would cause some local extension
of crust are beyond the scope of this paper and are not considered.

Folds within the different layers of the continental crust

Elevation

l

l

l2Layer thickness
t
t

t

u2
3

3

1

1

u

u
3

2

1

Figure 4.6: The different fold layers are stacked and their uplift contributions are summed
to obtain the final uplift.

Iterative fold generation. We model the folds resulting from the layered structure by
processing layers one after another (Figure 4.6) and summing the resulting elevation rates ui
to get the final uplift rate:

u = u0 +

n∑
i=1

ui. (4.4)

This captures folding effects at different scales, since each ui represents folding at the spe-
cific wavelength λi (Equation (4.3)) that results from the interaction between the pair of
layers Li−1 and Li. Folds are generated using sinusoidal interpolation (Biot 1961) between
skeletal curves computed among the edges of a random 2D grid, and then used to compute
ui, as described below.

Fold skeletons. We compute crest and bottom lines for the folds called the top and the
bottom skeletons. Similar to previous fold generation methods (Rohmer et al. 2010), these
skeletons are set to be orthogonal, in average, to the compression direction. We also make
sure that they cover the whole compression region. This is done as follows:

We first generate a planar mesh M independent from the terrain grid, and chosen such
that the average edge length is equal to the desired wavelength λi from Equation (4.3). The
meshM is defined as a Delaunay triangulation of a Poisson disc sampling of the terrain, with
λi as average edge length.

Then, some edges of M need to be selected as part of the top skeleton St (crest lines).
We use the compression field C to compute St as follows. Let [a,b] be an edge of M with
center m. For every edge surrounded by two faces F0 and F1, we define a dual edge as an
edge linking the center of an edge of F0 to the middle of an edge of F1, both being distinct
from [a,b].

We define the compression energy e along an edge [a,b] to measure its alignment with

67

Chapter 4. Interactive manipulation of tectonically driven uplift

the direction of compression:

e([a,b]) =

∣∣∣∣ (b− a)

‖b− a‖
· Ci(m)

||Ci(m)||

∣∣∣∣ .
An edge with low compression energy is more likely to be in the direction of the folds.
Therefore, an edge E is added to St if an only if its folding energy is below one of its four
dual edges. It can occur that the three edges of a face of M belong to St which would cause
a singularity. We detect these cases and remove the edge of highest energy from St.

Template bottom
skeleton configurations

Example of skeletons
over a mesh

b

tS

S

Figure 4.7: Folds computation starts by choosing edges for the top skeleton St (gray) over
a mesh M (dotted gray) in the best fold direction. The bottom skeleton Sb (red) is deduced
from St following the template (left)

The third step is to build the skeleton Sb representing the bottom parts of the folds.
Figure 4.7 shows the template configurations that are used to generate Sb from St. For every
triangle F ∈ M we count the number of edges nF of F that belong to St and apply the
following classification. If nF = 2 we add an edge to Sb, linking the center of the edge of F
that is not in St to the center of F . If nF = 1 we add an edge to Sb that links the center of
the two edges of F that are not in St. Otherwise we add three edges connecting the center
of one edge of F to the center of F . Note that this construction ensures that the edges of
Sb remain approximately parallel to the main folds direction, i.e., to the average direction of
neighboring St edges.

tS

bSdt db

f

λ/2

Figure 4.8: The lo-

cal wavelength value is

calculated from the dis-

tance from top to bot-

tom skeletons, and used

to set fold height.

Fold heights. In the last step, we build the fold surface between
the bottom and the top skeletons. Although the average wavelength
is near the theoretical value from Equation (4.3), it may vary among
the folds and we need to know the precise wavelength at any point
in order to compute its height. Let d(p, St) and d(p, Sb) denote the
distance between point p and each skeleton. We define the local
wavelength as:

λ(p) = 2 (d(p, Sb) + d(p, St)) ,

and the local height of the fold at time ∆t (see Figure 4.8) as:

fi(p) =
σi ∆t, ||Ci(p)||

2

(
1 + cos

(
2π d(p, St)

λi(p)

))
,

68

4.4. Terrain surface generation

where σi is the folding speed. We choose it as a fraction (between 0.01 and 0.5) of the uplift
u0. Note that we add one to the usual cosine curve used to shape the fold (Biot 1961) because
we model the folding behavior of a rock layer that slides over some thicker layer below it, so
fi(x) should be always kept positive.

Local fold refinement. This step aims at complementing our procedural fold model with a
local, direct editing tool that allows for authoring the ridges and valleys in a mountain range.
The user can change the direction of the folds by manually selecting edges and can also change
the height of the mountain along a fold line. The advantage of this local refinement tool is
that it offers direct control over the local ridges and valleys while ensuring to some extent the
geological consistency of the results, since the computed fold skeletons serve as a geological
guide for the user to maintain the coherency of the generated mountain.

4.3.3 Uplift update from folds

The uplift ui resulting from the folding of the current fold pair of crust layers is defined as
the folding speed ∆f :

ui = ∆f =
f(t0 + ∆t)− f(t0)

∆t
.

This value is used in Equation (4.4) to compute the total uplift field u, and yields terrains
that fold at multiple scales.

In practice, using several different folding scales is not necessary for the interactive visual
feedback during a sculpting session, since only large folds are noticeable. The other fold layers
are considered only during the offline rendering of the final terrain.

4.4 Terrain surface generation

The elevation of the terrain is generated from the combined uplift and stratigraphy of the
crust by applying fluvial erosion and landsliding processes. In our system, we did not include
a representation of glacial erosion (Chapter 5). Although the offline results would be strongly
improved, the proposed method is not fast enough to enable interactive plate manipulation.

4.4.1 Interactive terrain generation

The terrain surface generation algorithm (Chapter 3, Section 3.3) combines the uplift (Equa-
tion 4.4) with a fluvial erosion law. Our method for solving this law relies on a triangle
irregular network (TIN) that represents the topology of the terrain. The drainage area A(p)
and slope s(p) are derived for each point p in the triangulation in order to compute a rate
of elevation change following the stream power law:

∂ z(p, t)

∂t
= u(p)− kA(p)m s(p)n, (4.5)

The coefficients m, and n are assumed to be constants and k varies with the rock type (see
Section 4.4.2) (as it is commonly done in geological experiments, we used n = 1, m = 0.5, see

69

Chapter 4. Interactive manipulation of tectonically driven uplift

Table 4.1 for the different values used for k). The erosion equation captures the river carving
effect. Moreover, the uplift u is uniformly rescaled so that its order of magnitude is close to
5.0 10−4my−1, which is a geologically-consistent value (uplift rate in mountain belts rarely
exceed a few millimeters per year) that produces visually plausible results.

In an attempt to improving the variability of the valley slopes, we extend the original
model by coupling the fluvial erosion with a landslide erosion model that mimics the way cliffs
are shaped by landslides. This method is derived from the original thermal erosion (Musgrave
et al. 1989) used in Computer Graphics. We check the slope s(p) after each step of fluvial
erosion. If the slope s(p) is larger than a corresponding talus slope θ, we update the height
using:

∂ z(p, t)

∂t
= l (s(p)− tan θ) if s(p) > tan θ, 0 overwise.

The constant l = 10−2my−1 has been set experimentally and describes the speed of the
landslide effect. The talus slope is preset to the commonly accepted default value of θ = 30◦,
but our model enables modifications for each layer of rock, to make it depend on material
strength (Table 4.1).

Considering that the slope at p only depends on the height of its lowest neighbor z(q)
and on the horizontal distance between them r = ‖p− q‖, we use:

s(p) =
z(p)− z(q)

r
.

We evaluate z using an implicit time scheme that is computed in linear time, without the
need to invert a matrix: this is achieved by evaluating the heights in the right order, i.e.,
z(q, t+ dt) before z(p, t+ dt).

4.4.2 Rock layers at the surface

km
4 20

Figure 4.9: Schematic rendering of a geological cross-section of a synthesized mountain
range.

The multi-layered nature of the crust controls not only the folding behavior, but also im-
pacts the erosion process (see Figure 4.9). An important feature of our subsurface geologically-
based simulation is that we can associate a specific rock layer with each visible point of the
eroded terrain surface, and use this information to locally alter the erosional properties or to
adapt the rendering.

The rock layer index associated to a point at the eroded surface is obtained from the
stratigraphy of the original elevation h0 of this point inside the crust. This elevation cannot
be simply defined as the difference between the total height of uplifted material and the total

70

4.4. Terrain surface generation

height of eroded material at that point, because uplift contribution of folds should not be
considered when they are being eroded. Therefore, we compute the height of each fold layer
at the current simulation step, and evaluate the original height of the surface from its position
between the two nearest layers (Figure 4.10).

Elevation at p

h2

h1

h0

z

Figure 4.10: The nature

of the rock at the surface,

of altitude z, is deduced

from its position wrt. fold

layers of altitudes h0, h1
and h2.

The height hk of the k-th layer surface is computed by sum-
ming the heights of the layers below, starting with h0 = u0 t, and
adding the specific uplift due to folding of the current layer:

hk(p) = hk−1(p) + uk(p) t,

where t is the current time in the simulation, since the beginning
of mountain growth.

We first compute which crustal layer every point of the sur-
face of the terrain p belongs to. This is achieved by computing
the vertical displacement of each rock layer, from bottom to top,
until the total thickness gets higher than the current surface al-
titude z(p); thus the index k satisfies hk−1 < z < hk. We then
compute the elevation of the point between the two layers:

γ =
hk(p)− z(p)

hk(p)− hk−1(p)
.

The height of the point before deformation is:

h0(p) = (1− γ)hk(p, t0) + γ hk−1(p, t0),

where hi(p, t0) denotes the altitude of the crust layer i before deformation at time t0. We
derive the layer index from the original height of the point. To imitate geological strata,
we divide the layers into sub-layers of different strengths, and adjust the erosion parameters
accordingly: we use a high erosion constant k and talus landslide slope (θ = 30◦) for weak
rock layers, and a low erosion constant k with a high slope (θ = 50◦) for hard rock.

During the rendering step, a texture is added to strong layers by fetching the original
height h0 from a 1D look-up texture. This enables us to show folded rock layers on eroded
cliffs.

71

Chapter 4. Interactive manipulation of tectonically driven uplift

4.5 Implementation, results and discussion

∆t Total simulation time 5 106 y

n Number of layers 2− 10

τi Layer thickness 0.1− 5 km

µi Layer viscosity 1010 Pa

λi Layer fold wavelength 0.5− 20 km

σi Layer folding speed 0.01× u− 0.5× u
u Target average uplift 5.0 10−4my−1

k Erosion constant 2.5 10−7 − 8 10−7m−1

θmax Talus angle 30◦ − 50◦

l Landslide speed 10−2my−2

Table 4.1: Parameters of our system and ranges of values used in the examples.

We developed our algorithm in C++ and with OpenGL and GLSL APIs for real-time
rendering. High quality images were directly rendered by streaming our synthesized terrains
to Terragen 3 which was also used to generate terrain surface details. All examples were
generated on a desktop computer equipped with an Intel Xeon E5 CPU, clocked at 3.7GHz
with 16GB of RAM. We used a Wacom CINTIQ 24HD multitouch table for the input.

4.5.1 Architecture

We separated the user-interaction and the tectonic simulation into two CPU threads. The
first thread handles the user-interaction, the visual feedback and gesture analysis. The viscous
material simulation, fold computation and tectonic simulation were performed in the second
thread. The separation of tasks into independent threads allowed us to provide authoring in
real time with an average performance over 30Hz.

The viscous crust compression is computed on a grid of resolution 1024 × 1024. The
algorithm (Section 4.2) is straightforward to implement on GPU because each grid cell can
be computed independently. We achieve high processing performance (10ms) with no visible
grid or aliasing artifacts.

λ [m] Skeleton edges Skeletons [ms] Height [ms]

7, 000 955 0.9 2.1

3, 000 4, 246 3.7 1.4

1, 000 36, 715 53.0 2.8

Table 4.2: Statistics for the different folds: wavelength (in m), number of skeleton edges,
and computation time for the skeleton and the elevation (in ms).

72

4.5. Implementation, results and discussion

The folding simulation is divided into two parts: the construction of fold skeletons (Sec-
tion 4.3) was implemented on the CPU, whereas the fold height computation using the inverse
distance transform was developed on the GPU. Because the distances between the skeleton
edges are small and regular, we developed a GPU algorithm that renders small rectangles
around each line, no larger than the theoretical wavelength, and output the distance to the
line at each pixel. The distance at the junction of two lines is defined as the minimum of the
results. The performance of this step is detailed in Table 4.2.

The terrain surface is a mesh with 10, 000 vertices for a 100 × 100km2 terrain. The
generation process is fast enough to guarantee interactive visual feedback. One iteration
takes 10 ms on average and a 5 million years simulation takes only 5 iterations. Thus, we can
perform these iterations interactively before updating the terrain on screen. The parameters
used in our setup are reported in Table 4.1.

Figure 4.11: Real-time rendering (left) and the same terrain with details generated by
Terragen (right).

Only a few post processing steps are needed to achieve high quality rendering. First, the
elevation is recomputed off-line by combining the uplift maps resulting from our method with
erosion simulation (Chapter 3) with a smaller time step and a larger resolution (1, 000, 000
vertices). A simulation step runs in 4s on average and we need ≈ 100 iterations to obtain
a final terrain. Finally, we add noise weighted by a function of the slope and the eleva-
tion to obtain small surface displacements that are shaded during the final rendering step
(Figure 4.11).

73

Chapter 4. Interactive manipulation of tectonically driven uplift

4.5.2 Qualitative and quantitative results

Sculpting sessions. Figure 4.12 demonstrates the interactive local and global control over
the entire process which is one of the important contributions of our method. The user mainly
controls his/her design by using hand-on interaction on a multitouch table. By placing and
moving both hands on the table, the continental plates are set in motion. The arrows provide
visual feedback about the plate shape and location and their rigid transformations are defined
by using finger gestures. The use of the fold refinement tool is illustrated in Figure 4.12 (3).

1. Initial setting 2. Plate movements

3. Local refinement 4. Final elevated terrain

Figure 4.12: Successive steps of a sculpting session. The user starts by setting the move-
ments of the plates (1 and 2), before adding local details by choosing folding directions and
prescribing specific elevations (3) to get the final result (4).

74

4.5. Implementation, results and discussion

Resulting terrains. Figures 4.18 and 4.13 show high quality renderings. Notice the overall
asymmetric range, the alignment of the sub-ranges orthogonal to the compression direction,
and at lower scales, the folded strata appearing along eroded cliffs. Figure 4.19 shows the
effects induced by the layered erosion properties on the landforms of the terrain.

In addition to producing still versions of high quality terrains, our method can also be
used to produce animations of the formation of mountain ranges in cross section and then as
a full rendering.

km
10 50

km
2 10

km
1 5

Figure 4.13: The user sculpts a mountain range. The results capture the whole range
coherency, and massifs are aligned with the fold lines. Eventually, the folds leave marks after
erosion.

75

Chapter 4. Interactive manipulation of tectonically driven uplift

4.5.3 Validation and discussion

This method was designed in collaboration with an expert in geology, Jean Braun, who helped
us validating the modeling choices and the results. A detailed validation follows:

Our simulation Geological simulation

Figure 4.14: Comparison between a terrain profile generated by using the compression step
only in our method (top) and a geological simulation result, also neglecting folds (bottom,
courtesy of J. Braun (Braun et al. 1994)). Note the similar nearly uniform uplifts in the
central parts.

Figure 4.14 shows a comparison between results from geology (Braun et al. 1994) and a
mountain profile created by our algorithm. It validates the fact that our method adequately
captures the vertical displacement due to crust compression. Figure 4.15 shows the folding
of one layer in comparison to a geological simulation result (Fernandez et al. 2014).

km10 50

Figure 4.15: Folding validation: Comparison between a geological simulation result
from (Fernandez et al. 2014) (left), and a top view of our results (right), both rendered
using the same shading.

1. Fold direction 2. Wavelength
0 π/2 10 km 24 km

Figure 4.16: Folding validation: Comparison of the angles between fold normals and com-
pression direction (left) and the histograms of wavelengths (right) between (Fernandez et al.
2014) (blue) and our results (red).

76

4.5. Implementation, results and discussion

We also provide statistics computed on the graph of these folds. They include wavelength
histograms and an histogram of angles between the fold direction and the orthogonal to the
compression direction (Figure 4.16), and a comparison of the graph properties (Table 4.3).
We choose to measure three values that are essential to the visual aspect of the folded regions,
namely the number of end nodes, the number of triple joints, and the average fold length
(between the nodes or triple joints).

Our results Geological simulation (Fernandez et al. 2014)

End nodes 21.2 % 25.6 %

Triple linkage 7.5 % 5.6 %

Average fold length 132 km 165 km

Table 4.3: Comparison of folds graph properties between our results and a geological simu-
lation.

km
5 25

km
10 50

Figure 4.17: Comparisons between real mountains (left) and our results (right). Top: we
compare the main fault with New Zealand’s Alps. Bottom: we focus on eroded folds in the
Andes.

Our results are compared side-by-side with real data from USGS in Figure 4.17. We
selected two mountain ranges that form along plate boundaries, such as the main fault of New
Zealand’s Alps (Figure 4.17, top) and the Cerro Chorolque in Southern Bolivia (Figure 4.17,
bottom), along the eastern side of the Andes. Both formed by thrusting and folding of layered
rocks under compression. They differ mostly by their width, with the New Zealand Alps being
much narrower than the Andes. Deformation in the New Zealand Alps is focused on a single

77

Chapter 4. Interactive manipulation of tectonically driven uplift

crustal-scale fault (the Alpine Fault) and built out of a single lithology, the Otago Schist,
whereas in the Andes, the stratigraphy is more complex and controls the spacing between
the crustal-scale faults and folds. The main difference between real data and our results is
caused by glacial erosion (Chapter 5), which is not captured by our method, and results in
broader, flat-bottom (or U-shaped) valleys.

1 2

3 4

Figure 4.18: Various 100 km terrains obtained from the same overall uplift but with different
folds layout: only viscous simulation (1), a single layer (2, wavelength λ = 7 km), two fold
layers (2, λ1 = 10 km, λ2 = 5 km) and (3, λ1 = 15 km, λ2 = 3 km).

The importance of including folding and a stratigraphic control on erodibility is evidenced
in our examples. Where such folding and stratigraphic control is not included (as shown in
Figure 4.18.1), all valleys strike perpendicular to the axis of the mountain. Although such an
organization of drainage can be observed locally, the morphology of most mountain ranges
at the largest scale is strongly controlled by crustal-scale folding. In some mountain ranges,
folding is mainly controlled by a single layer (Figure 4.18.2), such as in the Zagros Mountains
in Iran which formed by folding of a sedimentary sequence above a weak salt layer. Various
results can be obtained by changing the relative size of each fold layer: Figure 4.18.3 includes
two layers of related fold wavelength (10 and 5 km), and can be compared to the real data from
the Andes (Figure 4.17, bottom), while Figure 4.18.4 shows a mountain range formed from a
larger difference in fold wavelength (15 and 3 km). At the smaller scale, most mountainous
landforms are also strongly controlled by the progressive exhumation of rock layers of varying
resistance to erosion (Figure 4.19). A dramatic example of this, that should be compared
to our simulated landscape shown in Figures 4.20.2 and 4.19.3, is the so-called velodrome
structure near the city of Digne in the French Alps (Figure 4.20.1) which formed by erosion

78

4.5. Implementation, results and discussion

of a gently folded stack of sedimentary rocks of alternating resistance to erosion.

3

11

3

2

2

Figure 4.19: The difference of erosion properties among rock layers induces different effects:
cliffs (1), individual small summits (2), or circus (3).

2. Synthesized terrain1. Real terrain

Figure 4.20: Comparison of a photograph showing real folds (1) and our synthesized terrain
(2).

Limitations Our sculpting method has some limitations. First, the fold model we use
is only valid at the start of the folding: when a real mountain fold grows too high, the
relation with wavelength used in this paper is no longer true, and the fold does not have a
sinusoid shape anymore (Schmalholz et al. 2000). A volumetric simulation would be necessary
to compute more complex behaviors such as fold distortion (Kaus et al. 2006), as well as

79

Chapter 4. Interactive manipulation of tectonically driven uplift

secondary faults within the crust. While such a simulation would be interesting and would
capture a wider range of geological situations in the generated folds, it would be also difficult
to integrate in a fast and simple control tool.

Second, we do not allow for a plate setup that evolves over time, though it is the case in
several real mountain ranges. This would be more geologically correct, but it would provide
less intuitive manipulation.

Finally, our method does not lend itself for precise editing as it only provides the user
with a high level of control over the final result. Although this limitation is alleviated by the
possibility to edit fold skeletons, the user cannot author certain details, such as the number
of dendritic patterns while keeping the other unchanged as shown in Figure 4.19.

4.5.4 User study

We conducted a user study to evaluate the usability of our mountain sculpting tool. It was
tested on 11 subjects who had low to medium knowledge of geology. Among them, three
were professional CG artists. The participants first performed an informal learning trial in
order to understand the tool. After that, they were asked to reproduce real mountain ranges
shown in two images: the Caucasus and the Alps. The users had to evaluate the interactivity
and the effectiveness of the method, and the quality of their results. The measurements were
rated on a 1-4 Likert’s scale.

The quantitative part of the user study showed that the participants had a positive ex-
perience while working with our sculpting tool. The effectiveness of the tectonic gestures av-
eraged 3.3, the local control tool received a mark of 2.8 and the overall intuitiveness was 3.0.
The users rated their own achievement in reproducing the shape of real ranges with an average
of 2.6.

The qualitative part of the user study included some positive comments from the subjects
regarding the simplicity of the first contact, the enabled creativity, and the realism of the
results. An important feature of the editing tool was the use of arrows to symbolize tectonic
motion. The automatic update of arrows during interaction so that they always show the same
rigid transformation, was pointed out by users: some found this counterintuitive, whereas
most found it to be of great help. The interactivity and simplicity of our system have potential
applications in education, in particular for teaching geology: in the field, the geometry of a fold
may be partly obscured by the way erosion has revealed it to the geologist. Our system can
show the fold as texture on a cliff wall after erosion as well as its true 3D subsurface geometry,
making it a useful tool for training geologists in reconstructing the 3D representation of a
folded layer from its exposed geometry.

4.6 Conclusion

Mountain uplift and erosion (Chapter 3) are among the dominant phenomena that shape
terrain surface. We propose a new, geologically-inspired method to compute the uplift on
sedimentary rock regions. We use two coupled sub-models, one for modeling the local thick-
ening of the earth’s crust due to compression of colliding plates, and the other for modeling
multi-scale folding behavior. Interleaving these two sub-models results in a complex uplift

80

4.6. Conclusion

map simulating the growth rate of mountain ranges between tectonic plates. This enables us
to generate visually compelling terrains at interactive rates.

The achieved interactivity allowed this method to be controlled through a sculpting
metaphor on a tactile device. Thus, we propose the first approach enabling users to progres-
sively sculpt large-scale mountain ranges by using hands-on interaction with displacement
gestures, as if they are sculpting plasticine.

Independent of the interaction, the terrain the user manipulates evolves according to first-
order geological laws. Consequently, our validations show that terrains modeled using our
system capture important landform features of mountain ranges, such as the asymmetry in
landform resulting from the presence of a crustal scale fault and multi-scale folding of crust
layers appearing in eroded regions.

Of the limitations discussed in Section 4.5, the most important are the lack of secondaries
faults and the handling of the history of plates motion. In particular, considering a lateral
component to the uplift (Castelltort et al. 2012) and proposing a timeline (a control tool
similar to the one used in Chapters 6 and 7) controlling plates activity would leverage the
quality and diversity of our results. These are open possibilities for improving this method.
A possible extension is the application of our sculpting system as an educational tool for
teaching geology. Note that towards this direction, our model has already been selected to
be demonstrated as an interactive experiment within the MusX, the museum of sciences at
Ecole Polytechnique.

In the next chapter, we show how the quality of the terrain surface can be improved by
simulating glacial erosion in addition to fluvial erosion effects.

81

Chapter 5
Glacial erosion

Contents

5.1 Overview . 85

5.1.1 Glacial erosion in Geology . 85

5.1.2 Governing equations for glaciers . 86

5.1.3 Efficient simulation of glacial erosion 87

5.1.4 Secondary erosion . 88

5.1.5 Main algorithm . 88

5.2 Ice flux propagation over the terrain 89

5.2.1 Path graph computation . 90

5.2.2 Ice flux propagation . 90

83

Chapter 5. Glacial erosion

5.3 Steady-state and erosion . 91

5.3.1 Computations at each iteration . 92

5.3.2 Convergence . 94

5.4 Debris flow, fluvial and hill slope erosion 95

5.4.1 Debris flow and fluvial erosion . 95

5.4.2 Hill-slope erosion . 95

5.4.3 Interactions with glacial erosion . 97

5.5 Results and discussion . 97

5.5.1 Validation experiments . 98

5.5.2 Efficiency and speed . 103

5.5.3 Limitations . 105

5.6 Conclusion . 106

Glacial erosion carved large volumes of rock during the past glaciations. The effect of
glaciers on a terrain is somehow dissimilar to the effect of other phenomena. Although the
incidence of glaciers and ice sheets has decreased dramatically since the last major glaciation,
some 18,000 years ago, their legacy remains. During previous ice ages, which have dominated
the Earth’s climate over the past three million years, the abrasion of fast flowing glaciers
has shaped most of the terrains, sculpting valleys, fjords and mountain ranges such as the
Cordillera and Alps. Mountain glaciers, in particular, create specific landforms, including
U-shaped (or tunnel) valleys, cirques and arêtes, hanging valleys at the convergence of two
glaciers (of which the Bridal Veil Valley in Yosemite is a well-known example), and glacial
lakes, as well as smaller-scale moraines and drumlins that form near the margins of glaciers
and ice sheets.

In previous chapters, we introduced geologically based methods for generating terrains
by coupling fluvial erosion (Chapter 3) with tectonically driven uplift (Chapter 4). These
techniques lead to V-shaped and dendritic valley patterns and cannot explain the formation of
the glacial features–an issue shared with previous simulation methods in Computer Graphics
(Chapter 2, Section 2.3.2). Therefore, we extend our approach by incorporating glacial erosion
in the temporal simulation of large scale terrains.

From the key observation that the response time of glaciers is several orders of magnitude
below the response time of glacial erosion, we build a new implicit simulation method for
glacial erosion, under the assumption that the glacier flows at steady state.

In order to effectively simulate glaciers, it is important to understand their nature as
permanent bodies of dense ice, resulting from a balance of snow accumulation at high alti-
tudes, and melting and sublimation at lower altitudes. They flow very slowly under their own
weight; the fastest glaciers on Earth move at a speed just above 10 km/yr. While moving,
they abrade surfaces and transport debris from the underlying bedrock. As a result, the carv-
ing of U-shaped valleys occurs over an extended period, from tens of thousands to millions
of years, and this makes glacial simulation challenging.

Although the flow of glaciers can be modeled using a shallow ice approximation (SIA) of
the Navier-Stokes equations, time-steps used in existing computational methods are limited
to a few days at most in order to achieve convergence. This makes simulation over the

84

5.1. Overview

required time-period impractical. To compensate, geologists use very coarse terrain grids for
glaciation that are insufficiently detailed for the purposes of Computer Graphics.

We present a novel, geologically-inspired model of glacial erosion that allows for the
generation of detailed heightfields (typically, extending over 50 × 50km, with discrete cells
50 − 100m in extent). Our method generates medium to large-scale glacial landforms, such
as U-shaped and hanging valleys, cliffs and glacial lakes.

Given the slow pace of ice flow, we are able to approximate the evolution of a glacier
as a series of equilibrium states. This enables us to generate a new state and apply erosion
every 1,000 years to account for a slowly-evolving climate. Using our method, we are able to
capture the expansion and retreat of glaciers during typical glacial and interglacial periods,
and their erosive impact on the underlying terrain. We also extend geomorphological models
to incorporate erosion due to debris entrainment, which is essential for capturing the evolution
of glaciated landforms over long periods, due to the steep slopes glaciers leave behind them.
Our method generates characteristic landforms that are visually significant but impossible
to obtain with existing simulations, such as hanging and U-shaped valleys, eroded cliffs, and
glacial lakes.

In summary, our main technical contributions are:

• A novel, efficient solution for generation of the steady-states of glacier surfaces.

• A mechanism for enabling the simulation of a glacial erosion step within the same
process.

• The incorporation of slope erosion on surfaces exposed by retreating ice.

5.1 Overview

We extend terrain generation to include the effects of glacial erosion. The challenge is twofold:
achieving accuracy sufficient to capture the characteristic glacial shaping of terrains and cop-
ing with simulation over geological time-scales. Our method takes inspiration from geological
models and adapts and extends them to fit the requirements of Computer Graphics. In partic-
ular we increase computational efficiency, and both spatial extent and sampling resolution, as
well as incorporate complex phenomena such as erosion due to transportation of cliff debris.

The input to our algorithm is an initial digital elevation model (DEM) defined on a regular
grid. Given that the time spanned by our simulations is sufficient for evidence of tectonic
uplift, we also allow the user to submit an uplift map defining on a per-cell and per time-step
basis a change in bedrock elevation that accounts for mountain growth.

Our algorithm simulates the combined action of ice flow and glacial erosion of the under-
lying bedrock, as well as smaller-scale erosive phenomena, such as debris transportation. The
output is a layered model representing bedrock elevation and ice thickness at each simulation
step.

5.1.1 Glacial erosion in Geology

In contrast to Computer Graphic research, geologists have explored and validated models for
ice-flow and glacial erosion over many decades (Braun et al. 1999; Egholm et al. 2011; Harbor

85

Chapter 5. Glacial erosion

et al. 1988; Headley et al. 2012; Mahaffy 1976; Sternai et al. 2013). Their motivation is
a search for governing equations that match empirical observations, from measured ice flows
to existing identified and classified landforms. Our choices for the ice flow equations and
resolution methods are motivated by this literature, as explained next.

Glacier flow is usually modeled using a Shallow Ice Approximation (SIA) model. This is a
0-th order quasi-static variant of the Navier-Stokes equations (Mahaffy 1976), where viscosity
is computed using Glen’s law (Glen 1955; Nye 1957), stating a power law relationship between
strain and stress (Headley et al. 2012).

Glacial erosion is considered proportional to the speed of the ice in contact with bedrock (Her-
man et al. 2015). Although ice movement is the sum of a deformation velocity ud and a sliding
velocity us (Knap et al. 1996), sliding has been shown to be dominant over internal glacier
deformation in temperate, wet-based glaciers that form in high-relief mountainous areas. This
is particularly true in regions where the ice thickness is low to moderate, as supported by
field measurements (Savage et al. 1963). Therefore, we neglect the deformation velocity.

Although valid for large glaciers or ice sheets, standard SIA fails to account for constriction
in narrow alpine valleys and thus cannot predict the formation of characteristic U-shaped
valleys (Egholm et al. 2011). Braun et al. 1999 tackle this by adding a factor inversely
proportional to the curvature of the valley in the sliding speed of the ice, which in turn
dictates erosion of the underlying bedrock.

Solving the SIA and computing the associated glacial erosion is typically performed using
an Eulerian approach with a linearized Alternating Direction Implicit (ADI) scheme (Mahaffy
1976). Unfortunately, the unconditional stability of ADI is not guaranteed for non-linear
equations such as the SIA model, forcing the use of relatively small time steps of less than one
year. This makes glacier simulation impractical on high resolution grids, given the time-spans
involved (105 years or more). Therefore, geologists usually solve the equations for 2D profiles
or coarse 32 × 32-sized grids, which do not provide accuracy sufficient for plausible terrains
in Computer Graphics applications. Also, to the best of our knowledge, geologists have never
combined glacial erosion with more local erosive phenomena, such as debris slippage from
steep slopes left by retreating glaciers.

5.1.2 Governing equations for glaciers

Let us consider a glacier, on a bedrock of height z, with sliding but no deformation, of local
ice thickness h, elevation s = z + h, and ice velocity us (see Figure 5.1).

E

Glacier

h
Bedrock

z

s

us

Figure 5.1: Notation for input values

The Shallow Ice Approximation (SIA) yields the following equations for a temporal change

86

5.1. Overview

in ice thickness (Headley et al. 2012):

∂h

∂t
+∇·hus = M, (5.1)

where M is the mass balance denoting the local difference between snow precipitation and
melting at a point. This is computed as a proportion β of the difference between the local sur-
face elevation and the equilibrium altitude E at which melting counterbalances precipitation:

M = β (s− E) . (5.2)

Equation (5.1) only holds when h > 0; otherwise, h is set to 0 as a boundary condition.
The sliding velocity us can be expressed as by Bindschadler 1983:

us = −ks µh2‖∇s‖2∇s, (5.3)

where ks is the sliding coefficient. The variable µ is used to mimic the constriction of valley
walls on the ice flow responsible for generating the characteristic U-shapes (Braun et al. 1999),
and is expressed as:

µ =

(
1 + kµ

∂2z

∂2fx

)−1
, (5.4)

where kµ is a parameter defining valley width and ∂2z/∂fx is the second derivative of the
bedrock elevation in a direction orthogonal to the ice flow.

The erosion of the underlying bedrock caused by a glacier can then be written as:

∂z

∂t
= −ke ‖us‖l. (5.5)

The erosion parameters l and ke show little variability across rock types (Herman et al.
2015). Two possible setups are given: l = 2.02 and ke = 2.7 10−7m1−l/year1−l, or l = 1
and ke = 10−4. We chose the second setting in our model, an exponent l = 1 drastically
simplifying the equations.

5.1.3 Efficient simulation of glacial erosion

Although based on validated equations, our solution departs from the standard integration
of the SIA equation used in geology. Rather, we approximate the ice surface as a succession
of steady states, with a specific schedule of ice flow and erosion computation over the terrain
grid. An important improvement is that our method allows very large time steps, well suited
to the temporal scale of the modeled phenomena, and achieves linear computation time at
each step with respect to the number of grid cells.

This relies on two key insights: first, that the fast pace of ice-flow (with respect to
erosion time scale) enables a steady-state model of glacier evolution, and second, that the
glacier formation and its erosive impact can be computed, efficiently and simultaneously, by
applying a specific traversal order over grid cells.

More precisely, computing the flux of ice (namely, the quantity of ice exiting a cell)
follows a specific task scheduling, which ensures that flux in a given cell at elevation s is

87

Chapter 5. Glacial erosion

always computed before neighboring cells of lower elevation. Once the flux pass is complete,
the new steady-state ice thickness and bedrock shifts due to erosion are propagated upwards
in reverse. Note that this scheduling circumvents an O(n log(n)) pre-sorting of n cells with
respect to their current altitude at each iteration of the ice steady-state computation. In
contrast, each iteration of our algorithm runs in linear time.

The combination of a steady-state model with a linear-time solution makes our method
fast and stable, enabling the simulation of a full cycle of advancing and retreating glaciation
over a 25− 50km terrain with a cell size of 50− 100m in less than 30 minutes.

5.1.4 Secondary erosion

Even though snow and ice cover much of a landscape during periods of glaciation there are still
steep uncovered surfaces that are subject to other forms of erosion. Furthermore, exposure
during interglaciation should not be neglected as it also contributes to the erosion history
written in the terrain surface.

Fortunately, our Eulerian solution, where bedrock and ice are represented as distinct layers
on a regular grid, allows us to switch between glacial and secondary erosion effects based on
ice thickness. In particular, we incorporate debris flow (the steepening effect of rockslides
scouring slopes) as well as standard fluvial erosion (water channels cut into the landscape)
and hillslope erosion (the rounding out of crests and valleys due to sediment transport).

5.1.5 Main algorithm

In summary, our algorithm takes as input an initial terrain stored on a regular grid, and
outputs the eroded terrain and the ice thickness. We assume that for each time step the ice
surface is in a steady-state equilibrium. This state is iteratively computed for each time step
(of duration dt) as follows:

Algorithm 5.1: At each time step:

if t = 0 then
s0(t = 0)← z ;

else
s0(t)← s(t− dt) ;

k ← 0 ;
repeat

k ← k + 1 ;
Build a computation order based on surface altitude sk−1(t);
Compute the ice flux qk from highest to lowest altitude.;
foreach cell c in upward computation order do

if qk(c) > 0 (there is ice) then
Solve ice and erosion equations;
sk(t)← zk(t) + hk(t);

end

until changes in s(t) are below a defined threshold ;
Add the effect of the other erosion phenomena.

88

5.2. Ice flux propagation over the terrain

Name Value Unit

Physical

β 1.0e−3 y−1

ks 1.7 m−1 y−1

l 1 1
ke 10−4 1

Control

E 1e3 − 4e3 m
kµ 1e5 m

Table 5.1: Glacial erosion parameters

User control is provided through a small set of intuitive parameters that have a straight-
forward relationship to the shape of the resulting eroded landscape, namely the equilibrium
line altitude E, which defines the mean altitude of glaciers, the precipitation coefficient β,
which controls glacial extent and the constriction parameter kµ, which relates to the width
of U-shaped valleys. The remaining parameters are all pre-set using validated values from
geology literature (see Tables 5.1 and 5.2).

Name Value Unit

Fluvial erosion

kf 5 10−6 m2m−1year−1

m 0.4 1
n 1 1

Hill Slope

kh 5 10−3 m2 year−1

Debris Flow

kdf 10−4 myear−1

kda 5 m−2 q

q .2 1
q′ 1.5 1

Table 5.2: Parameters used in the other erosion processes

5.2 Ice flux propagation over the terrain

Crucial to our technique is a proper ordering of cells preparatory to propagating ice-flux.
This takes place for each time step and on every iteration of the glacial steady-state search.

Equations (5.3) and (5.1) lead to following relationship between ice thickness and surface
slope at steady-state equilibrium:

∇·ks µh3‖∇s‖2∇s+M = 0, (5.6)

where the first term represents ice transport and M is the mass balance from Equation (5.2).
We use Equation (5.6) to prepare the required order of evaluation for ice flux propagation.

89

Chapter 5. Glacial erosion

5.2.1 Path graph computation

Let us consider a graph whose nodes are cells of the terrain, with edges that connect a cell
to each of its eight neighbors. We first note that the glacier corresponds to all terrains cells
with ice thickness h > 0. This always occurs where M > 0 or equivalently when s > E
(see Equation (5.2)). Therefore, there exists a path with positive ice thickness between each
cell of the glacier and a cell where s > E that also corresponds to a local maximum of the
terrain. We can also show that at least one of these paths is of monotonically increasing
surface altitude. Otherwise, there would be a local maximum on the surface with M < 0,
indicating a flow out of that local maximum and thus h = 0. The set of all these paths forms
a Directed Acyclic Graph, which we call the Path Graph, denoted as G, and which is used to
order computations on the ice surface.

To compute the Path Graph G for each cell c, we build a list of neighbors
with strictly higher surface elevation (donors Dc) and, similarly, a list with
lower elevation (recipients Rc). The computation order is obtained through
a topological sort on G, which ensures that all donors of a cell c are parsed
before c. This is different from the stream graph introduced in Chapter 3
in that all lower neighbors are considered as receivers, and not only the one
with the steepest slope.

Local minima in the ice elevation that would otherwise result in sink cells in the graph
are removed by following the strategy introduced in Chapter 3, Section 3.2.3. The depression
filling variant is chosen, where the ordering of the nodes in a depression is computed by
assuming that the depression is filled.

The next step consists in solving Equation (5.6) coupled with Equation (5.5) along this
path graph.

5.2.2 Ice flux propagation

Considering a surface S on the terrain, delimited by a contour l, Gauss’s theorem on Equa-
tion (5.6), gives:∫∫

S
M dS = −

∫∫
S
∇·ks µh3‖∇s‖2∇s dS = −

∮
l
ks µh

3‖∇s‖2∇s · nl dl (5.7)

where nl is the local normal of the contour l.

s

S
c dx

s . n = 0 We compute the ice flux by applying this equation to each
discrete cell c. This is done by constructing a contour l (see
figure thereagainst) with a line segment of length dx (the grid
cell size) orthogonal to the gradient of s, and with the remain-
ing curve of the loop adjusting to the ice flow direction, such
that ∇s · nl = 0.

With q(c) denoting the flux leaving cell c, we can rewrite
Equation (5.7) as:

q(c) =

∫∫
S
M dS = dx ks µh

3(c)‖∇s(c)‖3. (5.8)

90

5.3. Steady-state and erosion

We solve this equation according to the previously defined computation order. This
means that ∇s can only be computed from the recipients (lower neighbors) of c. We choose
to estimate ‖∇s‖ as:

‖∇s(c)‖ ' 1

|R(c)|
∑

r∈R(c)

s(c)− s(r)

d(Cc, Cr))
(5.9)

where |R(c)| is the number of recipients of c and d(Cc, Cr) is the distance between the centroids
of cells c and r. The approximation is improved by including more neighbors: we thus choose
recipients from the 8 direct neighbors of c.

During iteration k, we propagate qk based on the surface gradient ∇sk−1(c) computed
at iteration k − 1. The flux is computed from high to low. Let us denote q(c → r) as the
flux of ice between a cell and one of its recipients. Mass conservation dictates that all of q(c)
should be distributed among the recipients of c, so there exists an α(c→ r) > 0 between all
cell-recipient pairs, such that:

q(c→ r) = α(c→ r) q(c) and
∑

r∈R(c)

α(c→ r) = 1. (5.10)

Experimentally, we found that the following value for α provides an effective distribution
of flux.

α(c→ r) =
(s(c)− s(r))/d(Cc, Cr)∑

r′∈R(c)(s(c)− s(r′))/d(Cc, Cr)‖)
. (5.11)

In summary, at iteration k of Algorithm 5.1 from Section 5.1.5, the building of computation
order and calculation of ice flux expand as follows:

Algorithm 5.2: Flux Propagation

foreach cell c do qk(c)← SM ;
foreach cell c in descending computation order do

foreach r ∈ R(c) do
Compute α(c→ r) from sk−1 (Equation (5.11));
qk(r)← qk(r) + α(c→ r) min(0, qk(c));

end

end

Note that in the above, flux is clamped to 0 since the glacier is only defined where q > 0.

5.3 Steady-state and erosion

In the second half of each iteration (Algorithm 5.1), cells are processed upwards (in the
inverse of flux order) in order to evaluate the steady state of ice h and bedrock z at a cell,
from values at receiver cells. Unless specified otherwise, all computations below hold for cell
c, at time t and iteration k (from values computed at iteration k−1). Initialization considers
two cases: 1) if k = 0 bedrock is initialized as z = z(t − dt) everywhere; 2) otherwise, the

91

Chapter 5. Glacial erosion

new flux information is used to reset ice and bedrock elevation outside the glacier: h = 0 and
z = z(t− dt) when q ≤ 0.

5.3.1 Computations at each iteration

We compute glacial erosion by using Equation (5.8). Our fundamental approach is to solve
the ice equation with a variable bedrock topography governed by Equation (5.5). Let y be
the unknown depth of erosion. By combining Equations (5.5) and (5.8) we arrive at:

y =
∂z

∂t
= −ke(µks)1/3

(q
dx

)2/3
‖∇s‖ (5.12)

This is the primary erosion equation and the remainder of this section explains how we
recast the two unknowns ‖∇s‖ and µ in terms of y, so that the whole equation can be
re-expressed purely as a function of y.

We begin with ‖∇s‖, defined by Equation (5.9). We need to express s = z+h as function
of y. Computing the term-by-term quotient of Equation (5.12) with Equation (5.8) enables
us to arrive at h as a function of y:

y dx/q = −ke/h⇔ h = −ke q/(y dx). (5.13)

Recall that z = z(t− dt) + y dt, and so this yields:

‖∇s(c)‖ = σ0 y + σ1 +
σ2
y
. (5.14)

The coefficients can be computed from values at the receiver cells and from bedrock elevation
at time t− dt:

σ0 = dt
∑

r∈R(c)

(|R(c)| d(Cc, Cr))−1

σ1 =
1

|R(c)|
∑

r∈R(c)

zt−dt(c)− s(r)

d(Cc, Cr)

σ2 = −ke
q

dx

∑
r∈R(c)

(|R(c)| d(Cc, Cr))−1 .

The constriction factor µ (Equation (5.4)) is expressed as:

µ−1 = 1 + kµ
∂2z

∂fx
= τ0 y + τ1 (5.15)

where ∂2z
∂2f x

is the directional derivative of z in the direction f orthogonal to ∇sk−1. We

estimate ∇s as:

∇s '
∑
r∈Rc

α(c→ r)
x(r− x(c)

d(Cc, Cr)

92

5.3. Steady-state and erosion

where α(c → r) was computed in Equation (5.11), and x(c) is the position of cell c. The
orthogonal direction is then obtained as f = (−(∇s)y, (∇s)x)/‖∇s‖.

The directional derivative is decomposed into the three second derivatives of z, which we
express using finite difference convolution kernels:

D ∂2

∂2x

=
1

dx2
[−1, 2, 1]

D ∂2z
∂x∂y

=
1

dx2
[−1, 0, 1]T [−1, 0, 1]

D ∂2z
∂2y

=
1

dx2
[−1, 2, 1]T

Let K be the directional derivative kernel:

K = f2xD ∂2z
∂2x

+ 2fx fyD ∂2z
∂x∂y

+ f2yD ∂2z
∂2y

We can now express the coefficients of the constriction factor:

τ0 = −dt kµK(1, 1)

τ1 = 1− kµK(1, 1) zt−dt(c) +
∑

n∈N(c)

K(n− c) z(n)

where N are the 8 direct neighbors to the cell c, and n − c is the 2 dimensional offset
between cells n and c in the grid. When computing this directional derivative, the bedrock
elevations coming from the receivers are already correct for this iteration, but others coming
from the donors have not been updated yet. This is not an issue because these elevations are
progressively improved at each iteration.

Finally, we combine Equations (5.14) and (5.15) to arrive at a new expression, where y is
the only unknown:

(τ0 + y τ1)
1/3 y + σ′0 y + σ′1 +

σ′2
y

= 0, (5.16)

with σ′i = keks
1/3
(q
dx

)2/3
σi, for i ∈ [|0, 2|].

Since there is no close-form solution for Equation (5.16), we solve it using a standard
Newton-Raphson iterative scheme, as follows: We build a series of yn that converge quickly
to y, using:

yn = yn−1 − F (yn)/F ′′(yn)

where F (y) = 0 is exactly given by Equation (5.16). The constriction only applies when
the Laplacian is positive, i.e., when τ0 + y τ1 > 1. Second, we try to find y, the variation
of bedrock height, that is always negative. There are some constraints on the coefficients:
σ0 > 0, σ2 < 0, τ0 < 0. The derivatives of F are:

F ′(y) =
τ1
3

(τ0 + y τ1)
−2/3 + σ′0 −

σ′2
y2

F ′′(y) = −2τ21
9

(τ0 + y τ1)
−5/3 +

2σ′2
y3

93

Chapter 5. Glacial erosion

Therefore, F ′(y) > 0 on the domain of admissible solutions and there exist at most one value
of y where F ′′(y) changes its sign. Moreover, F ′′(y) > 0 when y → 0 and F ′′(y) < 0 when
y → −∞.

We need to find an initial guess y0 for the iterative Newton-Raphson process that makes
yn converges to the solution y. The initial guess y0 should be between the final y and
min(0,−τ0/τ1) (above which the equation is not defined). This is a condition to avoid that
the series yn becomes positive, and thus might not converge.

We design the following algorithm for finding an initial guess. Set y−1 = (1 − τ0/τ1). If
y−1 < 0 and F (y−1) < 0, there is no possible solution with τ0 + y τ1 > 1. That means that
the erosion can not be constrained by the valleys because of the too low initial curvature.
This is solved by setting kµ = 0 and solving the second order equation:

(σ′0 + 1) y2 + σ′1 y + σ′2 = 0

which has always a single negative root.

Else, if F (y−1) ≥ 0 and y−1 < 0, then y0 = y−1 verifies the good conditions for conver-
gence.

The last case deserves more attention: y−1 > 0. If we find a bound B such that (τ0 +
y τ1)

1/3 < B, then an upper bound for y can be found by solving:

(σ′0 +B) y2+ + σ′1 y+ + σ′2 = 0

And y0 = y+ is a possible initial solution. A lower bound of y can be found similarly by
solving

σ′0 y
2
− + σ′1 y− + σ′2 = 0

and because (τ0 + y τ1)
1/3 is decreasing, the bound B can be found as B = (τ0 + y− τ1)

1/3.

From the amount of erosion y, we finally update h = −ke q/y/dx and z = z(t− dt) + y dt.

5.3.2 Convergence

If applied as it stands, the iterative process may not converge. We need to apply a relaxation
factor r directly after calculating y for a given cell, before progressing the next one. In our
implementation, we progressively lower the relaxation factor from r = 0.25 to r = 0.1:

h(c) = −r ke q
y dx

+ (1− r)hk−1(c)

s(c) = r (z(t− dt) + y dt+ h(c)) + (1− r) sk−1(c)

z(c) = s(c)− h(c)

A special case occurs when a cell has negative or zero flux q, while some of its recipients do
not. This can occur if successive iterations reach an invalid state, where a local maximum
is found with negative mass balance. In this case, we set the ice surface to the average of
its recipients. Given these adjustments, the process converged rapidly in all our experiments
(see Section 5.5).

94

5.4. Debris flow, fluvial and hill slope erosion

5.4 Debris flow, fluvial and hill slope erosion

Combining glacial erosion with other phenomena is essential to generating plausible terrains:
Indeed span of mountain formation is several orders of magnitude longer than glaciation
cycles, so most landscapes have been exposed to various climates, including interglacial pe-
riods where other types of erosion predominate. Even during ice ages, the lower glacier-free
foothills of a mountain are shaped by other prevailing erosion processes. We have selected
the following processes because of their impact on landscapes: debris flow, fluvial erosion and
hill slope erosion.

5.4.1 Debris flow and fluvial erosion

Rock- and mud-slides on steep slopes gain a lot of inertia and have a huge erosive power
that is responsible for gouging cliffs at small to medium scale. This phenomenon is crucial
because retreating glaciers leave exposed cliff faces that are susceptible to debris flow. Our
method improves on classical thermal erosion (Musgrave et al. 1989) that reduces bedrock
slopes toward some equilibrium angle: we add an important term referenced in geology (Stock
et al. 2003) that accounts for drainage:

∂B
∂t

= −kdf (1 + kdaA
q) ‖∇B‖q′ , (5.17)

where the constants kdf , kda, q
′, q are detailed in Table 5.2. The resolution method is very

similar to the one explained in Chapter 3 : a graph ordering is constructed from a single
recipient chosen among the neighboring nodes with the steepest slope. The drainage area
is computed as the water flows from top to bottom, accumulating the cell area dx2. The
erosion is then computed implicitly from bottom to top, by approximating the gradient of
the bedrock ∇B using the slope toward the recipient Cr:

‖∇B‖ ' B(Cc)− B(Cr)
d(Cr, Cc)

.

Fluvial erosion is solved similarly as explained in Chapter 3:

∂B
∂t

= −kf Am‖∇B‖n,

5.4.2 Hill-slope erosion

While fluvial erosion is valid for large drainage areas, hill slope erosion is dominant along
ridges and accounts for more subtle erosion due to wind, rain, or gravel and sediment ac-
cumulating over the course of long-standing erosion of the terrain (Braun et al. 1997). It is
modeled as a diffusion equation:

∂B
∂t

= kh ∆B.

We solve this equation by using an Alternating Direction Implicit Scheme (Wachspress et al.
1960).

95

Chapter 5. Glacial erosion

Hot Climate

Glaciation

Glacier Retreat

Figure 5.2: Timelapse of a landscape evolution. A mountain range is first computed for
3, 000, 000 years with mainly fluvial erosion on a hot climate (top). Then, the environment
undergoes a rapid cooling, and the ice erodes the bedrock for 100, 000 years (middle). The
glacier finally retreats, leaving behind large U-shape valleys, hanging valleys and ridges.

96

5.5. Results and discussion

5.4.3 Interactions with glacial erosion

Ice shields the terrain from other erosion processes so we do not apply them when the ice
thickness is above a threshold (3m in our experiments). This is, of course, an additional and
important reason why we track ice thickness during simulation.

When used, the processes are applied in the following order: glacial erosion, then where
ice is sufficiently thin, hill slope, followed by combined fluvial and debris flow erosion.

The erosion equations can be used on a static terrain for a short period of time. However,
given the scale of our simulations, applying an uplift map that accounts for the simultaneous
growth of mountain ranges under tectonic action is necessary to achieve plausible results.

5.5 Results and discussion

Alternation between warm interglacial periods and glaciation was simulated on a 50× 50km
terrain with 100m grid cells. As input, we used high persistence (p = 0.6) multi-fractal noise
(Ebert et al. 2002) to simulate variations in uplift and generate mountainous landscapes.
Warm climatic conditions were first simulated over a 3 million years period, with dt = 10, 000
years. A high equilibrium altitude for glaciers (E = 3, 250m) ensured that erosion came
mainly from fluvial, hill-slope, and debris-flow processes, even though glaciers affected moun-
tain tops. This was intended to form the terrain in preparation for glacial erosion (Figure 5.2,
top).

To demonstrate glacial erosion, we applied fast cooling conditions, which lowered E to
2, 650m over 30, 000 years. We reduced dt to 1, 000 years. The cooling continued for 70, 000
years, until E stabilized at 2, 500m (Figure 5.2, middle).

Then, we set the climate to fast warming conditions (E rose to 3, 500m in 20, 000 years),
to allow other processes to progressively smooth glacier-dominated landforms (Figure 5.2,
bottom).

The resulting terrain shows typical glacial patterns, namely U-shaped valleys, hanging
valleys, and extensive cliffs left by retreating glaciers (Figure 5.4), that can be compared with
landform features found in real mountain ranges (Figure 5.3).

Figure 5.3: Small side-valley glaciers converging on a large main glacier often leave hanging
valleys. Our results (left) have a similar structure to the Bridalveil Fall in Yosemite National
Park (right, c©Creative Commons).

We vary the erosion parameters to show a different landscape, illustrating the impact of

97

Chapter 5. Glacial erosion

different glaciations strengths. For the bedrock erosion in Figure 5.5, the equilibrium line E
was set to 110%, 70% and 30% of the initial bedrock elevation.

5.5.1 Validation experiments

We designed three experiments on a smaller grid size of 250 × 250 cells to show that our
method can produce the principal patterns formed by glacial erosion.

U-Shaped valleys. Figure 5.6 shows the formation of a U-shaped valley. The bedrock was
initialized with a V-shaped structure. We modified the mass balance function Equation (5.2)
so that M had a Gaussian distribution over the ice source, and was negative elsewhere.
We show the resulting glacier and the underlying eroded bedrock after 10 time steps of
10, 000 years each. As expected, the bedrock profile follows a parabolic curve, matching
measurements in geology (Svensson 1959). Our results also show how the valley profiles
are impacted by the constriction factor µ. This experiment shows not only the importance
of the constriction factor that widens the bottom of valleys, but also its importance and
effectiveness for the computation of erosion near the top of steady state glaciers. As the
erosion is computed using implicit integration, ice and erosion only exist relatively to the
next time step. Without constriction, the simulation always converges to a deep, infinitely
thin trench. The constriction factor forces the glacier to slow down where bedrock exhibits
high curvatures, which increases the amount of ice and enables the terrain to reach a stable
equilibrium.

Hanging valleys We explored the formation of a hanging valleys (Figure 5.7). We added
a second smaller V-shape valley to the terrain of the first experiment, using smaller localized
absolute value function in the y direction. We added a smaller ice source at the top of it.
We again show the resulting glacier, the eroded bedrock and the ice profile along the small
valley–now a hanging valley. The cross-section view depicts the ice profile of a valley eroded
with fluvial erosion only, for comparison. In contrast with fluvial erosion that smooths the
bedrock surface in the valley’s main direction, glaciers smooth the ice surface. When the
volume of ice between two valleys is different, the smaller valley will only be eroded until
the ice surface reaches the surface of the main glacier, leaving a strong discontinuity in the
altitude of the bedrock.

98

5.5. Results and discussion

Sharp ridges

Hanging valleys

Figure 5.4: Retreating of the glacier left a typical glacial landscape (top), marked by sharp
ridges and steep cliffs (middle), and hanging valleys (bottom). The main U-shape valley can
be seen in all three images.

99

Chapter 5. Glacial erosion

Warm Period

Small Glaciers

Glaciation

Figure 5.5: Non-photorealistic renderings enhancing ridges. Top: no glacier; middle: small
glaciers; bottom: full glaciation. The ice has been removed to show the progressive erosion
of the bedrock layer.

100

5.5. Results and discussion

Ice source

Experiment layout

Bedrock

Ice

Altitude (m)

Distance

0 750 m

1,800

0

Valley profiles with different values for kμ

Figure 5.6: Experiment for U-shape valleys. The layout (top left) consists of a simple
ice source on a slowly decreasing, regular V-shape valley. After 10 erosion time steps of
10, 000 years each, a glacier (top right) forms above an eroded U-shape valley in the bedrock
(bottom left). A valley profile is captured (bottom right) for different values of kµ: 10, 000m,
100, 000m and 1, 000, 000m. Solid lines show bedrock surface, dotted lines ice surface.

Glacial lakes. Our hypothesis for the formation of locally deeper areas due to glacial
erosion was to relate them to abrupt changes of ice volume. To demonstrate this, we built
a favorable landscape for lake formation. Three quarters of the landscape were subject to
uplift with random variations, the remaining quarter being left flat as a rest area for the
glacier. We artificially increased the altitude at the boundaries of the uplifted region during
fluvial erosion simulation, except at a single spot, in order to force all water to leave the
landscape at this specific spot. Running a fluvial erosion simulation during 1, 000 steps of
10, 000 years each led to a landscape with many convergent valleys (Figure 5.8, top left).
The ice simulation was then performed on 95 steps of 10, 000 years in order to simulate the
cumulated effect of several glaciations (Figure 5.8, top right), before progressively retreating
the ice during 40 frames of 1, 000 years each. As a result, deep depressions dug by the glaciers
left place to lakes (Figure 5.8, bottom). As expected, the convergence of valleys played an
important part in the location of these major depressions.

Debris flows. Our last experiment shows the effect of debris flow on a terrain. We built a
virtual initial peak on a 5× 5km terrain (10m resolution) from Fractional Brownian Motion
dampened with a Gaussian, and run the complete simulation with the following parameters

101

Chapter 5. Glacial erosion

Ice sources

Experiment layout

Bedrock

Ice

Ice surface
Bedrock (glacial erosion)
Bedrock (fluvial erosion)

Altitude (m)

Distance

0 4 km

2,000

0

Figure 5.7: Experiment for hanging valleys. The initial conditions (top-left) are set with
two V-shape valleys: a main one with wide lateral borders and tiny downward slope, and a
smaller orthogonal side valley. Ice sources were set at the upper part of both valleys. Results,
after 10 iterations of 10, 000 years, show two convergent glaciers with a continuous ice surface
at the junction (top right). The eroded bedrock (bottom left) shows a high discontinuity
where the hanging valley forms. A longitudinal cut of the small valley was extracted (bottom
right), showing the bedrock with a solid black line and the ice surface (dashed line). For
comparison, we added the result of a fluvial erosion on the same initial layout, where the side
valley connects directly to bottom of the main valley.

for erosion: (debris flow: q = 0.2, q′ = 2; kdf = 2.0 10−4myear−1; kda = 7.5m−0.4; fluvial
erosion : m = 0.7; n = 1.4; kf = 3.5 10−6m−1.4 year−1; hill slope 3 10−2m2 year−1). The
ice flow was constricted by an equilibrium line at 40% of the initial bedrock elevation. The
simulation was performed on 30 time steps of 10, 000 years each (Figure 5.9), top). Then the
ice was removed and we performed two new simulations of 10 time steps of 10, 000 years each,
with and without debris flow erosion. Results show a strong difference in the eroded patterns
in the main cliffs: while fluvial erosion digs deep trenches, separated by ridges smoothed by
hill slope (Figure 5.9), middle), debris flow erosion results in strong, triangle-like patterns at
the highest slopes, and is negligible elsewhere (Figure 5.9), bottom). This advocates for the
fact that both erosion techniques should be used, especially in steep terrains such as the ones
formed by glacial erosion.

102

5.5. Results and discussion

Glacial Erosion Lakes

Figure 5.8: Lake formations. The initial conditions ensured many convergent valleys after 10
million years of fluvial erosion (insets). About 1 million years of glacial erosion was performed
(left), deeply eroding depressions that turns into lakes when glaciers retreat (right).

5.5.2 Efficiency and speed

Designing a good threshold for convergence is hard, first because the equation being not
defined at the boundaries of the ice, the iterations may lead to spurious osculations at the
exterior of the glacier, second because the variations in glacier erosion may become negligible
before the ice surface stabilizes. We found an upper bound on the number of iterations by
analyzing the evolution of the difference of ice surface between two oscillations–which always
stabilizes. In practice, the iteration number is set by hand, between 20 to 100, up to 200 in
particularly complicated steps (ice added directly on top of a V-shaped landscapes, where
the constriction varies drastically).

Timings were measured on a computer shipped with an Intel Core i7- 4710MQ CPU. The
single threaded implementation was done in Python with Numba just in time compilation,
which achieve near native performances. Table 5.3 shows the results for different grid sizes,
along with the percentage of time needed for each different step of the algorithm. The total
simulation time per time step sums 75 frames, which gives an idea of a scene with enough
variety without being the most complex (for instance Figure 5.9). A typical simulation time
for a time-lapse of 400 time steps on a 5002 cells grid is 98min.

Grid size Iteration Depr. Order Flux Ice Total

2502 42ms 21.3% 20.1% 5.9% 52.7% 3.19 s

5002 190ms 24.1% 21.8% 6.6% 47.5% 14.8 s

10002 838ms 24.7% 21.1% 7.3% 46.9% 62.9 s

20002 3.36s 26.5% 22.4% 6.9% 44.2% 251.8 s

Table 5.3: For different grid sizes, the time taken for one iteration, with percentage of used
time between the different steps of the algorithm (depression filling, computation order, flux
and ice computation).

103

Chapter 5. Glacial erosion

Glacier Erosion

Fluvial Erosion

Debris-Flow Erosion

Figure 5.9: Secondary erosion effects. Steep slopes were carved on virtual peak by a glacier
during 30, 000 years (top). Ice was suddenly removed, and the free slopes were eroded during
another 10, 000 years by either only fluvial erosion and hill slope (middle), either all erosions
methods, in particular debris-flow (bottom).

104

5.5. Results and discussion

5.5.3 Limitations

A limitation of our steady-state approach is that the simulations cannot be used to compute
a time-lapse animation showing the continuous evolution of the glacier. In theory, this could
be achieved using smaller time steps, but only if convergence to the ice steady state was
perfectly stable. Unfortunately, this is not the case in practice: with the values we used, in
some rare cases, convergence to the steady state even showed noticeable oscillations of the
ice limit. Fortunately, the first few iterations are sufficient to capture most glacial erosion, so
such oscillations have no effect, in practice, on the eroded terrains we generate.

One important limitation remains, namely efficiency. Although we obtain, for the first
time, a complete and tractable simulation of glacial erosion, our simulations take a few seconds
per time-step. This makes them more difficult to control, since intuitive interactive brushes
or handles cannot be provided to the user at runtime. Nevertheless, climate scenarios can be
specified, as exemplified in our results.

105

Chapter 5. Glacial erosion

5.6 Conclusion

In this chapter, we introduced the first method in Computer Graphics for the efficient sim-
ulation of glacial erosion. Our method is combined with secondary erosive phenomena, in
particular fluvial, hillslope and cliff-based debris flow erosion. Our solution for glacial erosion
allows for the simulation of the main characteristic glacial landforms, such as hanging and
U-shaped valleys, cliffs and glacial lakes. It handles time spans covering several glacial and
interglacial cycles.

The key idea is to link successive steady states of the glacier surface with large ice-erosion
steps, using a specific scheduling of computations over the grid representing the terrain. Our
method achieves the generation of large to medium-scale features in landscapes formed by
glaciers.

Possible improvements include adding smaller-scale features, such as moraines (large flat
areas formed by the transportation and deposition of rocks), drumlins (wave-like patterns
formed by ice and water flowing over moraines), eskers (long and narrow winding ridges
deposited by under-ice rivers during the retreat of glaciers), and glacial striations on steep
slopes. To achieve these, our model would need to be combined with finer-scale physically-
based or procedural models. For instance, the information on rock abrasion in our model could
be used to parameterize the deposit of transported rocks into moraines. The sedimentation
of debris flowing from cliffs into glacial lakes could also be modeled.

Although not tackling these glacial erosion features, lower-scale phenomena are considered
in the next part. Chapter 6 introduces a novel framework for the interleaved simulation of
erosive events and ecosystem simulation, and Chapter 7 proposes a method for the generation
of snow cover. Both these applications could be linked with our glacier simulation: the mass
balance could be deduced from the snow cover simulation, while transported rock debris
created by glacial abrasion could be accurately instanced using the stochastic framework
presented in Chapter 6.

106

Part II

Combining landscape simulation

with medium scale phenomena

107

Chapter 6
Joint simulation of vegetation and erosion

Contents

6.1 Method overview . 111

6.1.1 Layered landscape model . 111

6.1.2 Simulation . 112

6.1.3 Control . 114

6.2 Geomorphological events . 115

6.2.1 Rainfall and running water . 115

6.2.2 Temperature . 116

6.2.3 Lightning . 117

6.2.4 Gravity . 118

6.2.5 Fire . 118

6.3 Ecosystem events . 119

6.4 Implementation . 122

6.5 Results and discussion . 122

6.6 Conclusion . 132

109

Chapter 6. Joint simulation of vegetation and erosion

A major ingredient of a plausible virtual landscape lies in its coverage with meso-scale
details, such as vegetation or rocks. This chapter presents a new simulation framework
allowing for the interleaving of natural processes at various scales. In particular, we show how
to combine erosional effects with ecosystem simulations to build a novel landscape authoring
framework.

The first part of this thesis focused on the evolution of wide landscapes on large temporal
extent. At the considered scale (time steps of several thousand of years and the grid resolution
blurring details below 100 meters), landscape evolution was driven by large scale geological
processes such as tectonic uplift and erosion. Smaller scale phenomena, such as the effects
of vegetation or local rockslides were too punctual to be considered. Although unnecessary
for the large scale simulation, the effects of these phenomena are of great importance when
locally exploring a virtual landscape. It is always a challenging task for a designer to spread
a large amount of plants and terrain details in a consistent way, and the human visual system
is a very efficient discriminator of what is important or visually plausible.

Narrowing down the considered evolution scale to the time frame where smaller details
are relevant does not completely hide the larger scale processes. On the contrary, landscapes
exhibit huge spatial and temporal variance that is affected by multiple agents acting at
different rates and scales. For instance pulses of hydraulic erosion, landslides, and lightnings
can act very quickly and move or remove large amounts of plant and soil material within hours,
while thermal erosion typically acts slowly and is expressed only over very long time spans.
These different rates make it difficult to simulate the spatio-temporal evolution of landscapes,
with classical simulation techniques. Geomorphological and ecosystemic phenomena also
act differently depending on a plethora of factors such as location, slope, temperature, sun
exposure, and soil type.

The key observation that drives this chapter is that the shape and temporal evolution
of landscapes are significantly affected by the interaction between vegetation and erosion, a
factor that has thus far not been considered in Computer Graphics. While vegetation may
affect the speed of the geomorphological processes and reduce their effects such as landslides,
many of them such as erosion, rock falls, and soil deposited by running water, also have a
strong impact on the vegetation.

From this observation, we introduce a novel, unified framework for landscape modeling,
that allows for interactive modeling of the mutual interaction between various geomorpholog-
ical phenomena and their effects on terrain and vegetation. The input is an elevation map,
which is modified, textured, and populated with consistent sets of details such as rocks, trees,
or bushes by our simulation. The users retains full control over the terrain, vegetation, and
their co-evolution during an interactive modeling session; they can tune the control parame-
ters of a wide range of geomorphological phenomena, their interplay, and the weather. Users
can also directly edit each layer state, such as the current plant cover, using brushes. As a
result, the 3D layered model evolves and exhibits features that are difficult to achieve with
other landscape modeling methods.

We claim the following technical contributions:

• An original framework for efficient, stochastic simulation of multiple phenomena and
their interactions.

110

6.1. Method overview

• A consistent set of models for the geomorphological and ecosystemic agents that si-
multaneously modify terrain and vegetation and influence their temporal evolution. In
particular, we take into account the entire cycle of vegetation, from germination to
death, and ultimate reduction to an organic mulch (humus), as well as providing a
unified treatment of disturbance events, such as fire, lightning and landslides.

• Authoring tools to brush landscape materials and trigger natural phenomena, while
navigating along the simulation time-line.

6.1 Method overview

Discrete layered
representation

Event-based
stochastic simulation

Temporal scenarioInteractive control

Terrain T(t)

Events E(t)

Vegetation V(t)

SimulationScene S(t)

Initial state S(0)

Figure 6.1: Framework: The layered scene S(t) is affected by the simulation, which includes
an interplay of geomorphological and ecosystem events, vegetation and terrain.

Our method computes the temporal evolution of a terrain covered with vegetation under
the combined action of various geomorphological and ecological events. Environmental effects
such as rain, gravity, temperature, wind, fire, and lightning not only directly impact the
evolution of the terrain and the development of vegetation, but also have an indirect impact,
as vegetation and the upper terrain horizon (Grunwald 2016) mutually interact in a complex
feedback loop. For example, vegetation can prevent rockslides but may equally be destroyed
by falling rocks; vegetation absorbs water but flooding may also uproot plants.

Our framework (Figure 6.1) uses a discrete layered model that unifies the representation of
different terrain materials and types of vegetation. Geomorphological and ecological events
modify the data stored in the various layers during simulation. These layers collectively
represent the state of the scene at each frame.

We use a discrete spatio-temporal simulation. At a given time step, the scene, denoted
as S(t) is a set of 2D discrete layers composed of n×n cells. The simulation process computes
the evolution of the scene S(t+ ∆t) from scene S(t) by stochastically applying a number of
events to the cells of the terrain.

6.1.1 Layered landscape model

The layered model is an ordered sequence of layers from which a static landscape representa-
tion can be derived at any given time step. Alternatively, a series of simulation results can be

111

Chapter 6. Joint simulation of vegetation and erosion

used to show the temporal evolution of the landscape over a chosen time span. Specifically, a
discrete regular grid of size n× n cells is combined with a multi-layer ordered data-structure
to represent different terrain materials and plant matter in every cell (Figure 6.2).

Instantiated ground and
models from layer data

Bedrock B

Vegetation V

Granular
materials G

Discrete layered
representation

Dead vegetation D

Figure 6.2: Representation of the ground and vegetation layers. Bedrock B and granular
materials G, consisting of rocks, sand, and humus, define the layers of terrain. Plants are
represented using various vegetation layers V, for grass, shrubs and trees. The layers store
data used in simulations, such as canopy density and age for vegetation layers, and moisture
for granular layers.

Terrain materials sit on top of a bedrock layer B, which defines the base elevation. The
broken rock, sand, and humus layers, denoted asR,K andH, represent the respective material
thicknesses. In the remainder of the paper, we refer to these layers as granular material layers
G = {R,K,H}. The ground elevation, denoted as A, is defined as the sum of the bedrock
and the granular material thicknesses: A = B + G. The slope of the terrain between two
points p and q will be defined s(p,q) = (A(p) −A(q))/‖p − q‖. In addition, cells are also
characterized by values for soil moisture contentM, and the average daily duration of direct
sun exposure I, both of which are crucial to ecosystem simulation.

Vegetation layers store the density maps and other important parameters for every veg-
etation type. For trees and shrubs this includes the count, age, and height of plants in each
grid cell, while for grass density alone is sufficient. We also model dead vegetation D, which
decays into humus and plays an important role in the ecosystem simulation. Total vegeta-
tion density V is given by the sum of the grass, shrub, and tree densities, weighted by their
respective importance (Section 6.3).

6.1.2 Simulation

The novelty of our method lies in a stochastic simulation that supports robust and efficient
integration of many phenomena acting on a landscape. In this section, we first describe the
main challenges, and then explain our solution.

112

6.1. Method overview

Challenges: An obvious approach to simulating multiple phenomena would be to jointly
simulate the incremental actions of all agents (water flows, while thermal erosion fractures
rock and plants grow), on each cell of the terrain, for each simulation frame.

Unfortunately, this strategy works against many of the data-structures and optimiza-
tions proposed in previous work, which presuppose a single agent acting in isolation. For
instance, water-pile models accumulate water but often yield large water-level disparities
between neighboring cells. Even with dampening, the disparity at intermediate stages can
introduce significant instabilities when combined with chaotic events, such as rockfalls or
plant growth.

This issue can be viewed from another perspective: a large, extensible simulation frame-
work, with many parameters and unknown, and non-linear relationships, is most typically
resolved using the forward Euler method. In this case, to achieve stability, the global time
step must be chosen with respect to the most ill-conditioned equation in the simulation. This
lockstep prevents efficient simulation of the other factors. Therefore, such an approach is
limited to simple algorithms and data-structures or fine grids and small simulation steps.

Our solution: Instead of jointly simulating phenomena we successively generate a large
number of individual events, which act separately on the landscape. Each event begins in
a cell, typically follows a path through other cells (generally with some decay) and ends in
bounded time. To generate the desired effect, both the sequence and specifics of individual
events are stochastic. More precisely, in our formalism events obey the following rules:

• Propagate without backtracking to at most a single adjacent cell. An event may thus
spawn a path as long as it does not branch, reverse course or form loops. It is important
to note that this restriction only applies to propagation: an event may modify the layers
of any number of neighboring cells along the way.

• Involve a bounded volume of material.

• Terminate in bounded simulation time δt, sufficiently short to be negligible with respect
to the simulation time step δt� ∆t.

The first rule limits execution time, the second promotes stability, and the third ensures
convergence (by making it legal to perform such a decomposition).

This strategy is motivated by the seemingly stochastic nature of many events in real
terrains, either because they are triggered at random (e.g., rockslides) or their effects appear
chaotic (e.g., the spread of fire). Moreover, the path of such events is often determined by fine-
scale features that are obfuscated by the discretization of a simulation grid. In practice, less
artifacts are observed when sampling the next direction among a 8-neighborhood. Although
a single event always propagates to a single neighboring cell, branching effects, such as rocks
scattered during landslides, are achieved by the accumulation of many events in neighboring
locations. The overall simulation can be described as follows:

• Choose a random position p0, with uniform probability, from among all terrain cells;

• Choose a random event, again with uniform probability, from all the available events;

• Activate the event at p0 and simulate it until it terminates;

113

Chapter 6. Joint simulation of vegetation and erosion

• Store the effects (transported material, plant growth) in the relevant terrain layers.

This process is repeated a very large number of times N for each simulation step, which
ensures a convergence to plausible results. In our implementation, N is a product of the
number of grid cells and different event types (N > 256 × 256 × 10 ' 650, 000 in all our
examples), so that all terrain cells are likely starting points for at least a few events.

The time step of our simulation ∆t is set to one year. This represents a balance between
the relatively rapid development of vegetation and longer-term impact of erosion, while al-
lowing efficient simulations that span several centuries. In practice, ∆t can be reduced over
the last few simulation months before exporting final geometry so as to account for seasonal
variations in vegetation.

Initialization of the landscape model S(0) is controlled by the user, who can either provide
data for the different layers or rely on procedural instantiation from a single input height-
field. In the latter case, the bedrock layer B(0) is initialized using elevation values from the
heightfield, while sand K(0), rocks R(0) and vegetation V(0) are set to zero. The thickness of
the humus layer H(0) is determined by the local slope of the bedrock: H(p, 0) = g(∇B(p, 0))
where ∇ is the gradient operator. The function g : R+ → R+ is a smoothly decreasing func-
tion of the slope that maps [0,+∞] onto [0, 1] with g(tan 30◦) = 1/2 so that there should be
half as much humus on 30◦ slopes as on flat areas. In our implementation, we use a Gaussian
g(s) = e−s

2/σ2 with σ2 = 3 ln 2. Moisture M in the granular material layers G is computed
during rainfall simulation and need not be pre-calculated.

6.1.3 Control

The user is afforded pause-and-edit control over the simulation at several levels of abstraction,
with changes stored in the timeline:

• Environmental parameters of the scene (rainfall patterns, frequency of lightning strikes,
temperature, etc.) can be directly and interactively adjusted at any point in the simu-
lation timeline.

• Layered data can be locally edited using interactive brushes, by adding or removing
plants, or adjusting the thickness of materials, at any given time step. User edits may
introduce inconsistencies, such as too much sand or too many trees on steep slopes, but
these usually self-correct after a few simulation time steps.

• Probability maps allow the user to locally re-weight the chance of any chosen geomor-
phological events (such as enforcing a lightning strike in a given cell).

• Environment scenarios provide functionality to pre-define a script for any of the above
interactions (environmental parameters, layer changes, and probability maps) as they
evolve over time.

At each simulation step, the user is provided with a real-time visualization of the current
state, enabling stop-and-restart editing of the simulation.

A common requirement of artists is the ability to lock portions of a landscape while leaving
simulation unchecked elsewhere. In general, it is not possible to bound the propagation of
events due to their randomness, but we can achieve a similar effect using a mask tool that

114

6.2. Geomorphological events

linearly interpolates between the content in frame n and frame n−1 as weighted by the mask,
which allows content from a given frame to be carried forward unaltered.

6.2 Geomorphological events

In this section, we show how five significant and influential natural phenomena – rainfall,
temperature, lightning, gravity and fire – have been incorporated into our unified framework.

6.2.1 Rainfall and running water

Rain, and the resulting running water, impact not only terrain shape (by hydraulic erosion)
and soil composition (through material transport), but also vegetation growth. As a typical
effect, water carves channels in the surface of the terrain and forms accretion cones (Fig-
ure 6.4). There are several factors to consider: the trajectory of runoff is heavily dependent
on slope, drainage area and other features; the quantity of runoff is reduced by evapotran-
spiration off vegetation; and, finally plant roots bind soil and dampen hydraulic erosion.

High slopes Low slopes or vegetation

Erosion

Lift

Event propagation
and transport

Deposition

Figure 6.3: Runoff events use water as a vector to transport material. They perform erosion,
lift, and deposition. Water is also partly absorbed and generates soil moisture.

We simulate all these effects through runoff events, which model the progression of surface
water: its stochastic course across the terrain, its reduction due to soil absorption, and its
ultimate impact in terms of erosion and material transport.

Runoff event simulation: A runoff event is parameterized by the volume of water w it
transports. The event starts at a point p0 with w = w0, follows a trajectory, and ends when
w = 0 or a local terrain minimum is reached. Initially, w0 is set to the total quantity of rain
in a cell during a simulation time step ∆t, and reduced by the proportion intercepted by
plants and released to the atmosphere through evaporation, which depends on plant density.

The event is then simulated iteratively over the terrain grid as follows. Let pk be the
current position of the runoff. The subsequent position pk+1 is determined by a random choice
from among the neighboring cells N (pk) having lower elevation than pk, with probability:

ρ(pk+1) = s(pk,pk+1)/
∑

q∈N (pk)

s(pk,q). (6.1)

115

Chapter 6. Joint simulation of vegetation and erosion

Once this random choice is made, the current slope between pk and pk+1 is stored, or set
to zero if pk has no lower neighbor.

The runoff wk is then reduced by soil absorption, which is inversely proportional to the
slope. Absorbed water is added to the local moisture in cell pk, stored in layer M. If
this moisture exceeds the maximum holding capacity of the local soil layers (given preset
parameters for bedrock, rock, sand, and humus), then the excess is returned to wk because
of soil saturation.

Interactions with the landscape: Inspired by the geology literature (Braun et al. 1997),
we account for both hydraulic erosion, which grinds terrain material (bedrock and rocks) to
a finer constituency (rocks and sand), and soil transportation, which involves water redis-
tributing small quantities of rock, sand and humus.

Original terrain After runoff

Figure 6.4: Results after several runoff events: channels form in the upper part, while
accretion cones develop over those already present in the original terrain. One event has
been initiated per cell and per year for 200 years.

We use a standard discrete model for erosion (Musgrave et al. 1989), where redistribution
acts by lifting or depositing material, depending on a slope threshold (Figure 6.3). Lift only
occurs until carrying capacity is reached, and deposition is inversely proportional to slope.
Moreover, bedrock is partially shielded from erosion by intervening soil and vegetation layers.
Finally, lift is impeded and deposition enhanced by the presence of vegetation, by virtually
reducing the slope according to the amount of vegetation, for the purposes of redistribution.

Once the runoff sequence terminates we approximate the effects of plant transpiration and
seepage into groundwater by reducing the moisture at the source p0 by a constant amount.

6.2.2 Temperature

Temperature variation plays an important role in triggering the fracture of bedrock – referred
to as thermal erosion (Musgrave et al. 1989) – as well as in determining the niche suitability of
vegetation. Thermal erosion occurs when water in rock cavities freezes, expands and breaks
the bedrock into rocks that may then fall under gravity. Thermal erosion is most influential
in regions with high temperature gradients, such as cliffs that are exposed to direct sunlight

116

6.2. Geomorphological events

and cold night-sky radiative transfer. Sand, humus and vegetation act to reduce the impact
of temperature variations by shielding the bedrock.

In our framework, when a thermal stress event is launched at a random position p, we first
estimate the variation between daytime and nighttime temperatures denoted as ∆T using the
elevation A(p) and illumination I(p). This ∆T value is then damped in proportion to the
local density of vegetation V(p) and thickness of sand and humus G(p). The resulting value
is used as the probability that a given quantity of local bedrock B will fracture into rocks R:

f(p) = k∆T s(p)/(1 + kGG(p) + kVV(p)).

The coefficients k, kG and kV are constants and s(p) is the steepest slope when considering
the 8 direct neighbors. Since bedrock is often approximated as a granular material over large
time scales (Densmore et al. 1998), we assume that the landslide effect is limited by a critical
slope. The quantity of falling rock is computed from the difference between the local slope
and this critical slope. By design, rocks are created in-place, and their fall is triggered and
simulated according to gravity events (Section 6.2.4). The effect of temperature on local
vegetation will be discussed further in Section 6.3.

6.2.3 Lightning

While it is well-known that lightning destroy trees, recent research in geomorphology (Knight
et al. 2014) has demonstrated that bedrock struck by lightning is blasted into rocky material.
A single strike may break down tons of bedrock and eject rocks up to several meters from the
point of impact, resulting in a volume of up to 10, 000m3 being moved per square kilometer
per 100 years.

Vegetation
destruction V D

Bedrock blasted into
granular materials B G

Blast

Impact on vegetation Impact on bedrock

Figure 6.5: Effect of a lightning strike: vegetation is destroyed and part of the bedrock layer
disintegrates into rock material, which is spread to neighboring cells.

We model this phenomenon through lightning strike events. At a random point of impact
p0, the probability of damage is a function of elevation and the exposed character of the
location, which we evaluate using local curvature of the terrain elevation A:

l(p) = kL min
(
1, eklc (∇A(p)− kls)).

The coefficient kL is the maximum probability that a lightning strike hits the cell at position
p, kls is the minimum curvature for which this probability is achieved, and klc is a scaling
factor.

117

Chapter 6. Joint simulation of vegetation and erosion

If the lightning strike occurs, we proceed as follows (Figure 6.5). Lightning destroys local
vegetation, if present, and we reduce the number, and aggregate height and age of trees in the
vegetation layer V and increase the density of dead vegetation D accordingly. Furthermore,
in conducive conditions of high global temperature and low rainfall lightning has a chance
of initiating a fire event at the same location (Section 6.2.5). Otherwise, a constant amount
of bedrock material B is removed and spread as granular material G (rocks and sand) in the
neighboring cells, while taking their relative elevation into account.

6.2.4 Gravity

We use separate events (rock-slide, sand-slide and humus-slide) to represent the collapse under
gravity of different granular materials, since each has a specific friction angle. As with runoff,
a slide event starts at a random position p0, propagates along a random slope-dependent
trajectory (see Equation (6.1)), and terminates when the local slope falls below the friction
angle. At each step, the amount of sliding material is computed as a random proportion of the
material column that sits above the friction angle. We also add a contribution proportional
to the curvature of the surface, to simulate a form of diffusion known as the hill-slope process
on granular material (Braun et al. 1997).

Figure 6.6: The effects of thermal stress and material slides. Bedrock fractures into rocks
and sand, which slide under gravity. Here, rock is dark gray and sand is yellow. Note that
the friction angle for sand is set lower than for rock.

Material slide effects are dampened by the presence of vegetation since the roots of trees
form a stabilizing lattice on slopes. This is captured by a vegetation-dependent increase
in the friction angle. Conversely, rockslides also damage vegetation, which we model by
decreasing plants in the vegetation layers V and increasing the dead vegetationD, accordingly:
vegetation is destroyed in proportion to the volume of falling rocks.

6.2.5 Fire

Fire as a disturbance event is one of the primary causes of deforestation in hot and dry
ecosystems. In our system, it also serves as a useful control tool for users.

118

6.3. Ecosystem events

Vegetation destructionFire seeding

Figure 6.7: The fire event start by seeding (left), where high slopes, dry areas under wind
direction receive more fire intensity. Then, the vegetation is destroyed, and fire propagates
to one of the seed (right).

We note that fires spread more strongly upwards and in the prevailing wind direc-
tion (Yassemi et al. 2008). Accordingly, a fire event at p0 starts with a seeding process
igniting fires in neighboring cells, whose intensity is a function of local temperature, mois-
ture, and vegetation density. The number, distance and direction of nearby cells damaged by
the fire depends on this intensity and the prevailing wind (a constant user-defined 2D vector
in our implementation). In particular, the fire spread direction follows a normal distribution
centered on the wind direction, with variance related to the inverse of fire intensity, narrowing
when the wind is strong. Next, vegetation is destroyed at the seeded locations in proportion
to fire intensity and local slope. The cycle then begins again with one of the seeded locations
chosen as the potential source of a new fire event. A fire dies out when there is no more
vegetation to fuel it or if the fire intensity has dropped below the level required to ignite new
trees.

Fire Burnt trees

Figure 6.8: A fire set by the user and advected by a north wind, with subsequent regrowth
over a few years.

6.3 Ecosystem events

In simulating vegetation, our point of departure from previous CG ecosystems is a consider-
ation of the cyclic interaction between plants and soil. Plants rely on soil moisture but also
impact it in various ways. For instance, due to evapotranspiration some rainfall is intercepted

119

Chapter 6. Joint simulation of vegetation and erosion

by tree canopies and by litterfall (the detritus of fallen leaves and dead plants) and evaporates
before reaching the ground, while water is also drawn up from the soil and transpires through
leaves. Conversely, litterfall decays into humus, which changes the constituency of soil and
improves its moisture holding capacity. We explicitly account for these effects, as well as the
impact of vegetation on erosion (see Section 6.2.1).

Vigor and
stress

Germination

Growth

Death
Dead trees

Humus

Soil moisture

Temperature

Sun exposure

Figure 6.9: Ecological events use monthly soil moisture, temperature, and sunlight exposure
to derive yearly stress and vigor values, which drive plant germination, growth, and death
(contributing to the dead trees and humus layers).

Most ecosystem simulations in Computer Graphics (Benes et al. 2003; Bradbury et al.
2015; Ch’Ng 2013; Deussen et al. 1998; Lane et al. 2002) model individual plant specimens
using a circular footprint to determine competition for resources. While this is viable for
small-scale simulations (up to 1km2) it becomes computationally costly at larger scales due
to the correlation between terrain area and numbers of plants. Instead, we adopt a cell-
based Eulerian approach, as favored by botanists and ecologists in their Dynamic Global
Vegetation Models (DGVM) (Foley et al. 1996; Sato et al. 2007; Sitch et al. 2003). While
plants are treated in aggregate it is still possible to incorporate competition for sunlight and
soil moisture.

Another feature borrowed from the DGVM literature is our grouping of species into Plant
Functional Types, representing plants with similar response to environmental conditions. A
broad separation between tree, shrub and grass layers is sufficient in our case but the archi-
tecture supports finer categories, should differentiation between, for instance, evergreen and
deciduous or needle-leaved and broad-leaved plants be required for a particular application.

As with other events, ecosystem events are generated at random in a given cell. Each of
them accumulates growth, death and germination for a particular plant layer (Figure 6.9).
This is based on the aggregation of a monthly suitability function that considers local tem-
perature, soil moisture and sun exposure to arrive at a value for plant viability V ∈ [−1, 1],
for all types of plants (trees, shrubs, and grass, in our implementation). Negative values
represent stresses to the ecosystem in response to extreme conditions, such as drought and
frost, while positive values indicate proportional opportunities for growth and germination.

The response of plants is modeled using a piece-wise linear hat-like function v(c) that
captures the influence of a given climatic condition c (Gain et al. 2017):

v(c) =

−1 if c < Eminorc > Emax

(c− Emin)/(Imin − Emin) if Emin ≤ c < Imin

1 if Imin ≤ c ≤ Imax

(c− Imax)/(Emax − Imax) if Imax < c ≤ Emax

,

where Emin, Emax are the bioclimatic limits outside of which a particular plant type cannot
survive (Sitch et al. 2003), [Imin, Imax] is the ideal range for a plant, and c is a monthly

120

6.3. Ecosystem events

bioclimatic value for a given cell. We use a separate such function vi, i = {temperature,
moisture, sunlight} for each combination of plant type and bioclimatic condition. Ultimately,
V = mini(vi), since viability is constrained by the weakest resource. For instance, a plant
cannot flourish if it is over- or under-watered even if temperature and sunlight conditions are
ideal, a principle known in Ecology as Leibig’s law of the minimum (Cade et al. 1999).

The monthly bioclimatic inputs (ci) are calculated as follows: soil moisture is derived
by distributing a cell’s yearly moisture value (layer M) in proportion to monthly rainfall
patterns; temperature is provided by the user as an average monthly value (t̄i), which is
reduced according to cell altitude at a lapse rate of 6.5 ◦C per 1000 m: θi(p) = θ̄i−0.0065G(p);
sun exposure I is calculated, based on latitude and compass direction, by intersecting ray’s
from the sun’s position along its trajectory with the terrain. This captures terrain self-
shadowing and provides average daily hours of direct sunlight per month for a cell.

Each plant layer in the cell, with the exception of grass, is encoded by the number of
plants (n), sum of plant heights (h) and sum of plant ages (a). This allows an average plant
specimen to be derived and hence an estimate of the density of plant coverage in a cell to be
computed, as:

V = nπ(r · h/n)2/w2,

where w is the width of a cell and r is the ratio between a plant’s canopy radius and height.

In addition to its effect on the various geomorphological events in Section 6.2, the density
of plants is useful to the ecosystem simulation itself in two respects. First, it provides a
proxy for competitive pressure within plants of the same functional type. For instance, if
d > 1 there is more than complete canopy coverage in a cell and self-thinning is mandated
due to plants encroaching on each other. Second, it can be used to account for the shading of
subordinate plants, such as shrubs shaded by trees, by reducing sun exposure in proportion
to density.

Since the expected interval between vegetation events in a given cell is one year (based on
∆t), we use the monthly viability to derive yearly values for vigor and stress and feed these
into simple growth, germination and death processes. Vigor is the average viability during
the growing season (when the average monthly temperature is at least 5 ◦C), while stress is
the average of the four worst viability values, but is only considered if it is negative.

For seeding and germination, the event framework could support propagation to neigh-
boring cells, in a similar fashion to fractured rock ejected by a lightning strike (Section 6.2.3).
However, propagation processes are complicated by different forms of seed dispersal and vari-
able delays in germination. For instance, in the case of obligate seeding forest fires are needed
to spur germination. Instead, we make the simplifying assumption that an existing bank of
seeds is present in the soil and model germination by adding a number of plants as seedlings
to the cell in proportion to the vigor and available space (1−V), but only if there is no stress.
For woody plant types we use an establishment rate of 0.24 saplings per m2 (Prentice et al.
1993). For growth, we scale a constant yearly increase in plant height for each plant according
to the vigor value. In the last process, plant death acts by removing average plant specimens
from a cell into a litter pool according to self thinning, environmental stress and senescence
rules. First, to avoid over-saturation plants are removed to enforce d < 1. Next, bioclimatic
limits are accounted for by removing plants in proportion to the stress value. Finally, if the
average age is above a threshold a small random proportion of plants are removed to represent
death by old age.

121

Chapter 6. Joint simulation of vegetation and erosion

It makes little sense to consider grass as individual plants, even in aggregate. So, instead
we translate grass vigor directly into a density value and ignore issues of individual grass
clump growth and death.

The final phase in an ecosystem event is to model the breakdown of dead plant matter D
into humus H. Higgins et al. 2007 provide a conversion from tree height to biomass, which
when combined with an average green wood weight (m in kg / m3) allows a derivation of
bio-volume (b) from average plant height (h̄), as: b = 0.52 h̄ 2.55/m . Roughly 30% of litter
fall is converted to humus in a given year (Sitch et al. 2003), while the remainder rots away
and is released as carbon dioxide.

6.4 Implementation

Our system has been implemented in C++ and uses OpenGL for rapid previsualization and
Vue for rendering photorealistic landscape images. All simulations were performed on a
desktop computer equipped with an Intel Core i7 CPU clocked at 2.5 GHz. We did not use
any graphics hardware acceleration.

We use elevation maps from real terrains downloaded from the (U.S. Geological Survey).
The output can be either a single, static landscape, or several frames representing its evolution
over time. In both cases we use our layered model to enhance the landscape with procedural
detail, as follows: we provide a terrain heightfield, obtained by stacking the sand K and
humus H layers on top of the bedrock elevation B, and a surface texture, computed from the
thickness of sand and humus and the density of grass Vg. Plant geometry is instantiated from
models stored in an atlas, in accordance with the vegetation layers V, which define local plant
data such as density, size, and age, for every cell. After scene geometry has been generated, it
is exported to Vue for final rendering. The final rendering smooths the layers, and bedrock,
sand, humus, and grass are rendered in order from the topmost layer to the bottommost. All
geometric elements (rocks, shrubs, and trees, both living and dead) are instantiated.

To explore the possibility of acceleration, we have implemented a multi-threaded CPU
version of our framework, where each thread handles a set of events. We solve race conditions,
where two events converge on the same cell, using atomic instructions. Several cells can be
locked iteratively during the propagation of an event, but, to avoid deadlock, the same thread
cannot lock more than one cell at the same time. With this approach we achieve a speed-up
factor of 4 on a 12-thread machine.

6.5 Results and discussion

The size of a cell in all our simulations is set to 10 × 10 m2. This allows the capture of
medium-scale erosion and ecosystem features, while allowing the simulation and authoring of
landscapes up to 10× 10 km2 in extent at interactive rates.

Average timings for different types of events and for a complete scene are reported in
Table 6.1. Performance is related to the scene resolution n × n, the number of events and
their overall complexity. Certain events have only a local extent, such as lightning strikes and
ecosystem events. In contrast, events such as gravity (Section 6.2.4) and rain (Section 6.2.1),
with hydraulic erosion, may propagate changes in the layered data-structure across many
cells.

122

6.5. Results and discussion

1 2 3t0+200 years t0+215 yearst0+210 years

Figure 6.10: Our framework combines layered terrain and vegetation data and supports
their interlinked simulation, which can be driven by users editing layers or triggering natural
events. (1) The user first provides a bare-earth digital elevation map for time step t0 and our
framework simulates interleaved erosion and plant growth, up to t0 + 215 years. (2) In the
next time step at t0 + 210 years, a landslide creates boulders that destroy vegetation. One
year later, the designer triggers a fire in the valley, which spreads to consume part of the
forest. (3) After four more years at t0 + 215, the remaining trees have continued growing,
new saplings have germinated and the humus layer is beginning to regenerate. The white
loops indicate affected areas.

Event type n = 128 n = 256 n = 512 n = 1024

Rain 0.0695 0.43 3.92 36.5

Gravity 0.0067 0.027 0.08 0.43

Temperature 0.0016 0.0067 0.027 0.12

Lightning 0.0007 0.0027 0.01 0.05

Ecosystem 0.027 0.085 0.36 0.94

Total time 0.11 0.59 4.77 38

Table 6.1: Average performance (in s) for different events over the course of a simulation
step ∆t, and the total, as a function of terrain width n (in number of cells).

The worst case complexity is O(n4), where n is the terrain width, because the number
of events per simulation step is proportional to n2, and of these the most computationally
demanding events trace a path with no cycles, spawning an upper bound of n2 cells. In
practice, we have found that execution is dominated by the runoff event, which exhibits
average complexity of O(n) for every cell and represents 75% of the computation for a 2.5×
2.5 km2 landscape. The overall average complexity varies from O(n2) for terrains with limited
runoff to O(n3) for terrains with long channels.

User control: A variety of control mechanisms and achievable landscapes are showcased
in Figures 6.10, 6.11, and 6.12. The first result in Figure 6.10 shows a landscape designed by
triggering specific landslide and fire events, followed by periods of natural landscape evolution.
Figure 6.11 demonstrates varied outcomes obtained simply by changing the initial 256× 256
bedrock heightfield.

An example of interactive control during a 15 minute editing session is provided in Fig-
ure 6.12. Here, the user has modeled drought and sand-dune growth over a 128×128 subregion
of an oceanic landscape.

123

Chapter 6. Joint simulation of vegetation and erosion

Alpine Canyon

Sea Valley

Figure 6.11: Results from different initial heightfield inputs produced using our simulation
after 300 years of evolution. From left to right: an Alpine landscape from the U.S. Rockies
and a portion of the Grand Canyon (top), a Mediterranean landscape and a forested valley
(bottom).

124

6.5. Results and discussion

200 y 265 y

310 y 500 y

Figure 6.12: Evolution of the simulation in response to user edits. Initial state: the user
paints sand along the beachfront and humus elsewhere. After vegetation growth at 200y
the user layers sand across the lower half of the terrain, reduces precipitation, and destroys
vegetation with fire. At 265y he increases rainfall. Finally, at 310y he adds humus to promote
forest regrowth and waits until 500y.

125

Chapter 6. Joint simulation of vegetation and erosion

Generic framework: The logical subdivision into independent tasks makes our framework
flexible. It simplifies the main simulation loop (Section 6.1), making it both scalable and
extensible: it is easy to add events to the simulation because each event is a function that takes
as arguments a starting position, the terrain layers, and a few other simulation parameters,
such as the main wind direction and strength. The relative importance of each event type
can be easily adjusted to obtain a wide variety of landscapes (Figure 6.13).

1 2

3 4

Figure 6.13: A terrain used to generate a variety of landscapes: (1) with default parameters,
(2) a high altitude rocky region, (3) a dense forest on a fertile ground, and (4) a sand-filled
desert with drought-adapted vegetation at the lower elevations.

Simulation quality: Our framework enhances terrain erosion by interlinking multiple ge-
omorphological phenomena, including hydraulic erosion, material transport, shifts and slides
due to gravity, and bedrock fracture from thermal erosion and lightning.

The results of erosion of a typical simulation (100–1, 000 years) are subtle but distinctive;
the final variation of height is on the order of a few meters. The visual consequences are
mainly:

• Bedrock destruction evidenced by small channels and fractured cliff-faces (Figure 6.13.(2)).

• Correct buildup of materials (fallen rocks, sand, and humus) in both screes and accretion
areas (Figure 6.14.(2)).

• That vegetation suppresses erosion and therefore softens slopes. This becomes visually
salient when slopes are denuded by fire (Figure 6.15). However, the effects of vegetation
on erosion are subtle in most scenes.

126

6.5. Results and discussion

1
2

75 y

300 y
21

Figure 6.14: An example of combined erosion and ecosystem simulation. Images show in
detail: (1) vegetation destroyed by falling rock and (2) plant growth on accretion zones, after
75 years and 150 years.

21

Figure 6.15: Impact of vegetation on soil erosion: vegetation protects the soil, damps
erosion, and blocks rockfalls. (1) For 150 years the landscape has vegetation growth without
erosion. (2) Conversely, over the same time span erosion affects the second terrain but without
any vegetation. Finally, vegetation and erosion are combined for a further 150 years in both
landscapes. The visual impact of erosion is highlighted in (2) by the sparser vegetation: the
erosion removed soil, carved steep slopes and triggered rock falls that prevented vegetation
growth.

127

Chapter 6. Joint simulation of vegetation and erosion

3

1 2

4 5

No rain No gravity

All events

No lightning No temperature

Figure 6.16: Disabling the events with respect to the complete simulation rendered in (3)
shows their impact: (1) no rain, (2) no gravity, (4) no lightning, and (5) no temperature

Although each event type in isolation has little impact on a terrain, their significance
is heightened by combined interaction. Compared to a combined simulation (Figure 6.16),
an absence of erosion and sedimentation linked to rain prevents rock from being carved and
soil from being transported into channels. Without gravity there are no rockslides to fill
lower erosion pockets. A lack of lightning and temperature simulation prevents the erosion
of exposed and steep slopes, respectively. The importance of fire in hot, dry landscapes is
depicted in Figure 6.17.

128

6.5. Results and discussion

21

Figure 6.17: Effect of fires on a warm, dry landscape: no fire for 200 years (left), compared
with regular fires every other year (right).

In terms of ecosystem simulation, our terrain erosion models capture visual outcomes
not considered in previous work. First, our rainfall model accounts for moisture absorbed
by different soil layers with differing moisture retention and these layers are distributed by
erosion forces in a consistent fashion. For example, in Figure 6.18.(1) hilltops receive less
moisture and thus less plant cover. Most importantly, our model considers humus generation,
displacement, and exploitation by vegetation. For example, in Figure 6.18.(2) a pile of sand
painted by the user to override humus retards vegetation growth. Second, erosion destroys
plants through catastrophic events. For instance, rockfalls crush and bury trees, an effect
that is characteristic of alpine forests.

21

Figure 6.18: Effect of soil type on vegetation: (1) hilltops receive less moisture, (2) user-
painted sand slows vegetation growth.

129

Chapter 6. Joint simulation of vegetation and erosion

Real terrain data with different layers (humus, rock) is not readily available, making
comparison difficult. This is exacerbated by temporal simulations that run anywhere from
100 to 1,000 years. Instead, we validate our results by comparing them with real phenomena
illustrated by photographs. Figure 6.19(1) shows the destruction of vegetation by rock-slides,
which we reproduce in Figure 6.14(1). Figure 6.19(2) has trees growing over accretion areas,
and is mimicked in Figure 6.14(2). Finally, Figure 6.19(3) is a granular terrain, deeply eroded
due to an absence of vegetation, which is simulated in Figure 6.20 by replacing bedrock with
only granular materials.

1 2 3

Figure 6.19: Photographs of real-world landscapes show: (1) vegetation cleared by an
avalanche of rocks, (2) vegetation growing on accretion cones, (3) terrain erosion accelerated
by an absence of plants (c© Creative Commons).

Limitations: One limitation of our framework is the computational cost of event simu-
lation. Unfortunately, parallelizing the simulation is non-trivial, because events occur in
sequence and may overlap spatially. In the interests of responsiveness, we limit users to in-
teracting with coarser-scale landscapes (n = 128 to 256). One way to compensate for this is
to store the events and user modifications and re-run them with an off-line upsampled simu-
lation. Having many combining events increases both the number of simulation parameters
and the complexity of their interdependence. These parameters tend to be hard to tune and
are not artist-friendly.

Another limitation is the discrete nature of the simulator. While a discretized grid is
more efficient, a continuous domain would be more appropriate for phenomena that act at
different scales. In the same vein, we do not account for accurate fine-scale detail, so the
method is less suited to close-up views. In future work, detailed geometry such as piles of
rocks and boulders or fallen branches could be added using mass instancing (Guérin, Galin,
et al. 2016).

Validation is a challenge common to all but the simplest simulation methods. While we
included real images for comparison, it is difficult to quantify how closely the results match
corresponding effects in nature. Our evaluation is only visual.

130

6.5. Results and discussion

50 y

100 y

150 y

Bare ground Shielded with vegetation

Figure 6.20: Shielding effects of vegetation: a time lapse of simulations on slopes with
granular materials, (left) without vegetation to damp soil erosion, and (right) protected by
vegetation.

131

Chapter 6. Joint simulation of vegetation and erosion

6.6 Conclusion

In this chapter, we presented a novel landscape editing framework, which enables the sim-
ulation of complex interactions between a variety of phenomena, ranging from vegetation
lifecycles and terrain erosion to lightning and fire disturbance. This is achieved thanks to
a layered landscape model, which stores terrain materials, vegetation densities, and other
resources, and is evolved over time through a large number of stochastic events. We avoid
a complex, joint simulation over all phenomena by launching these events in random order
and restricting them to interact only through the landscape layers. This reduces computa-
tion time, simplifies the interactions between different phenomena, and enables interactive
user control. Our editing tools enable the user to over-paint any of the landscape layers at
runtime, throughout the simulation, thereby combining realism and control.

Due to the versatility of this approach, many additional events could be added to broaden
the range of simulated phenomena to cover wind (affected by vegetation and topography),
sand dunes, grazing herds, and different rock, soil and plant types. It would also be interesting
to incorporate an extra layer for bodies of water, such as large rivers and lakes, updated
using shallow water fluid simulation. This direction is explored in Chapter 7, not for general
water flows but in the interesting case of a snow layer affected by sunlight, wind, skiers
and avalanches. To tackle the challenge of interactive fluid simulation for snow cover, the
simulation method is also extend to work on the GPU.

132

Chapter 7
Dynamic snow cover evolution

Contents

7.1 Overview . 135

7.1.1 Simulation method . 136

7.1.2 Categories of events . 138

7.2 Environmental conditions . 138

7.2.1 Temperature . 138

7.2.2 Wind . 140

7.3 Snow cover . 142

7.3.1 Snowfall . 142

7.3.2 Snow state changes . 143

7.3.3 Diffusion of powdery snow . 144

7.3.4 Wind transport . 144

133

Chapter 7. Dynamic snow cover evolution

7.4 Interactive phenomena . 145

7.4.1 Avalanches . 146

7.4.2 Ski tracks . 147

7.5 Implementation . 149

7.6 Results and discussion . 152

7.7 Conclusion . 156

Mountainous snow-covered landscapes are among the most visually-arresting vistas. In
nature, snow coverage depends on altitude, but also a host of other phenomena, such as
snow melting more on sun-facing slopes, snow shifted by the wind as channeled by topogra-
phy, avalanches scouring some of the steepest slopes, and human activities, such as skiing,
which leave visually-prominent imprints. Such snow-covered landscapes are heavily used
in animated films and computer games, where their static portrayal provides a compelling
backdrop, while dynamics elements (such as ski tracks and avalanches) serve a storytelling
function, but a manual modeling process predominates. The challenge in instead generating
these phenomena through simulation, lies is achieving both plausible results and the efficiency
necessary for control.

Although the targeted result is very different in temporal scale and in visual aspect, the
problem of generating snow-covered landscapes shows some similarity with the problem of
temporal scale variability presented in Chapter 6. Snow generation encompasses a wide range
of phenomena that take place at different scales both in space and time, from temperature
variations (months) to avalanches (minutes). The stochastic framework presented earlier lends
itself for the generation of snow, although it needs to be extended to handle the simultaneous
interactive edition of both static and dynamic landscapes. This chapter describes our work
presented at Eurographics 2018 (Cordonnier, Ecormier, et al. 2018).

We target medium scale scenarios (from 1× 1 km to 10× 10 km in extent, modeled using
a 1 024× 1 024 grid) – a resolution fine enough to capture snow-drift, avalanche and ski-track
effects, but broad enough to encompass an expansive vista.

A key observation studied throughout this chapter is that avalanches and other phenomena
such as snow-fall, snow-melt, snow-drift and Nordic skiing have significant visual impact on
snow-covered landscapes. They should form part of the designer’s tool-set, since they literally
sculpt the landscape. While existing methods allow for the controllable placement of static
snow cover, avalanches and snow-drift cannot be achieved as easily because they involve
dynamic phenomena that reallocate snow mass. In contrast, these dynamic phenomena,
optionally guided by the user, are at the heart of our modeling pipeline.

The input to our method is an elevation map overlaid with several qualitatively-different
layers of snow (compacted, stable, unstable, and powdery), which are initialized by the user
and set to evolve over time. For each time-step (e.g., one day), the snow cover is updated
as a consequence of various phenomena. First, we account for evolution in the local snow
composition, such as a shift from stable to unstable snow with warmer temperatures. Second,
a number of external events act on the snow layers. As examples: wind shifts powdery snow,
avalanches may occur in steep areas with unstable snow, and skiing both compacts powdery
snow and potentially triggers avalanches. These events sculpt the landscape, leading to the
formation of characteristic features, such as overhangs on crest lines caused by snow-drift.

134

7.1. Overview

We extend the stochastic simulation framework presented in Chapter 7 with events specific
to the phenomenological simulation of both the evolution of the snow cover and fast flowing
avalanches. Our GPU acceleration enables interactive rates. We introduce a temporal zoom
mechanism to visualize fast avalanches and dynamic ski tracks as details within the day long
time-step. The user designs the landscape and specifies scenarios for its temporal evolution
by using brushes: any point on the simulation time-line can be selected and tools applied to
adjust the snow layers, either globally or locally. The probability of avalanches and skiing
areas can also be prescribed. The user can thus rapidly explore design alternatives within
the parameter space of events.

Our method is based on the following technical contributions:

• A novel interactive framework for modeling snow-covered countryside built on the GPU.

• An efficient method for visually simulating avalanches that combines viscous fluid and
granular material behavior in a balance dictated by external conditions. This is seam-
lessly integrated with the stochastic simulation framework.

• A simple, yet accurate method for efficiently generating ski-tracks, which accounts for
human impact on the uppermost snow layer and provides compelling visual detail.

Although we will detail the fourth contribution for the sake of completeness, it should be
noted that this contribution about the impact of ski tracks is from the second author, Pierre
Ecormier.

7.1 Overview

Our method enables users to interactively design static and dynamic medium-scale snow-
covered landscapes (typically, 1−10 km on a side), at a ground-plane and temporal sampling
resolution that is sufficient (typically, 1 − 10 m per cell and one day per time step). In
particular, we want to capture characteristic snow-field effects, such as snow cornices on the
leeward side of mountain crests, buildup at the base of slopes scoured by avalanches, and
ski-tracks that weave downhill. Lastly, to enhance the user experience and improve control,
we want to visualize fast dynamic events such as avalanches or new ski tracks generated at
the speed a user expects from real life, even if the remainder of the simulation runs at a faster
pace.

Our method generates snow cover for a scene, represented by a heightfield grid with
additional layers for compacted, stable, unstable and powdery snow, by drawing from a set
of concurrent phenomena, including precipitation (snowing in our case), snow melt and wind
transport (Figure 7.1), which interact, mutually but indirectly, through the shared snow
layers.

These phenomena, in turn, are strongly influenced by time-linked environmental con-
ditions, like temperature, prevailing wind, and sunlight intensity. Avalanches and skiing
represent a class of complex limited-duration phenomena that require special treatment, par-
ticularly if they are to be incorporated as dynamic, real-time effects in games and virtual
environments. There are intricate evolving interactions between the layered scene, the evo-
lution of snow cover over time, and the environment. One causal chain might involve wind

135

Chapter 7. Dynamic snow cover evolution

Wind
Temperature

Snowfall
Snow state changes

Diffusion of powdery snow
Wind transport

Avalanches
Ski tracks

Poisson Simulation

Layered model

Snow layers

Scene

Avalanches
Ski tracks

EnvironmentTriggered events

User control

Figure 7.1: System overview: The user can define the environmental conditions that influ-
ence the snow simulation, or directly and interactively trigger events such as avalanches or
new ski tracks. These are used in our unified stochastic Poisson simulation. The output is a
static or dynamic snow-covered landscape.

shifting powdery and unstable snow across a crest onto a sheer slope, setting up ideal con-
ditions for an avalanche to be triggered by an oblivious skier. To achieve such intricate
simulation at interactive rates, the key idea is to use Poisson processes for interweaving in-
cremental steps of the various events to be simulated, often at quite different temporal scales
(presented in Section 7.1.1 and Figure 7.2).

The user can direct the simulation in several ways: by defining a temporal scenario for
changes in environmental conditions, by directly painting height changes into the snow layers,
by interactively exploring the phenomena parameters, or by triggering avalanches and skiing.
In the interests of interactive performance, all components of the framework are implemented
on a GPU.

7.1.1 Simulation method

The scene model consists of a regular grid. Each cell contains a stack of height values
representing a set of ordered layers: bedrock (the initial static heightfield input), compacted
snow (an icelike layer subjected to pressure from above), stable snow (a cohesive layer bound
strongly to the terrain), unstable snow (a weak layer susceptible to slippage when perturbed),
and powdery snow (an aerated layer with little cohesion subject to constant small spills).

Environmental conditions: An interactive session starts with a pre-computation step,
where the environmental conditions are used to compute initial snow cover (Section 7.2).
They include temperature (computed from altitude and illumination) and wind (computed
from altitude and wind speed at sea level). These phenomena are only considered when the
simulation is launched, or if the user decides to change environmental conditions. Results are

136

7.1. Overview

stored as static layers over the terrain using a scalar field for temperature and a vector field
for wind speed, and used, together with the snow cover layers, to compute the local effect of
the different runtime events, all of them being applied over the whole terrain.

Poisson stochastic simulation: At runtime, the phenomena of interest require different
time scales: for instance, the typical time-scale of melting snow is far longer than required
for a running avalanche (Figure 7.2).

1 Day

Time

SnowfallSnow-Melting AvalancheSteps

Snow fall period

Zoom

Start Stop

Zoom

Avalanche

Start Stop1 Second

Figure 7.2: Temporal development of snowfall, snow melting, and an avalanche. Each event
is handled by a Poisson process, some, such as the snowfall and avalanches, are preceded
and followed by start and stop events. Avalanche steps have a high frequency and an entire
avalanche may take place between two lower frequency events (such as snowfall steps).

To handle this, the stochastic simulation of Chapter 6 is extended as follows: a Poisson
process is associated with each phenomenon, which is thus expressed through a series of
individual stochastic events, applied on the whole terrain at a given mean-frequency fe. We
use a random variable te to represent the time at which the next event of type e is to be
triggered. The variable te follows an exponential distribution defined by the probability
density function:

Pe(x) = fee
−fe x ifx ≥ 0 Pe(x) = 0 otherwise.

Since the set of times te for the different event types are independent stochastic variables,
the probability of the next event being e is:

P
(
e | te = min (t1, · · · , tn)

)
= fe/

n∑
i=1

fi (7.1)

The simulation algorithm thus runs as follows: At each simulation step, the system randomly
selects which event is next according to the distribution of probabilities in Equation (7.1),
and triggers it. The global simulation time is then increased the mean time-step associated
with the current phenomenon.

Such event-based time-steps seamlessly support temporal zooming when high-frequency
events are triggered. For example avalanches and ski tracks, are assigned a much higher fre-

137

Chapter 7. Dynamic snow cover evolution

quency than other events, enabling them to be perceived as dynamic phenomena (Figure 7.2).

7.1.2 Categories of events

We split the phenomena into a series of stochastic, infinitesimal events, each applied to the
whole terrain (with, however, a different local effect depending on environmental conditions
and snow layers). In addition to simulation step events, some phenomena such as snowfall
require a start event followed by given a number of steps. We use two categories of events:

Snow cover evolution encompasses phenomena that take place over a longer period
through a slow series of stochastic events (Section 7.3). For instance, Snow-Melting and
Wind-Transport (snow transported elsewhere by the wind) are two phenomena that are always
active and that take place through a series of Snow-Melting-Step events and Wind-Transport-
Step events, respectively, each occurring twice a day on average. Another phenomenon is
Snowfall, triggered by a Snowfall-Start event occurring once per week on average, followed
by a series of Snowfall-Step events that are triggered twice a day over a period of a few days.
Each Step event updates both snow distribution and snow stability.

Interactive phenomena include avalanches and ski tracks in our framework. Both take
place over a short period (Section 7.4). In addition to being stochastically called at runtime
(e.g., once a week on average for avalanches on a one square kilometer terrain, and once
an hour for ski tracks), events such as avalanches and ski tracks can be directly triggered
by the user. This is achieved by increasing the frequency of the associated Avalanche-Start
(respectively Ski-Track-Start) event, after creating favorable conditions at the user selected
location, until the requested event is launched. The same method is used to enforce catas-
trophic events, such as ski-tracks triggering immediate avalanches when they cross unstable
snow layers. While an avalanche (respectively a Ski-Track) phenomenon is active, Avalanche-
Step (respectively Ski-Track-Step) events take place every 0.1s on average, which enables the
user to see the dynamic phenomenon taking place at its natural (real-time) speed.

7.2 Environmental conditions

Snow coverage changes depending on the locally-varying environmental conditions, among
which the most important are temperature (as affected by sunlight) and wind. These condi-
tions depend primarily on terrain topography with the snow layers having negligible impact.
Because of this, we can precompute these conditions and update them only when the user
changes the terrain or an input parameter (such as wind direction or sea-level temperature).

7.2.1 Temperature

In our simulations, temperature is a key environmental input that depends primarily on alti-
tude A and sunlight exposure I. Strictly speaking, total altitude should be the combination
of terrain altitude B and snow thickness D. However, since the snow contribution is small
(D � B) we use an approximation A = B that allows precomputation. Temperature T is

138

7.2. Environmental conditions

calculated as:
T = T0 + ktA+ kiI.

T0 is the temperature at sea level, kt = −0.01◦Cm−1 is the per meter decrease in temperature
with altitude, and ki = 10◦C is the temperature increase due to 24-hours of direct sunlight.

Sunlight Ambient occlusion

Indirect Bounce Sum

Figure 7.3: Sun exposure is computed by summing the direct sunlight, ambient occlusion,
and one bounce of the indirect sunlight.

The calculation of sun exposure is more involved, since we factor in direct illumina-
tion potentially blocked by topography, ambient occlusion resulting from scattering due to
clouds (Foldes et al. 2007; Maréchal et al. 2010), and a single ray bounce (Ritschel et al.
2009) accounting for the high reflectivity of snow. Total exposure (Figure 7.3) is then a sum
of direct Isun, ambient Isky, and indirect sunlight Iind: I = Isun + Isky + Iind.

Direct sunlight for a point p on the terrain is measured as the proportion of sun exposure
during a day and is given by:

Isun = ksun
∑
h

sh n · ih,

139

Chapter 7. Dynamic snow cover evolution

where ksun is sun intensity, sh indicates topographic shadowing of an incident ray ih from
the sun’s position at hour h (see Chapter 6, Section 6.3 or (Gain et al. 2017)), and n is the
terrain normal at the point p.

Á
i

p

p

Á
ri,j

d i,j

Ási,j

Figure 7.4: Terms used in

the calculation of indirect sun

exposure.

For ambient exposure, we make the assumption that am-
bient light Isky is rotation invariant. We sample directions
θi ∈ [0, 2π] around a terrain point p and obtain the maximal
angle φi between the tangent to the terrain and the line be-
tween p and the highest visible point on the terrain in this
direction (Figure 7.4, left). Then for an infinitesimal angle
dθ around θi, the ambient exposure is:

dIsky,i = ksky

∫ π/2

x=φi

cos(x) sin(x) dθ dx = ksky
cos2(φi)

2
dθ.

Total ambient sunlight at a point is the integral of the term
above, which we discretize as a sum:

Isky =
∑

i∈[1,N]

2π

N

dIsky,i
dθ

= ksky
π

N

∑
i∈[1,N]

cos2(φi).

We evaluate indirect sunlight at a point p (the receiver)
using a polar coordinate sampling of the nearby direct sunlight over random directions θi and
distances {r0, . . . , rj} ∈ [0, rmax]. For each such sample pi,j (the sender) we define an angle
φri,j between the receiver’s normal and the sampling direction (pi,j − p). Conversely, φsi,j
is the angle between sender’s normal and the inverse sampling direction (Figure 7.4, right).
Indirect sun exposure is calculated as:

Iind(p) = kind
∑
i

∑
j

Ai,j Isun(pi,j)
cos(φsi,j) cos(φri,j)

d2i,j
,

where Ai,j = 2π(r2j+1/2 − r
2
j−1/2)/N is the sampling area, for N angular samples, rj+1/2 =

(rj + rj+1)/2, and di,j is the distance between p and pi,j .

7.2.2 Wind

In a snow-cover simulation, wind is both critical for its role in snow transport, and complex
since it depends on topography. As a first approximation, we treat wind as a 2D velocity
field that sits atop the terrain, and is initialized according to a globally uniform dominant 2D
wind vector Wd. This field is then enhanced by taking into account the effects of altitude,
local slope direction, and wind shadows (Figure 7.6). Here again, we set A = B, allowing for
precomputation.

First, we account for Venturi effects that accelerate wind at high altitudes, by scaling
wind velocity with height:

Wventuri = (1 + kventuriA)Wd.

While this linearization of the Venturi effect is not physically accurate it has the advantages
of being efficient and easily controllable. Moreover, in our experiments the resulting snow

140

7.2. Environmental conditions

coverage was not visually distinguishable from results obtained with more accurate simulation.

Second, we redirect wind according to terrain slope. Let nxy be the horizontal component
of the normal vector to the surface. We define n⊥xy as the 2D vector obtained after 90◦ rotation

of nxy in the direction ofWventuri (Wventuri ·n⊥xy ≥ 0). When the terrain is almost flat, ‖nxy‖
is small and the wind direction does not change. Otherwise, the wind tends to align with n⊥xy
as captured by the equation:

W =Wventuri (1− ‖nxy‖) + kterrain‖Wventuri ‖n⊥xy. (7.2)

Finally, wind shadows form leeward of crests and ridge lines and this leads to the charac-
teristic build-up of snow cornices. To achieve this, we assume that wind shadows are binary
(wind at full strength or no wind at all), and we create a wind-effect surface representing the
lowest altitude above which the wind blows at full strength.

Global wind direction:

Surface altitude A

Wd

W+zW
zs

zc

Figure 7.5: While the wind-effect sur-

face is in contact with the ground (Wz =

A), its vertical speed Wsz is forced to

follow the terrain gradient. Otherwise,

Wsz decreases by a constant value c,

which makes the wind-effect surface fol-

low a parabolic shape.

The horizontal wind velocity for this layer is
set toW (Equation 7.2). The altitude of the wind-
effect surface Wz is related to the vertical wind
speed Wsz as follows:

W · ∇Wsz=−c if Wz > A
Wsz=W · ∇A otherwise,

where c is the constant by which the vertical wind
speed decreases when the wind-effect surface is
strictly above ground level (Figure 7.5).

The value of c is set experimentally to
0.7ms−2, and controls the extent of the wind-
shadow cap. The smaller this value, the bigger the
cap. The layer’s altitude is then derived from:

W · ∇Wz =Wsz .

The equation is undefined for W = 0, in which
case we set Wsz = A. Leeward of ridge lines, the
gradient of the elevation and the wind act in op-
posite directions creating a negative vertical speed

that forces the wind-effect layer to slowly decrease, generating a parabolic wind-shadow cap.
Windward, the wind is pushed toward the surface, where Wsz is directed by the 2D gradient
of A.

Both altitude Wz and vertical speed Wsz are computed using a Gauss-Seidel scheme.
They are initially set to Wz = A and Wsz = W · ∇A. Iteration proceeds in a black-and-
white checkerboard fashion. On odd iterations, all white-assigned grid cells are updated with
respect to black-assigned cells, as follows: first, Wsz is calculated, independently from Wz;
then Wz is updated based on the new value of Wsz ; and finally, Wsz is corrected if Wz ≤ A.
On even iterations the black cells are re-evaluated.

141

Chapter 7. Dynamic snow cover evolution

Wind speed Wind-effect layer

Wd

Figure 7.6: Wind speed increases with altitude – shown as color ranging from blue to red
(left) with dark lines indicating the local wind directions; the wind-effect surface hugs the
ground except leeward of ridges, where caps (in blue) are formed (right).

7.3 Snow cover

Snow is rarely homogeneous in either structure or composition. To express this we partition
snow cover (D) into four layers: compacted (C), stable (S), unstable (U), and powdery (P)
snow. The distinction between the latter two is necessary because powdery snow often trickles
downwards immediately after deposition, while unstable snow shifts only with an avalanche
event. The unstable layer serves as a proxy for the interleaving of brittle and strong layers
in real snow that are likely to trigger avalanches. Key to of our framework is tracking the
evolution of these snow layers over time, under the action of precipitation, melting, diffusion,
and wind shifts (see Figure 7.7).

7.3.1 Snowfall

Snowfall is a blanketing event that influences snow cover by adding to the uppermost layers.
We use a mean triggering interval of one week and a mean duration of three days as defaults.
Apart from these, the user can also adjust snowfall strength ksnow.

The Foehn effect allows a straightforward relationship between snowfall and altitude:

D(t+ δtp) = D(t) + δtp ksnow max(0,A−A0 precip),

where A0 precip is the altitude at which rainfall transitions to snowfall, and δtp = 1 day is the
precipitation time step. Snowfall is initially divided into powdery and normal snow, with
the latter assigned to S and U layers after landing. First, some of the precipitated snow
is converted into powdery snow (i.e., snow that cannot bond to bare slopes or the existing
snow layer). The proportion of snow that becomes powdery is xP = kpowdery (‖∇A‖ − sc)
(clamped between 0 and 1), where kpowdery is a user defined constant that scales the slope
influence, ‖∇A‖ is the norm of the gradient of snow surface altitude, and sc is a critical slope
beyond which the snow cannot fall. Based on the assumption that this critical slope depends
on the inertial temperature of the underlying ground, the critical slope increases when the

142

7.3. Snow cover

Precipitations Melting

Powder diffusion Wind

Figure 7.7: Effects of different phenomena on snow cover.

temperature decreases:

sc = sc0 + ksc powdery max(0, T0 powdery − T),

where ksc powdery scales the temperature’s influence, and T0 powdery is the highest temperature
influencing the critical angle. Then, the remaining proportion of snow (1−xP) is split between
unstable and stable snow, where the proportion of unstable snow is: xU = kunstable (s− sU),
clamped between zero and one.

7.3.2 Snow state changes

Temperature (Maréchal et al. 2010) and slope (Lehning et al. 2008) are prime determinants
of change in snow stability and hence shifts between layer categories. We propose a simplified
model that takes both into account. Temperature induces melting of the snow cover according
to:

D(t+ δtm) = D(t)− δtm kmelt max(0, T − T0melt),

where kmelt = 0.01mday−1 ◦C−1 is a global constant melting rate, T0melt = 0◦C is the
minimum temperature at which melting occurs, and δtm = 0.5 day is the state change time

143

Chapter 7. Dynamic snow cover evolution

step. Melting occurs layer by layer, progressing from top (unstable) to bottom (compact).
The resulting water is not taken into account in our model.

Transitions in snow stability depend on temperature. At warmer temperatures (Twarm)
snow becomes very unstable. At cool temperatures around freezing (Tcool) oscillations be-
tween partial melting and refreezing act to cement snow stability. At cold temperatures
(Tfreeze) snow stabilizes only under the pressure of its own weight. By experimenting with
our model, we have found that this dynamic is captured by linearly interpolating stability
changes depending on temperature: we use parameter values of −kw, kc, and 0 for warm,
cool and cold temperatures, respectively, where −kw and kc are user defined constants that
relate to the speed of state change. Slope is also taken into account: instability increases
slower on gentle slopes, and conversely stability increases slower on steeper slopes.

7.3.3 Diffusion of powdery snow

Because of its consistency, powdery snow undergoes an almost constant diffusion process of
localized shifts and spills. We apply this diffusion on the powdery layer (P) at a high update
frequency. It is computed for each cell p using the slope of each of the 4-cell neighbors pn:

sd = (A(p)−A(pn))/‖p− pn‖.

The proportion of powdery snow shifted in direction d is a function of slope sd in that
direction, a constant rest slope value (sd0), and a shift rate parameter (km):

md(p) =

{
δtd km max(0, sd − sd0) if sd ≥ 0
δtd km min(0, sd + sd0) otherwise,

where δtd is the time-step of the diffusion events. We define snow incoming i or outgoing o
from p as the sum of all negative or positive md, respectively. Each outgoing positive md

is scaled in proportion to the powder layer P by (i + P)/o if o > i + P to prevent negative
quantities of powdery snow. The powdery layer is then updated by shifting snow from or to
neighboring cells with respect to md.

7.3.4 Wind transport

Wind acts on powdery snow to scour and advect it based on the curvature of the snow surface
(Figure 7.8). To achieve this, we compute the wind resistance of the snow surface, taking
into account wind velocity W and altitude A:

cW = |Wx|
∂2A
∂x2

+ |Wy|
∂2A
∂y2

.

In practice, we zero cW if it is positive, or if the wind-effect surface is distinct from the snow
surface (as in the blue wind-shadow regions of Figure 7.6 right). Snow is then eroded from
a cell in proportion to the concavity: the amount eroded is max(D,−kerosion cW) and it is
deposited to two of its neighbors in the direction ofW (refer to Section 7.5 for implementation
details).

Wind also weakens the stability of snow cover by tamping slopes, thereby forming a thin

144

7.4. Interactive phenomena

Cornice

Bedrock B

Wind effect surface

Wind shadow
Snow cover

Unstable wind plates

Figure 7.8: The impact of wind on snow cover includes increased instability and formation
of cornices.

brittle shell over snow that would otherwise spill downslope. To account for this effect, we
increase instability in proportion to positive changes in vertical wind speed, as illustrated in
Figure 7.9.

Figure 7.9: Stability map: when present, unstable and powdery snow are shown in purple
on top of compacted and stable snow in blue. Regions with no snow are in black.

7.4 Interactive phenomena

The phenomena described in this section are either triggered automatically (with a low per-
cell probability so that their occurrence is rare), or manually by the user selecting a seed
point. The latter is most useful if real and simulation time are synchronized so that users
can best judge the dynamics of the phenomenon.

145

Chapter 7. Dynamic snow cover evolution

7.4.1 Avalanches

Avalanche behavior involves many correlated conditions, including terrain shape and initial
environmental conditions, and a variety of constituents, including entrained air and different
forms of snow. Here, we focus on two principle avalanche types: (1) Dry snow avalanches
composed of powdery snow mixed with cohesive ice-blocks. Such avalanches are best treated
as a flow of granular material; (2) Wet snow avalanches with heavy, part-melted snow that
behaves as a viscous fluid. These types represent two poles of a continuum: our unified
treatment allows a mix of behaviors parameterized by temperature.

We should note that snow type (either wet or dry) is only one axis in the standard
classification of snow avalanches (McClung et al. 2006). Other axes of the zone of origin
include the type of start zone (point or slab) and the level of the sliding layer (surface or
full). Within this classification scheme we support surface sliding point zone avalanches for
both wet and dry snow types.

Fluid simulation. Both avalanche types can be encompassed by a fluid simulation and for
this we choose to implement a hydrostatic pipe-model from (O’Brien et al. 1995; Št’ava et al.
2008). This 2D Eulerian method discretizes the simulated domain into 2D cells corresponding
to columns of snow that are connected by virtual pipes. A pipe’s pressure depends on the
fluid content, and the simulation stabilizes the flow of fluid induced by pressure differences.
For a given cell C in the terrain grid, we use Moore’s neighborhood, which considers all eight
neighboring cells. The difference in pressure ∆Pi between two neighboring cells C and Ci is:

∆Pi = ρ g (A(C)−A(Ci)),

where A = B +D is the altitude of the uppermost surface, ρ is the density of the fluid, and
g = 9.81 is the gravitational constant. The acceleration ai of the snow between neighboring
cells is:

ai = ∆Pi/(ρdx),

where dx is the cell width. The flow in the pipe evolves as:

φC→Ci(t+ δt) = φC→Ci(t) + δt c ai,

with c being the cross section of the pipe (set as constant as c = dx2). Finally the height of
the unstable snow layer U is adjusted according to:

U(t+ δt) = U(t)− δt dx−2
∑
i

φC→Ci(t). (7.3)

To enforce snow removal by a positive amount, we use a re-scaled version of φp→pi(t + δt)
in Equation (7.3), with the scaling factor: min(Vout, dx

2U(t))/Vout, where Vout is the total
outflow and:

Vout = δt
∑
i

max(0, φC→Ci(t+ δt)).

146

7.4. Interactive phenomena

Granular material flows are commonly modeled by adding a yield criterion to the fluid,
i.e., a friction force opposing the flow, of norm:

|f | = g tan(θc),

and where θc is the rest angle of the snow. If the flow is null, or applying this force would
reverse flow direction, then flow is set to zero to model static friction. Such a yield criterion
can introduce gridding artifacts in an Eulerian simulation. However, in our case the avalanche
footprint is small relative to the terrain and no visual artifacts are apparent.

Viscosity in the avalanche is obtained by adding a viscous force, opposed to the flow
direction φp→pi :

v = −kv U φp→pi .

We augment the method of Št’ava et al. 2008 by adding these forces in the acceleration term:

ai = ∆Pi/(ρdx) + αf + (1− α)v

where α ∈ [0, 1] is proportional to snow temperature.

Application to our framework: In our simulations, only the unstable layer U and the
powdery snow P on top (if not yet diffused) are subject to avalanche redistribution. It is
assumed that the stable and compacted layers are too strongly fused (making our avalanches
of surface layer avalanche type).

In our framework, we use a snow moving boolean layer to decide if unstable snow is locally
still or in motion. The snow is initially still. A rupture point can then be triggered either
automatically or by the user. If the unstable layer U is non empty, then the avalanche rapidly
propagates to neighboring areas, with reach proportional to the thickness of U . All unstable
snow in the rupture zone is immediately set into motion, as well as all unstable snow in the
downslope reach of the avalanche.

7.4.2 Ski tracks

Human action on a terrain is another non negligible factor in modeling realistic mountainous
landscapes. In particular, Nordic skiing not only compresses snow layers and leaves tracks,
which is important for a more authentic feel to the scene, but can also trigger avalanches
when performed on unstable layers of snow.

The size of our simulation grid (10 m per cell) only allows a consideration of the general
direction of the skiers. While this is sufficient when modeling the impact of Nordic skiing on
snow state during the simulation, we need more precise paths to achieve realistic rendering.
We thus opted to integrate a procedural method to generate plausible refined tracks.

Global path search. As with avalanches, skiers that are not user-triggered are automat-
ically generated by a Ski-Track-Start event called on the terrain, where each cell has a low
probability of spawning a skier. This probability is influenced by the length and viability
of a ski route. Therefore, we pre-compute a map registering the distance from each cell to

147

Chapter 7. Dynamic snow cover evolution

its farthest down-slope end point (local minima or edge of the terrain). We use a simple
cellular automaton that finds minima on the terrain and propagates the distance to them in
subsequent steps to efficiently compute this map, directly on the GPU. This distance map is
used both as a weighted mask when automatically spawning new skiers, and as a guide to
discourage skiers from reaching dead-ends, as discussed next.

Large scale paths are computed to approximate general direction and movement of the
skiers, without the detail of the curves used to regulate their speed. For that, we take into
account the slope of the mountain by defining an ideal slope angle st that skiers will be
comfortable with and try to follow, and make sure that there is enough snow for them to
ski on. In this work, skiers are modeled as independent agents, defined by their position
and orientation, responsible for deciding their next move using a local search, based on the
amount of snow present in neighboring cells, the corresponding relative slope sn and a pre-
computed weight wd related to the distance to a terminus. In practice, skiers have a small
lookahead window of a few cells, and will steer in the best candidate direction defined by the
center of a nearby cell. The probability for a skier aiming towards a given cell n is:

P (n) = 1snow>threshold f(|sn − st|)wd, (7.4)

where 1 is the indicator function, sn is the slope between the current cell and cell n, and f
is a function that assigns a weight, which can be changed to tune the behavior of skiers with
regard to slope. To avoid sharp changes in direction, a smooth transition to the new steering
direction is computed and applied to the orientation of the skier. The steering direction is
re-evaluated at each animation step.

Refined tracks are created for rendering purposes. They are approximated based on
the observation that the precise movement of skiers is analogous to sine waves of varying
amplitude and frequency, with sharp turns used to slow down and straight paths to gain speed.
With this in mind, we model movement on each straight segment of a global ski trajectory
using p(t) = a sin(2πft), where a is the amplitude and f is the frequency, dynamically
updated with the terrain’s varying slope.

Indeed, a skier moving straight down a mountain will go faster than one with a trajectory
following the isoline. To account for this, we compute the effective slope se of the skier’s
trajectory as:

se = arcsin
sin(sn)

2f l
l =

√
1

4f2
+ 4a2,

where l is the distance between sine curve extrema. This provides the local frequency value
required for skiers to reach their comfortable target slope st:

f =

√
sin2(sn)− sin2(st)

4a sin(st)

Continuity with the previous refined position and orientation of the skier is ensured by choos-
ing an appropriate starting phase value along the sine curve. At each animation step, the
resulting movement detail is mapped on the fly onto the lower resolution trajectory computed
using Equation (7.4). This is done using a local update to a ski tracks texture layer covering

148

7.5. Implementation

the whole terrain. An alternative is to export this texture as a displacement map for off-line
rendering.

Interaction between ski tracks and snow is two-way. Once a skier enters a cell it
transforms a fixed amount of snow from unstable to stable, or from stable to compacted if no
more unstable snow remains. If there is unstable snow still remaining then the probability
of an avalanche is increased. Conversely, the impact of snow on rendered ski tracks is taken
into consideration: as snow is deposited along the path or shifted by the wind, the tracks
fade dynamically depending on the quantities involved.

7.5 Implementation

Our system is implemented in C++, using OpenGL and GLSL for rendering and CUDA
for simulation. All examples were measured on a laptop equipped with an NVidia Quadro
K2100M GPU. Off-line rendering was done with Terragen software.

5 1 2 3 4 5

2 3 4 5 1 2

4 5 1 2 3 4

1 2 3 4 5 1

3 4 5 1 2 3

5 1 2 3 4 5

Wind transport and diffusion of powdery snow can move snow from
the current cell to one of its neighbors. This can cause race condition if
the simulation executes on all cells concurrently. To avoid this situation,
we run the kernel in multiple passes, each time affecting only cells that
would not cause parallel write conflicts. We perform the simulation
on cells according to a cross-shaped tiling, which requires five kernel
launches (one per arm and one at the cross center). This is a very tight
arrangement of kernels that allows for conflict free usage of direct neighboring cells. In
our experiments, this implementation gave slightly better performances than using atomic
instructions, and was also both easier to implement and more readable.

Avalanche simulation on the GPU is inspired by the work of Št’ava et al. 2008, with
the distinction that we store four floating point values for signed flow instead of the eight
outflows: our GPU implementation allows writing to neighboring cells, as long as two cells are
not written simultaneously. When computing the flow for the given cell p, the resulting flows
are written at p only if they are positive, and in the neighboring cells if they are negative.
In this way, all the flows are updated and race conditions are avoided while maintaining high
occupancy.

Ski tracks are also computed on the GPU. Skiers are spawned in parallel in each cell with
a small probability, and then moved still in parallel on a cell-by-cell basis using the same
tiling pattern described for wind transport. For large-scale paths, we only store the number,
position an orientation of skiers present in each cell, and every thread dispatches its skiers
to neighboring cells. For fine-scale tracks, we also store the frequency and phase of the sine
curve used to refine each straight segment, since this is necessary to render continuous curves.
An alpha-blending coefficient, updated when snow moves into a cell, is used to progressively
fade-out ski tracks.

149

Chapter 7. Dynamic snow cover evolution

Performance is mainly impacted by temperature and wind calculations. Therefore, they
are performed once in entirety as a pre-processing step and require approximatively 7.8 and
10.5 seconds, respectively, to compute. The simulation and the vizualization are done on the
GPU. We achieve interactive simulation rates of 30Hz, on a 1024 × 1024 grid (Table 7.1).
Wind transport and powdery snow diffusion are relatively slow because they require five
kernel launches each. In contrast, precipitation and snow-state events are less demanding
since they only require a single kernel launch.

Event Time n Tot. time %

Wind transport 60 2 120 10

Powdery snow diffusion 64 2 128 11

Avalanche 38 10 380 32

Snowing 12 1 12 1

Snow state change 16 2 32 3

Skier movement 50 10 500 43

Total 240 37 1 172 100

Table 7.1: Average time for one frame (in ms), number of occurrences of events n, total
time (in ms), and percentage of the total for each stage on a 1 024× 1 024 grid. In practice,
the snow cover evolution runs for about 100 frames (days). An accumulated 1 000 shorter
frames (representing fractions of a second) are used to visualize avalanches and ski tracks.
Subsets of these frames are packed along the duration of such shorter-term events, usually
between two longer-term frames.

Because we want to display a regular temporal evolution of one frame per day (except
during temporal zoom), the number of occurrences of each event per day impacts performance.
In our implementation, we perform on average 200 wind transport, powdery snow diffusion
and melting events, 100 precipitation events, and 300 avalanche events over 100 days. We
achieve an interactive time step of half a second, and the user has to wait about 60 seconds for
the final landscape. When the user manually launches avalanches or ski tracks, the temporal
zoom suppresses occurrence of all the other events, so that the interactive phenomenon is
displayed in real time.

150

7.5. Implementation

Constant Description Value

T0 Sea level temperature -

kt Temp. offset with altitude −0.01◦Cm−1

ki Temp. offset per daylight hour 0.41◦C h−1

ksun Amount of direct illumination 0.9h

ksky Amount of ambient illumination 0.1h

kind Amount of indirect illumination 0.9h

kventuri Wind speed offset with altitude 10−3m−1

kterrain Topography effect on wind 0.5

|W| Wind strength at sea level 10ms−1

c Decrease of wind effect vs hight 0.7ms−2

ksnow Snow fall strength 10−4 day−1

A0 precip Rain-snow limit altitude -

kpowdery Powdery snow from precipitation 5

sc0 Powdery snow min critical slope 0.5

ksc powdery Temp. influence on sc0 5× 10−2 ◦C−1

T0 powdery Highest temp. that affects sc0 −10◦C

kunstable Unstable snow from precipitation 1

sU Critical slope of unstable snow 0.3

kmelt Melting rate 0.01mday−1 ◦C−1

T0melt Melting temp. 0◦C

Twarm Temp. of the unstable snow 5◦C

Tcool Optimal temp. for stable snow −5◦C

Tfreeze Min temp. affecting stability −20◦C

kw Instability induced by warmth 104mday−1

kc Stability induced by cold 104mday−1

sd0 Rest slope for snow diffusion 0.5

km Diffusion rate 0.5day−1

kerosion Wind erosion rate of snow 0.1ms−1 day−1

ρ Snow density 0.5g cm−3

g Gravitational acceleration 9.8ms−2

θc Rest angle of avalanche snow 30◦

kviscous Snow viscosity 5× 10−4s−2

st Target slope for skiers 30◦

a Tracks sine wave target amplitude 5m

f Tracks sine wave target frequency 0.01m−1

Table 7.2: Simulation parameters with symbol, meaning, and default value (including phys-
ical units, “Temp.” stands for temperature). Sea level temperature T0 and rain-snow limit
altitude A0 precip are highly variable depending on the input terrain and are set by the user.

151

Chapter 7. Dynamic snow cover evolution

7.6 Results and discussion

We have sourced mountainous DEM terrains from the U.S. Geological Survey, specifically
from on or near: Steens Mountain, Oregon; Glacier Park, Montana; the Teton Range,
Wyoming; and Mount Elbert, Colorado. Unless otherwise indicated, the terrain and sim-
ulations are sampled at 10 m cell resolution and have an extent of 10×10 km. In addition, we
compare against real snow depth data provided by the NASA Airborne Snow Observatory
for Tuolumne Basin, California and Conojes Basin, Colorado at 10 m sampling, and Bassies
in the Pyrenees, France (Marti et al. 2016) at 2 m sampling.

Figure 7.10: Various results, highlighting the effects of sun exposure, diffusion and slope.

Here we showcase a variety of outcomes that are visually consistent with underlying
mountainous terrain. Figure 7.10 shows both far and near landscape renderings of (from left
to right): a high-altitude region near Steens Mountain, with sun-exposed slopes; a sparser
covering of an area from Glacier Park; a higher-resolution simulation of Steens Mountain,
highlighting wind impact; and another subsampling showing snow collected below cliffs. The
latter two simulations are at 2 m resolution over 2× 2 km. Collectively, these results demon-
strate snow deposition and melting due to snowfalls and state changes, and how diffusion and
avalanches clear steep slopes.

Figure 7.11 shows summer, autumn, late winter, and spring melt stages for a landscape
subjected to an evolving user-specified weather scenario. In autumn, snow settles at high
altitudes on gentler sun-shadowed slopes. In the heart of winter, even steep slopes are covered

152

7.6. Results and discussion

Summer Autumn

SpringWinter

Figure 7.11: Dynamic landscape: bare rock in summer, the first autumn snows, snow in
late winter, and melting in spring.

and cornices develop. In spring, lower, flatter areas melt first, with snow retained at high
altitudes and for larger deposits.

153

Chapter 7. Dynamic snow cover evolution

The snow distribution resulting from an avalanche plays a role in the improved consistency
of the landscape after a user modification. An example is given by Figure 7.12 where a user
adds some snow (Figure 7.12, middle) on top of an automatically generated snow cover
(Figure 7.12, top). An avalanche is triggered, cleans the slope from exceeding snow, and
deposits the fallen snow in the bottommost gentle slopes (Figure 7.12, bottom).

Figure 7.13 shows different snow specific effects obtained from our simulation, such as ski
tracks, avalanche outcome or cornices.

Snow Cover Simulation

User-Painted Snow

Avalanches

Figure 7.12: Snow-covered landscapes with triggered avalanches. The input scene (top) is
enhanced with user-painted snow (middle) and avalanches are triggered, leading to a complete
scene with snow beneath the mountains (bottom).

154

7.6. Results and discussion

Ski tracks

An avalanche
outcome

Cornices

Figure 7.13: Specific effects simulated by our method.

155

Chapter 7. Dynamic snow cover evolution

Validation - perceptual user study. For validation purposes, the ideal would have been
to compare our simulated snow coverage results against real snow coverage data on the same
terrain topography. Unfortunately, to achieve such a match and set our simulation parameters
would require significant additional information on terrain type, water bodies, moisture levels,
ice coverage, prevailing winds, and human activity. Instead, we validated physical plausibility
through a perceptual user study. We chose to compare results against both real snow data
and a previous method, using a two-alternative forced choice (2-AFC) user experiment. For
comparison to prior work, we selected the occlusion method of Foldes et al. 2007 since this
method is intended for landscapes of a similar scale and requires comparable computation.
Moreover, since we had no physical ski-track data or previous ski track models to compare
against, we excluded ski-tracks from the user study.

Participants in the study were presented with nine pairs of images, and asked to select
the most natural in each case. All images where rendered from synthetic or real data using
the same render settings, with image pairs drawn from the set of {real data, our results,
ambient occlusion} such that each two-element subset appeared three times. Care was also
taken to use the same mountain range an equal number of times, with the data sources as
indicated previously. The overall order of presentation, as well as the order within pairs, were
randomized (some examples are show in Figure 7.14).

We had 57 participants between the ages of 21 and 78. Some had significant Computer
Graphics exposure, or were accustomed to high altitude winter scenery. Our experiment
shows that overall a particular generation method was selected on average (with standard
deviation σ), as follows: real data 68.2% (σ = 17%), our results 47.8% (σ = 26%), and
previous ambient occlusion 33.9% (σ = 22%) of the time. This indicates that, although
we improve markedly over previous work (in particular participants favored our results over
previous work 67% of the time on average), our simulation is not yet indistinguishable from
physical reality. This is likely due to certain secondary effects that we do not consider, such
as trees, soil constituency, running water, and surface ice formation.

With a more extensive user study it would be possible to evaluate the visual impact of
the individual components and parameters of our model. Although time consuming, such a
study would be a useful extension for future work.

7.7 Conclusion

This chapter was dedicated to a new modeling method for dynamic, snow-covered landscapes.
The stochastic simulation of Chapter 6 was extended with a Poisson-based scheduling of the
diverse phenomena involved. By applying it to snow related natural processes, we capture
complex physical interactions, such as snow melted by both direct and indirect sunlight,
powdery snow shifted by the wind, and avalanches initiated in steep areas of unstable snow.
Combined, all these events sculpt the landscape over time, leading to the formation of visually
consistent features, such as overhangs of snow under ridges, piles of snow at the base of
slopes cleared by avalanches, or ski-tracks consistently snaking down-slope. Our method
also integrates a GPU implementation, that allows for interactive modeling that supports
real-time phenomena. We validated our method with a user study and showed a variety of
practical examples.

Further work would be needed to incorporate many secondary effects. In particular, trees,

156

7.7. Conclusion

Our Results Ambient Occlusion

Real Data Ambient Occlusion

Our Results Real Data

Figure 7.14: Validation by forced-choice comparison between real data, our results and
an existing ambient occlusion-based techniques. Each row represents a typical pairing with
randomized order as presented in our user study.

rocks, soft soil, grass, ice formation and running water are important for snow formation. The
difference in the ranges of time steps between the simulations presented in this chapter and
in Chapter 6 prevents all the events described in both chapters to be simulated together, not
because of an incompatibility of time step - the simulation method being designed to handle
this, but because the high frequency of snow related events would request either a very long
simulation, either a simulation with no other events. A solution for this would be to provide
multiple versions for an event showing its averaged effect at different time scales. The event
version would be chosen with respect to a characteristic simulation time, which decreases
when approaching present day.

Finally, our use of different landscape scales, with cell widths from 2 to 10 meters, demon-
strates that the method is robust to scale changes between simulation scenarios. However,
an interesting research direction would be to incorporate a pyramidal approach capable of
handling both large scales and fine details within the same terrain.

157

Chapter 8
Conclusion

We introduced novel contributions to the generation of large-scale time-evolving landscapes.
In the following, we will summarize these contributions and give an outline for future research.

8.1 Summary

In this thesis, we focused on the problem of simulating landscapes at two scales: the tem-
poral and spatial extent of full mountain ranges, and a medium scale where details such
as vegetation or seasonal snow cover are relevant. This targeted medium scale encompass
landforms formed by phenomena at very different scales in terms of time and space: from
large spatial scale (mountains) to medium scale landforms (valleys, bluffs, riverbanks, cliffs)
and from large time scale (million of years for tectonics) to medium and small scale (a few
seconds for avalanche simulation).

Large scale mountain formation We studied the formation of terrains at very large
spatial and temporal scales. At these scales, we observed the formation of whole mountain
ranges above tens of kilometers in extent, during millions of years. We first proposed a
method to couple fluvial erosion modeled through the stream power law and tectonically
driven uplift (Chapter 3). By ordering the nodes of the terrain by increasing altitude, we
were able to use a linear time implicit scheme to compute the combined action of uplift and
erosion. The efficiency and stability of this method enables fast computation using large
time steps, allowing simple user control on the uplift through masks. Then, we improved
the characterization of the uplift thanks to a geologically inspired simulation (Chapter 4),
where the earth crust was successively considered as a viscous material and as a block of
layered sedimentary sheets. The first representation was used to compute the overall shape
of the mountain range and to define the internal compressive tectonic forces. From this, the
second representation was considered to generate the folding of the crust responsible for the
distribution of mountain and valleys. This method was used in conjunction with a sculpting
tool enabling the user to interactively shape tectonic forces. The generated uplift was finally
coupled with the previously introduced fluvial erosion method, instantaneously generating the
mountain surface. My last contribution was to introduce novel erosion tools. In particular,
we considered glacial erosion, which is a prominent factor of present day landscape features in

159

Chapter 8. Conclusion

many mountain ranges. This erosion method benefits from a novel technique for solving non-
linear steady state ice flow on steep mountains, which is coupled with a fully implicit scheme
for erosion. This enables for the efficient modeling of glacier-carved valleys with interesting
glacial features.

We solved the main challenges of large scale landscape generation identified in Chapter 1
with the following contributions. First, we specifically considered large scale landscapes,
something that has been neglected for a long time in Computer Graphics except in some recent
work (Génevaux et al. 2015). Second, we took inspiration from earth sciences in our models,
improving both the visual plausibility and the physical consistency of the results. Lastly,
we tried to alleviate one of the common drawback of simulations techniques by designing
computationally efficients methods (implicit schemes allowing for large time steps but without
inverting matrices), which allowed us to study new methods for user control.

Combining medium scale phenomena We narrowed down the scale of our study, to
consider landscapes where various phenomena combine and mutually influence each other,
resulting in complete landscapes with vegetation and terrain details. We designed a new
stochastic approach to handle the interleaving of these phenomena, which typically exhibit a
large variability of temporal scales (Chapter 6). This method was applied to the joint sim-
ulation of erosion and vegetation effects, considering many competitive phenomena such as
hydrolic erosion, rock falls, material diffusion, vegetation life, fires and lightnings. Thanks to
a timeline, the user can brush different material amount as well as locally trigger some phe-
nomena, and the system automatically removes inconsistencies. We extended this method to
handle dynamic events within a longer landscape evolution, enabling to interleave avalanches
and ski tracks with the simulation of snow cover throughout the year. Both the efficiency
and controllability of the method where improved with a GPU implementation.

After generating the terrain, this part plays an important role in the plausibility of the
landscape itself. By combining phenomena at different scales, we bridged the gap between
medium and large scales. We also captured the interactions between phenomena resulting
in the complex organization of natural patterns, extending the plausibility of the generated
landscapes. Lastly, we enabled user manipulation of the local material amounts and of the
launched phenomena in a timeline, allowing for a control of the whole landscape evolution,
while ensuring that inconsistencies possibly introduced by the user are smoothed out by the
subsequent simulation.

8.2 Future work

Despite our contributions, modeling terrains and realistic landscapes still remains a challeng-
ing area of research with many directions worth investigating.

Erosion processes. We developed algorithms for the efficient simulation of fluvial and
glacial erosion on large scale terrains. We also introduced hill-slope process and extended
thermal erosion with debris flow from researches in Geology. Although we believe that these
erosion techniques may be sufficient to model the main landforms in large-scale mountain
ranges, additional studies are needed in their parametrization. For example, directional hill-
slope may account for a dominant wind direction, and other formulations of the drainage area

160

8.2. Future work

need to be found for erosion happening on specific climatic conditions. For instance, isolated
precipitations on desert can result in instant flood, with massive erosional strength because
of the lack of vegetation. Rock type also matters, where our equation was mostly valid for
granite-like rock. On the other hand, limestone like rocks are deeply dissolved by water,
progressively forming large underground network of cave and tunnels. The impact on the
surface is weak, except after the resurgence where deep canyons are carved. Furthermore, our
implementation of fluvial erosion does not handle the transport and deposition of sediments.
Modeling and simulating the sediments moving downstream and their deposition is of crucial
importance to generate plains and valleys. Surprisingly, those landforms have seldom been
modeled, maybe because they have less dramatic shapes than large mountain ranges. Still,
it impacts the plausibility of the most accessible parts of the mountains, and are thus worth
considering. Moreover, it is an explanation for the meandering of rivers (Kurowski 2012)
that needs to be investigated. Lastly, some other erosional processes have smaller impact on
mountain ranges but are worth studying, such as coastal erosion.

Uplift. Uplift is responsible for the main mountainous landforms. Faults have impact at
many scale: they influence the distribution of valleys and mountains, they enforce some parts
of river paths, they bring closer rocks of different types leading into discontinuities within the
erosion patterns and vegetation types, and they have a fundamental role in the visual aspect
of landslides. Furthermore, faults are not only characterized by a discontinuity in the uplift,
but also by the horizontal components of the plate motion. This horizontally extended uplift
could be added to our framework to generate more diverse large scale erosion patterns. Other
related geological features can be considered, such as escarpments or volcanoes, to extend the
range of reachable landscapes.

Multi-scale phenomena. One of our contributionss is the new simulation method pre-
sented in Chapter 6 to handle the simultaneous simulation of phenomena at various temporal
scales. A large amount of future work can be built on top of it. A first possibility is to design
new phenomena, such as wind forming dunes, or water flow, that would results in rivers and
lakes. Another one is to extend the range of the possible scales by giving multiple versions
for a given phenomenon, by integrating its effects at different temporal scales. A landscape
could be formed by the subsequent versions, decreasing the temporal scale when approaching
present day. The advantage would be a fast creation of the overall landscape altogether with
a very precise modeling of the recent small scale features.

Control. Although we tried to take user control into account when designing our modeling
and simulation tools, further work would be beneficial to improve user control. Multi grid
techniques, in particular a coarse to fine version of the simulations would dramatically lower
the time needed to wait for a result, resulting in easier control. Specific controls can be
added, for example sketch to guide rivers of brushes to feed glaciers. Overall, inverse control
tools would greatly extend the expressibility allowed by our models: users provide a rough
sketch of their intents, and the system guesses the initial conditions for the simulation such
that the result is as close as possible to the designed output. The result would then be
both consistent, because obtained from a simulation with reasonable starting conditions, and
close to the user’s intent. Machine learning would be a good candidate to solve this difficult

161

Chapter 8. Conclusion

problem thanks to its generative capacities, as shown by a promising work from Guérin et al.
2017.

Validation. One important open problem is to provide an evaluation mechanism for fur-
ther comparing the results of landscape modeling techniques with real data. We proposed
several options, from forced choice experiments to the recognition of typical landforms fea-
tures. Although interesting for particular cases, these solutions do not generalize to a global
approach that would allow for the classification of landscape modeling techniques. The main
challenge in providing such a validation is that research in landscape modeling usually focuses
on a limited number of features and it is hard to segment the targeted phenomena from real
data to compare them with synthetic results.

Knowledge from Natural Sciences was of tremendous help to build generation tools for
large scale time-evolving landscapes. Our approach was to approximate natural laws, so that
they were both accurate at the considered scale and fast enough to compute, to leverage
controllability. But the user experience is still weakened by the use of simulation methods,
and could be improved by the use of machine learning techniques, especially their generative
variants, both for generating the landscapes and for improving the control tools. Some specific
challenges arise with the use of machine learning for landscapes, in particular when physical
consistency is considered. Machine learning results are generally very convincing visually, but
it is much harder to enforce physical knowledge such as proper flow routing. We envision two
possibilities to solve this problem: either use learned parameters as an input of a simulation,
or use a simulation step within the learning process to enforce physically plausible results.
This problem is extended by our focus on time evolving landscapes, where the result should be
consistent through time. Finally, although learning can be performed on the large amount of
available data on surface elevation, such data severely lacks when subsurface is considered. An
option is to use simulation techniques to generate training data. A first direction could be to
simulate the distribution of faults within Earth crust and their effects on the neighboring rock
layers. Results would be used to train a machine learning system on the correlation between
faults and the above surface layer, enabling to predict faults from surface information.

162

Bibliography

Alsweis, Monssef and Oliver Deussen (2006). “Wang-tiles for the simulation and visualiza-

tion of plant competition”. In: Computer Graphics International: Advances in Computer

Graphics. Springer, pp. 1–11 (page 24).

Alsweis, Monssef and Olivier Deussen (2005). “Modeling and visualization of symmetric and

asymmetric plant competition”. In: Eurographics Workshop on Natural Phenomena. Ed.

by Pierre Poulin and Eric Galin. The Eurographics Association, pp. 83–88 (page 23).

Andújar, Carlos, Antoni Chica, MA Vico, S Moya, and Pere Brunet (2014). “Inexpensive

reconstruction and rendering of realistic roadside landscapes”. In: Computer Graphics

Forum 33.6, pp. 101–117 (page 24).

Argudo, Oscar, Carlos Andujar, Antonio Chica, Eric Guérin, Julie Digne, Adrien Peytavie,

and Eric Galin (2017). “Coherent multi-layer landscape synthesis”. In: The Visual Com-

puter 33.6, pp. 1005–1015 (page 29).

Ariyan, Maryam and David Mould (2015). “Terrain synthesis using curve networks”. In: Pro-

ceedings of Graphics Interface, pp. 9–16 (page 14).

Barnes, Richard (2016). “Parallel Priority-Flood depression filling for trillion cell digital el-

evation models on desktops or clusters”. In: Computers and Geosciences 96, pp. 56–68

(page 39).

Barnes, Richard, Clarence Lehman, and David Mulla (2014). “Priority-flood: An optimal

depression-filling and watershed-labeling algorithm for digital elevation models”. In: Com-

puters and Geosciences 62, pp. 117–127 (pages 39, 42, 48–50).

Beardall, Matthew, Mckay Farley, Darius Ouderkirk, Jeremy Smith, Michael Jones, and Par-

ris K Egbert (2007). “Goblins by spheroidal weathering”. In: Eurographics Workshop on

Natural Phenomena, pp. 7–14 (pages 17, 18).

Beaumont, C, P Fullsack, and J Hamilton (1992). “Erosional control of active compressional

orogens”. In: Thrust Tectonics. New York: Chapman and Hall, pp. 1–18 (page 34).

Becher, Michael, Michael Krone, Guido Reina, and Thomas Ertl (2017). “Feature-based vol-

umetric terrain generation”. In: Proceedings of the 21st ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games, 10:1–10:9 (page 14).

163

Bibliography

Belhadj, Farès (2007). “Terrain modeling: a constrained fractal model”. In: Proceedings of

the International Conference on Computer Graphics, Virtual Reality, Visualisation and

Interaction in Africa. ACM, pp. 197–204 (page 13).

Belhadj, Farès and Pierre Audibert (2005). “Modeling landscapes with ridges and rivers: bot-

tom up approach”. In: Proceedings International Conference on Computer Graphics and

Interactive Techniques in Australasia and South East Asia. ACM, pp. 447–450 (page 14).

Benes, Bedrich (2007). “Real-time erosion using shallow water simulation”. In: VRIPHYS,

pp. 43–50 (page 19).

Benes, Bedrich, Nathan Andrysco, and Ondřej Št’ava (2009). “Interactive modeling of virtual

ecosystems”. In: Proceedings of Eurographics Workshop on Natural Phenomena. Munich,

Germany, pp. 9–16 (page 21).

Beneš, Bedřich and Xabier Arriaga (2005). “Table mountains by virtual erosion”. In: Proceed-

ings of the Eurographics Workshop on Natural Phenomena, pp. 33–39 (page 19).

Benes, Bedrich and Enrique David Espinosa (May 2003). “Modeling virtual ecosystems with

the proactive guidance of agents”. In: Proceedings of CASA, pp. 126–131 (pages 23, 120).

Benes, Bedrich and Rafael Forsbach (2001). “Layered data representation for visual simula-

tion of terrain erosion”. In: Proceedings of the Spring Conference on Computer Graphics.

Vol. 25(4). IEEE Computer Society, pp. 80–86 (pages 11, 19).

Beneš, Bedřich and Rafael Forsbach (2001). “Parallel implementation of terrain erosion ap-

plied to the surface of mars”. In: Proceedings of the International Conference on Computer

Graphics, Virtual Reality, Visualisation and Interaction in Africa. Camps Bay, South

Africa: ACM, pp. 53–57 (page 19).

Beneš, Bedřich and Rafael Forsbach (2002). “Visual simulation of hydraulic erosion”. In:

Journal of the World Society for Computer Graphics 10.1-3, pp. 79–86 (pages 5, 18).

Benes, Bedrich, Václav Těš́ınskỳ, Jan Hornyš, and Sanjiv K Bhatia (2006). “Hydraulic ero-

sion”. In: Computer Animation and Virtual Worlds 17.2, pp. 99–108 (pages 5, 18).

Bernhardt, Adrien, André Maximo, Luiz Velho, Houssam Hnaidi, and Marie-Paule Cani

(2011). “Real-time terrain modeling using CPU-GPU coupled computation”. In: Proceed-

ings of the Conference on Graphics, Patterns and Images. Maceió, Brazil: IEEE, pp. 64–

71 (page 14).

Bindschadler, Robert (1983). “The importance of pressurized subglacial water in separation

and sliding at the glacier bed”. In: Journal of Glaciology 29.101, pp. 3–19 (page 87).

Biot, Maurice Anthony (1961). “Theory of folding of stratified viscoelastic media and its

implications in tectonics and orogenesis”. In: Geological Society of America Bulletin 72.11,

pp. 1595–1620 (pages 67, 69).

Bloomenthal, Jules (1985). “Modeling the mighty maple”. In: Proceedings of SIGGRAPH

19.3, pp. 305–311 (page 21).

Bornhofen, Stefan and Claude Lattaud (2009). “Competition and evolution in virtual plant

communities: a new modeling approach”. In: Natural Computing 8.2, pp. 349–385 (page 22).

Boubekeur, Tamy and Marc Alexa (Dec. 2008). “Phong tessellation”. In: ACM Transactions

on Graphics 27.5, 141:1–141:5 (page 45).

Bradbury, Gwyneth A, Kartic Subr, Charalampos Koniaris, Kenny Mitchell, and Tim Weyrich

(Nov. 2015).“Guided ecological simulation for artistic editing of plant distributions in nat-

164

Bibliography

ural scenes”. In: Journal of Computer Graphics Techniques 4.4, pp. 28–53 (pages 5, 23,

25, 120).

Braun, Jean and Malcolm Sambridge (1994). “Dynamical Lagrangian Remeshing (DLR):

a new algorithm for solving large strain deformation problems and its application to

fault-propagation folding”. In: Earth and Planetary Science Letters 124.1, pp. 211–220

(page 76).

Braun, Jean and Malcolm Sambridge (1997). “Modelling landscape evolution on geological

time scales: a new method based on irregular spatial discretization”. In: Basin Research

9.1, pp. 27–52 (pages 95, 116, 118).

Braun, Jean and Sean Willett (2013). “A very efficient O (n), implicit and parallel method to

solve the stream power equation governing fluvial incision and landscape evolution”. In:

Geomorphology 180, pp. 170–179 (pages 34, 39, 48, 58, 61).

Braun, Jean and Philippe Yamato (2010). “Structural evolution of a three-dimensional, finite-

width crustal wedge”. In: Tectonophysics 484, pp. 181–192 (page 58).

Braun, Jean, Dan Zwartz, and Jonathan H. Tomkin (1999). “A new surface-processes model

combining glacial and fluvial erosion”. In: Annals of Glaciology 28, pp. 282–290 (pages 85–

87).

Bruneton, Éric and Fabrice Neyret (2008). “Real-time rendering and editing of vector-based

terrains”. In: Computer Graphics Forum 27.2, pp. 311–320 (page 14).

Cade, Brian, James Terrell, and Richard Schroeder (1999). “Estimating effects of limiting

factors with regression quantiles”. In: Ecology 80.1, pp. 311–323 (page 121).

Carpentier, Giliam de and Rafael Bidarra (2009). “Interactive GPU-based procedural height-

field brushes”. In: Proceedings of the International Conference on Foundations of Digital

Games. ACM, pp. 55–62 (page 13).

Castelltort, Sébastien, Liran Goren, Sean D Willett, Jean-Daniel Champagnac, Frédéric Her-

man, and Jean Braun (2012). “River drainage patterns in the New Zealand Alps primarily

controlled by plate tectonic strain”. In: Nature Geoscience 5, pp. 744–748 (pages 65, 81).

Ch’Ng, Eugene (July 2011).“Realistic placement of plants for virtual environments”. In: IEEE

Computer Graphics and Applications 31.4, pp. 66–77 (page 23).

Ch’Ng, Eugene (May 2013). “Model resolution in complex systems simulation: Agent pref-

erences, behavior, dynamics and n-tiered networks”. In: Simulation 89.5, pp. 635–639

(page 120).

Chiba, Norishige, Kazunobu Muraoka, and Kunihiko Fujita (1998). “An erosion model based

on velocity fields for the visual simulation of mountain scenery”. In: The Journal of Vi-

sualization and Computer Animation 9, pp. 185–194 (page 19).

Cordonnier, Guillaume, Jean Braun, Marie-Paule Cani, Bedrich Benes, Eric Galin, Adrien

Peytavie, and Eric Guérin (2016). “Large scale terrain generation from tectonic uplift and

fluvial erosion”. In: Computer Graphics Forum 35.2, pp. 165–175 (pages 7, 34, 35, 41, 42,

48).

Cordonnier, Guillaume, Marie-Paule Cani, Bedrich Benes, Jean Braun, and Eric Galin (2018).

“Sculpting mountains: Interactive terrain modeling based on subsurface geology”. In: IEEE

Transactions on Visualization and Computer Graphics 24.5, pp. 1756–1769 (pages 7, 58).

165

Bibliography

Cordonnier, Guillaume, Pierre Ecormier, Eric Galin, James Gain, Bedrich Benes, and Marie-

Paule Cani (2018). “Interactive generation of time-evolving, snow-covered landscapes with

avalanches”. In: Computer Graphics Forum 37.2, pp. 497–509 (pages 7, 134).

Cordonnier, Guillaume, Eric Galin, James Gain, Bedrich Benes, Eric Guérin, Adrien Peytavie,

and Marie-Paule Cani (2017). “Authoring landscapes by combining ecosystem and terrain

erosion simulation”. In: ACM Transactions on Graphics 36.4, pp. 134:1–134:12 (page 7).

Croissant, Thomas and Jean Braun (2014). “Constraining the stream power law: a novel

approach combining a landscape evolution model and an inversion method”. In: EGU

General Assembly Conference Abstracts. Vol. 16, p. 10657 (page 36).

Dagenais, François, Jonathan Gagnon, and Eric Paquette (2016). “An efficient layered simula-

tion workflow for snow imprints”. In: The Visual Computer 32.6-8, pp. 881–890 (page 26).

De Carli, Daniel Michelon, Cesar Tadeu Pozzer, Victor Schetinger, and Fernando Bevilac-

qua (2014). “Procedural generation of 3D canyons”. In: Proceedings of the Conference on

Graphics, Patterns and Images. Rio de Janeiro, Brazil: IEEE, pp. 103–110 (page 15).

Densmore, Alexander L, Michael A Ellis, and Robert S Anderson (1998). “Landsliding and

the evolution of normal-fault-bounded mountains”. In: Journal of geophysical research:

solid earth 103.B7, pp. 15203–15219 (page 117).

Derzapf, Evgenij, Björn Ganster, Michael Guthe, and Reinhard Klein (2011). “River net-

works for instant procedural planets”. In: Computer Graphics Forum 30.7, pp. 2031–2040

(page 14).

Deussen, Oliver, Pat Hanrahan, Bernd Lintermann, Radomı́r Měch, Matt Pharr, and Prze-

myslaw Prusinkiewicz (1998). “Realistic modeling and rendering of plant ecosystems”. In:

Proceedings of SIGGRAPH. ACM, pp. 275–286 (pages 23, 24, 120).

Deussen, Oliver and Bernd Lintermann (2006). Digital design of nature: computer generated

plants and organics. Springer Science & Business Media (page 21).

Dewaele, Guillaume and Marie-Paule Cani (2004). “Interactive global and local deformations

for virtual clay”. In: Graphical Models 66.6, pp. 352–369 (pages 59, 64).

Doran, Jonathon and Ian Parberry (2010). “Controlled procedural terrain generation using

software agents”. In: Transactions on Computational Intelligence and AI in Games 2.2,

pp. 111–119 (page 16).

Dorsey, Julie, Alen Edelman, Henrik Wann Jensen, and Hans Kohling Pedersen (1999).“Mod-

eling and rendering of weathered stone”. In: Proceedings of SIGGRAPH. Vol. 25(4). ACM,

pp. 225–234 (page 18).

Ebert, David S., F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley

(2002). Texturing and Modeling: A Procedural Approach. Morgan Kaufmann Publishers

Inc. (pages 4, 13, 97).

Egholm, David L, Mads F Knudsen, Chris D Clark, and Jerome E Lesemann (2011). “Model-

ing the flow of glaciers in steep terrains: The integrated second-order shallow ice approxi-

mation (iSOSIA)”. In: Journal of Geophysical Research: Earth Surface 116.F2 (pages 85,

86).

Ellis, Susan (1996). “Forces driving continental collision: reconciling indentation and mantle

subduction tectonics”. In: Geology 24.4, pp. 699–702 (pages 59, 60, 64).

166

Bibliography

Emilien, Arnaud, Pierre Poulin, Marie-Paule Cani, and Ulysse Vimont (2015). “Interactive

procedural modelling of coherent waterfall scenes”. In: Computer Graphics Forum 34.6,

pp. 22–35 (pages 4, 15, 28).

Emilien, Arnaud, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich Benes (July

2015). “WorldBrush: Interactive example-based synthesis of procedural virtual worlds”.

In: ACM Transactions on Graphics 34.4, 106:1–106:11 (pages 5, 24, 28).

Étienne, Jocelyn, Pierre Saramito, and Emil J Hopfinger (2004). “Numerical simulations

of dense clouds on steep slopes: application to powder-snow avalanches”. In: Annals of

Glaciology 38.1, pp. 379–383 (page 27).

Fearing, Paul (2000). “Computer modelling of fallen snow”. In: Proceedings of SIGGRAPH,

pp. 37–46 (page 25).

Fernandez, Naiara and Boris Kaus (2014). “Fold interaction and wavelength selection in 3D

models of multilayer detachment folding”. In: Tectonophysics 632, pp. 199–217 (pages 76,

77).

Festenberg, Niels V. and Stefan Gumhold (2009). “A geometric algorithm for snow distribu-

tion in virtual scenes”. In: Proceedings of the Eurographics Conference on Natural Phe-

nomena, pp. 17–25 (page 27).

Festenberg, Niels and Stefan Gumhold (2011). “Diffusion-based snow cover generation”. In:

Computer Graphics Forum 30.6, pp. 1837–1849 (page 27).

Foldes, David and Bedrich Benes (2007). “Occlusion-based snow accumulation simulation”.

In: VRIPHYS, pp. 35–41 (pages 27, 139, 156).

Foley, Jonathan, Colin Prentice, Navin Ramankutty, Samuel Levis, David Pollard, Steven

Sitch, and Alex Haxeltine (1996). “An integrated biosphere model of land surface pro-

cesses, terrestrial carbon balance, and vegetation dynamics”. In: Global Biogeochemical

Cycles 10.4, pp. 603–628 (pages 22, 120).

Fournier, Alain, Don Fussell, and Loren Carpenter (1982). “Computer rendering of stochastic

models”. In: Communications of the ACM 25.6, pp. 371–384 (page 13).

Frade, Miguel Monteiro de Sousa, Francisco Fernàndez de Vega, and Carlos Cotta (2010).

“Evolution of artificial terrains for video games based on accessibility”. In: Applications

of evolutionary computation (page 16).

Gain, James, Harry Long, Guillaume Cordonnier, and Marie-Paule Cani (2017). “EcoBrush:

Interactive control of visually consistent large-scale ecosystems”. In: Computer Graphics

Forum 36.2, pp. 63–73 (pages 7, 23, 24, 120, 140).

Gain, James, Bruce Merry, and Patrick Marais (2015). “Parallel, realistic and controllable

terrain synthesis”. In: Computer Graphics Forum 34.2, pp. 105–116 (pages 5, 15, 16).

Galyean, Tinsley A. and John F. Hughes (July 1991). “Sculpting: An interactive volumetric

modeling technique”. In: Computer Graphics (Proceedings of SIGGRAPH 91). Vol. 25,

pp. 267–274 (page 59).

Gamito, Manuel N. and Kenton Forest Musgrave (2001). “Procedural landscapes with over-

hangs”. In: Proceedings of the Portuguese Computer Graphics Meeting. Lisbon, Portugal

(page 12).

Gaume, J, T Gast, J Teran, A van Herwijnen, and C Jiang (2018). “Dynamic anticrack

propagation in snow”. In: Nature communications 9.1, p. 3047 (pages 27, 28).

167

Bibliography

Génevaux, Jean-David, Éric Galin, Eric Guérin, Adrien Peytavie, and Bedrich Benes (2013).

“Terrain generation using procedural models based on hydrology”. In: ACM Transactions

on Graphics 32.4, 143:1–143:13 (pages 4, 14, 46).

Génevaux, Jean-David, Eric Galin, Adrien Peytavie, Eric Guérin, Cyril Briquet, François

Grosbellet, and Bedrich Benes (2015). “Terrain modelling from feature primitives”. In:

Computer Graphics Forum 34.6, pp. 198–210 (pages 4, 12, 35, 38, 46, 52, 160).

Glen, John W (1955). “The creep of polycrystalline ice”. In: Proceedings of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences 228.1175, pp. 519–538

(page 86).

Grosbellet, François, Adrien Peytavie, Éric Guérin, Éric Galin, Stéphane Mérillou, and Bedrich

Benes (Feb. 2016).“Environmental objects for authoring procedural scenes”. In: Computer

Graphics Forum 35.1, pp. 296–308 (page 29).

Grunwald, Sabine (2016). Environmental soil-landscape modeling: Geographic information

technologies and pedometrics. CRC Press (page 111).

Guérin, Éric, Julie Digne, Éric Galin, Adrien Peytavie, Christian Wolf, Bedrich Benes, and

Benôıt Martinez (Nov. 2017). “Interactive example-based terrain authoring with condi-

tional generative adversarial networks”. In: ACM Transactions on Graphics 36.6, 228:1–

228:13 (pages 5, 16, 162).

Guérin, Eric, Julie Digne, Adrien Peytavie, and Eric Galin (2016). “Sparse representation

of terrains for procedural modeling”. In: Computer Graphics Forum 35.2, pp. 177–187

(pages 12, 16, 35, 46).

Guérin, Eric, Eric Galin, François Grosbellet, Adrien Peytavie, and Jean-David Geneveaux

(2016). “Efficient modeling of entangled details for natural scenes”. en. In: Computer

Graphics Forum 35.7, pp. 257–267 (pages 29, 130).

Hädrich, Torsten, Bedrich Benes, Oliver Deussen, and Sören Pirk (2017). “Interactive mod-

eling and authoring of climbing plants”. In: Computer Graphics Forum 36.2, pp. 49–61

(page 21).

Harbor, Jonathan M, Bernard Hallet, and Charles F Raymond (1988). “A numerical model

of landform development by glacial erosion”. In: Nature 333.6171, p. 347 (page 85).

Headley, Rachel M., Gerard Roe, and Bernard Hallet (2012). “Glacier longitudinal profiles

in regions of active uplift”. In: Earth and Planetary Science Letters 317-318, pp. 354–362

(pages 86, 87).

Herman, Frédéric, Olivier Beyssac, Mattia Brughelli, Stuart N Lane, Sébastien Leprince,

Thierry Adatte, Jiao YY Lin, Jean-Philippe Avouac, and Simon C Cox (2015). “Erosion

by an Alpine glacier”. In: Science 350.6257, pp. 193–195 (pages 86, 87).

Higgins, Steven I, William J Bond, Edmund C February, Andries Bronn, Douglas IW Euston-

Brown, Beukes Enslin, Navashni Govender, Louise Rademan, Sean O’Regan, Andre LF

Potgieter, et al. (2007). “Effects of four decades of fire manipulation on woody vegetation

structure in savanna”. In: Ecology 88.5, pp. 1119–1125 (page 122).

Hinks, Tommy and Ken Museth (2009). “Wind-driven snow buildup using a level set ap-

proach”. In: Eurographics Ireland Workshop Series, pp. 19–26 (pages 25, 26).

168

Bibliography

Hnaidi, Houssam, Eric Guérin, Samir Akkouche, Adrien Peytavie, and Eric Galin (2010).

“Feature based terrain generation using diffusion equation”. In: Computer Graphics Forum

29.7, pp. 2179–2186 (pages 4, 14).

Howard, Alan D (1994). “A detachment-limited model of drainage basin evolution”. In: Water

resources research 30.7, pp. 2261–2285 (page 36).

Hudák, Matej and Roman Ďurikovič (2011). “Terrain models for mass movement erosion”.

In: Theory and Practice of Computer Graphics (page 19).

Hurtut, Thomas, Pierre-Edouard Landes, Joëlle Thollot, Yann Gousseau, Remy Drouillhet,

and Jean-François Coeurjolly (2009). “Appearance-guided synthesis of element arrange-

ments by example”. In: Proceedings of the International Symposium on Non-photorealistic

Animation and Rendering. ACM, pp. 51–60 (page 25).

Ito, Tomoya, Tadahiro Fujimoto, Kazunobu Muraoka, and Norishige Chiba (2003). “Mod-

eling rocky scenery taking into account joints”. In: Proceedings of Computer Graphics

International. Tokyo, Japan: IEEE, pp. 244–247 (pages 5, 20).

Jákó, Balázs and Balázs Tóth (2011). “Fast hydraulic and thermal erosion on the GPU”. In:

Proceedings of the Central European Seminar on Computer Graphics. Viničné, Slovakia

(page 19).

Jenson, Susan and Julia Domingue (1988).“Extracting topographic structure from digital ele-

vation data for geographic information system analysis”. In: Photogrammetric Engineering

and Remote Sensing 54, pp. 1593–1600 (page 39).

Kamal, Raiyan and Yusuf Sarwar Uddin (2007). “Parametrically controlled terrain genera-

tion”. In: Proceedings of the International Conference on Computer Graphics and Inter-

active Techniques in Australasia and South East Asia. Perth, Australia: ACM, pp. 17–23

(page 13).

Kaus, Boris and Stefan Schmalholz (2006). “3D finite amplitude folding: implications for

stress evolution during crustal and lithospheric deformation”. In: Geophysical Research

Letters 33.14 (page 79).

Kelley, Alex, Michael Malin, and Gregory Nielson (1988). “Terrain simulation using a model

of stream erosion”. In: ACM Transactions on Graphics, pp. 263–268 (page 14).

Knap, Wouter, Johannes Oerlemans, and Martin Cabée (1996). “Climate sensitivity of the ice

cap of king George Island, South Shetland Islands, Antarctica”. In: Annals of Glaciology

23, pp. 154–159 (page 86).

Knight, Jasper and Stefan Grab (2014). “Lightning as a geomorphic agent on mountain

summits: Evidence from southern Africa”. In: Geomorphology 204, pp. 61–70 (page 117).

Krǐstof, Peter, Bedrich Benes, Jaroslav Křivánek, and Ondřej Št’ava (Mar. 2009). “Hydraulic

erosion using smoothed particle hydrodynamics”. In: Computer Graphics Forum 28.2,

pp. 219–228 (pages 5, 19).

Kurowski, Micha l (2012). “Procedural generation of meandering rivers inspired by erosion”.

In: Journal of the World Society for Computer Graphics, pp. 79–86 (pages 5, 19, 161).

Lagae, Ares, Lefebvre Syvalin, Robert L. Cook, Tony DeRose, Georges Drettakis, David S.

Ebert, J. P. Lewis, Ken Perlin, and Zwicker M (2010). “A survey of procedural noise

functions”. In: Computer Graphics Forum 29.8, pp. 2579–2600 (page 13).

169

Bibliography

Lague, Dimitri (2014a). “The stream power river incision model: evidence, theory and be-

yond”. In: Earth Surface Processes and Landforms 39.1, pp. 38–61 (page 17).

Lague, Dimitri (2014b). “The stream power river incision model: evidence, theory and be-

yond”. In: Earth Surface Processes and Landforms 39.1, pp. 38–61 (page 36).

Laine, Samuli and Tero Karras (2011). “Efficient sparse voxel octrees”. In: IEEE Transactions

on Visualization and Computer Graphics 17.8, pp. 1048–1059 (page 12).

Lane, Brendan and Przemyslaw Prusinkiewicz (May 2002). “Generating spatial distributions

for multilevel models of plant communities”. In: Proceedings of Graphics Interface. Cal-

gary, Alberta, Canada, pp. 69–80 (pages 5, 23, 24, 120).

Law, Richard, Janine Illian, David Burslem, Georg Gratzer, C. Gunatilleke, and I. Gunatilleke

(2009).“Ecological information from spatial patterns of plants: insights from point process

theory”. In: Journal of Ecology 97.4, pp. 616–628 (page 22).

Lawick, Joost van Pabst van and Hans Jense (1995). “Dynamic terrain generation based on

multifractal techniques”. In: High Performance Computing for Computer Graphics and

Visualisation, pp. 186–203 (page 13).

Lehning, Michael, H Löwe, M Ryser, and N Raderschall (2008).“Inhomogeneous precipitation

distribution and snow transport in steep terrain”. In: Water Resources Research 44.7

(page 143).

Lewis, John (1987). “Generalized stochastic subdivision”. In: ACM Transactions on Graphics

6.3, pp. 167–190 (page 13).

Lindenmayer, Aristid (1968). “Mathematical models for cellular interaction in development”.

In: Journal of Theoretical Biology Parts I and II.18, pp. 280–315 (page 21).

Lindsay, John (2016). “Efficient hybrid breaching-filling sink removal methods for flow path

enforcement in digital elevation models”. In: Hydrological Processes 30.6, pp. 846–857

(pages 39, 42).

Lorensen, William and Harvey Cline (1987). “Marching cubes: A high resolution 3D sur-

face construction algorithm”. In: ACM SIGGRAPH computer graphics. Vol. 21. 4. ACM,

pp. 163–169 (page 11).

Mahaffy, MW (1976).“A three-dimensional numerical model of ice sheets: Tests on the Barnes

Ice Cap, Northwest Territories”. In: Journal of Geophysical Research 81.6, pp. 1059–1066

(page 86).

Mandelbrot, Benoit and Roberto Pignoni (1983). The Fractal Geometry of Nature. San Fran-

cisco: W.H. Freeman and Company (page 13).

Mandelbrot, Benoit and John Van Ness (1968). “Fractional Brownian motions, fractional

noises and applications”. In: SIAM review 10.4, pp. 422–437 (page 13).

Maréchal, Nicolas, Eric Guérin, Eric Galin, Stéphane Mérillou, and Nicolas Mérillou (2010).

“Heat transfer simulation for modeling realistic winter sceneries”. In: Computer Graphics

Forum 29.2, pp. 449–458 (pages 26, 139, 143).

Mareš, Martin (2002). Two linear time algorithms for MST on minor closed graph classes.

ETHZ, Institute for Mathematical Research (pages 41, 48, 50).

Marti, Renaud, Simon Gascoin, Etienne Berthier, M. de Pinel, T. Houet, and D. Laffly

(2016). “Mapping snow depth in open alpine terrain from stereo satellite imagery”. In:

The Cryosphere 10.4, pp. 1361–1380 (page 152).

170

Bibliography

Masselot, Alexandre and Bastien Chopard (1995).“Cellular automata modeling of snow trans-

port by wind”. In: International Workshop on Applied Parallel Computing, pp. 429–435

(page 26).

McClay, Ken (1992). Thrust Tectonics. Springer, Dordrecht (page 17).

McClung, David and Peter Schaerer (2006). The Avalanche Handbook. The Mountaineers

(page 146).

Měch, Radomı́r and Przemyslaw Prusinkiewicz (1996). “Visual models of plants interacting

with their environment”. In: Proceedings of the Annual Conference on Computer Graphics

and Interactive Techniques. New York, NY, USA: ACM, pp. 397–410 (page 21).

Mei, Xing, Philippe Decaudin, and Bao-Gang Hu (2007). “Fast hydraulic erosion simulation

and visualization on GPU”. In: Pacific Graphics. IEEE Computer Society, pp. 47–56

(page 19).

Mérillou, Stéphane and Djamchid Ghazanfarpour (2008). “A survey of aging and weathering

phenomena in computer graphics”. In: Computers & Graphics 32.2, pp. 159–174 (page 17).

Michel, Elie, Arnaud Emilien, and Marie-Paule Cani (2015). “Generation of folded terrains

from simple vector maps”. In: Eurographics 2015 short paper proceedings. Zurich, Switzer-

land, p. 4 (page 20).

Miller, Gavin SP (1986).“The definition and rendering of terrain maps”. In: ACM SIGGRAPH

Computer Graphics. Vol. 20. 4. ACM, pp. 39–48 (page 13).

Milliez, Antoine, Michael Wand, Marie-Paule Cani, and Hans-Peter Seidel (2013). “Mutable

elastic models for sculpting structured shapes”. In: Computer Graphics Forum 32.2pt1,

pp. 21–30 (page 59).

Moeslund, Claus, Thomas anvisud Madsen, Michael Aagaard, and Dennis Lerche (2005).

“Modeling falling and accumulating snow”. In: Vision, Video and Graphics (page 26).

Montgomery, David R (2002). “Valley formation by fluvial and glacial erosion”. In: Geology

30.11, pp. 1047–1050 (page 17).

Moriya, Tomoaki and Tokiichiro Takahashi (2010). “A real time computer model for wind-

driven fallen snow”. In: ACM SIGGRAPH ASIA 2010 Sketches, 26:1–26:2 (page 27).

Muraoka, Kazunobu and Norishige Chiba (2000). “Visual simulation of snowfall, snow cover

and snowmelt”. In: Proceedings of the Parallel and Distributed Systems: Workshops (page 26).

Musgrave, Kenton, Craig Kolb, and Robert Mace (1989). “The synthesis and rendering

of eroded fractal terrains”. In: ACM SIGGRAPH Computer Graphics 23.3, pp. 41–50

(pages 5, 18, 19, 44, 53, 70, 95, 116).

Nagashima, Kenji (1998). “Computer generation of eroded valley and mountain terrains”. In:

The Visual Computer 13.9-10, pp. 456–464 (page 18).

Narain, Rahul, Armin Samii, and James O’Brien (2012). “Adaptive anisotropic remeshing for

cloth simulation”. In: ACM Transactions on Graphics 31.6, p. 152 (page 66).

Natali, Mattia, EM Lidal, J Parulek, I Viola, and D Patel (2013). “Modeling terrains and

subsurface geology”. In: Proceedings of Eurographics State of the Art Reports, pp. 155–173

(page 10).

Neidhold, Benjamin, Markus Wacker, and Oliver Deussen (2005). “Interactive physically

based fluid and erosion simulation”. In: Eurographics Workshop on Natural Phenomena,

pp. 25–33 (page 19).

171

Bibliography

Nishita, Tomoyuki, Hiroshi Iwasaki, Yoshinori Dobashi, and Eihachiro Nakamae (1997). “A

modeling and rendering method for qnow by using metaballs”. In: Computer Graphics

Forum 16.3, pp. C357–C364 (page 25).

Nye, John Frederick (1957).“The distribution of stress and velocity in glaciers and ice-sheets”.

In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences 239.1216, pp. 113–133 (page 86).

O’Brien, James F and Jessica K Hodgins (1995). “Dynamic simulation of splashing fluids”.

In: Computer Animation. IEEE, pp. 198–205 (page 146).

Passos, Vladimir Alves dos and Takeo Igarashi (2013). “LandSketch: A first person point-

of-view example-based terrain modeling approach”. In: Proceedings of the International

Symposium on Sketch-Based Interfaces and Modeling. Anaheim, USA: ACL, pp. 61–68

(page 15).

Peucker, Thomas, Robert Fowler, James Little, and David Mark (1978). “The triangulated

irregular network”. In: Proceedings of Digital Terrain Models Symposium. St. Louis, USA:

American Society of Photogrammetry (page 11).

Peytavie, Adrien, Eric Galin, Jérôme Grosjean, and Stéphane Mérillou (2009). “Arches: A

framework for modeling complex terrains”. In: Computer Graphics Forum 28.2, pp. 457–

467 (page 12).

Premože, Simon, William Thompson, and Peter Shirley (1999). “Geospecific rendering of

Alpine terrain”. In: Eurographics Conference on Rendering. Granada, Spain, pp. 107–118

(page 27).

Prentice, Colin, Martin Sykes, and Wolfgang Cramer (1993). “A simulation model for the

transient effects of climate change on forest landscapes”. In: Ecological modelling 65.1,

pp. 51–70 (pages 22, 121).

Prusinkiewicz, Przemyslaw and Mark Hammel (1993). “A fractal model of mountains with

rivers”. In: Proceedings of Graphics Interface. Vol. 30(4), pp. 174–180 (page 14).

Prusinkiewicz, Przemyslaw and Aristid Lindenmayer (2012). The algorithmic beauty of plants.

Springer Science & Business Media (page 21).

Prusinkiewicz, Przemyslaw, Lars Mündermann, Radoslaw Karwowski, and Brendan Lane

(2001). “The use of positional information in the modeling of plants”. In: Proceedings of

the Annual Conference on Computer Graphics and Interactive Techniques. ACM, pp. 289–

300 (page 21).

Pytel, Alex and Stephen Mann (2013).“Self-organized approach to modeling hydraulic erosion

features”. In: Computers & Graphics 37.4, pp. 280–292 (page 5).

Rastello, Marie and EJ Hopfinger (2004). “Sediment-entraining suspension clouds: a model

of powder-snow avalanches”. In: Journal of fluid mechanics 509, pp. 181–206 (page 27).

Rémillard, Olivier and Paul Kry (2013). “Embedded thin shells for wrinkle simulation”. In:

ACM Transactions on Graphics 32.4 (page 66).

Reynolds, Daniel Tobias, Stephen D Laycock, and A.M. Day (2015). “Real-time accumulation

of occlusion-based snow”. In: The Visual Computer 31.5, pp. 689–700 (page 27).

Ritschel, Tobias, Thorsten Grosch, and Hans-Peter Seidel (2009). “Approximating dynamic

global illumination in image space”. In: Proceedings of the Interactive 3D graphics and

games. ACM, pp. 75–82 (page 139).

172

Bibliography

Rohmer, Damien, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and Alla Sheffer

(2010). “Animation wrinkling: augmenting coarse cloth simulations with realistic-looking

wrinkles”. In: ACM Transactions on Graphics. Vol. 29. ACM, p. 157 (pages 66, 67).

Roudier, Pascale, Bernard Peroche, and Michel Perrin (1993). “Landscapes synthesis achieved

through erosion and deposition process simulation”. In: Computer Graphics Forum 12.3,

pp. 375–383 (page 20).

Rusnell, Brennan, David Mould, and Mark G. Eramian (2009). “Feature-rich distance-based

terrain synthesis”. In: The Visual Computer 25.5-7, pp. 573–579 (page 14).

Sai-Keung, Wong and Fu I-Ting (2015). “Hybrid-based snow simulation and snow rendering

with shell textures”. In: Computer Animation and Virtual Worlds 26.3-4, pp. 413–421

(page 26).

Saltvik, Ingar, Anne Elster, and Henrik Nagel (2007). “Parallel methods for real-time vi-

sualization of snow”. In: Proceedings of the International Workshop on Applied Parallel

Computing, pp. 218–227 (page 26).

Sato, Hisashi, Akihiko Itoh, and Takashi Kohyama (2007). “SEIB–DGVM: A new Dynamic

Global Vegetation Model using a spatially explicit individual-based approach”. In: Eco-

logical Modelling 200.3–4, pp. 279–307 (pages 22, 120).

Savage, JC and WSB Paterson (1963). “Borehole measurements in the Athabasca Glacier”.

In: Journal of Geophysical Research 68.15, pp. 4521–4536 (page 86).

Schmalholz, Stefan M. and Yuri Yu Podladchikov (2000).“Finite amplitude folding: Transition

from exponential to layer length controlled growth”. In: Earth and Planetary Science

Letters 179, pp. 363–377 (pages 66, 79).

Schneider, Jens, Tobias Boldte, and Rüdiger Westermann (2006). “Real-time editing, synthe-

sis, and rendering of infinite landscapes on GPUs”. In: Proceedings of Vision, Modeling,

and Visualization. Aachen, Germany: IOS Press, p. 145 (page 13).

Shifley, Stephen R, Hong S He, Heike Lischke, Wen J Wang, Wenchi Jin, Eric J Gustafson,

Jonathan R Thompson, Frank R Thompson, William D Dijak, and Jian Yang (2017).

“The past and future of modeling forest dynamics: from growth and yield curves to forest

landscape models”. In: Landscape Ecology 32.7, pp. 1307–1325 (page 22).

Sitch, Stephen, Chris Huntingford, N. Gedney, P. E. Levy, M. Lomas, S. L. Piao, R. Betts,

P. Ciais, P. Cox, P. Friedlingstein, C. D. Jones, I. C. Prentice, and F. I. Woodward

(2008). “Evaluation of the terrestrial carbon cycle, future plant geography and climate-

carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)”. In:

Global Change Biology 14.9, pp. 2015–2039 (page 22).

Sitch, Stephen, Benjamin Smith, I Colin Prentice, Almut Arneth, A Bondeau, W Cramer,

JO Kaplan, Samuel Levis, W Lucht, M Thonicke Sykes, et al. (2003). “Evaluation of

ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic

global vegetation model”. In: Global Change Biology 9.2, pp. 161–185 (pages 120, 122).

Smelik, Ruben M., Tim Tutenel, Rafael Bidarra, and Bedrich Benes (2014). “A survey on

procedural modelling for virtual worlds”. In: Computer Graphics Forum 33.6, pp. 31–50

(page 10).

173

Bibliography

Soler, Cyril, François X. Sillion, Frédéric Blaise, and Philippe De Reffye (2001). A physiological

Plant Growth Simulation Engine Based on Accurate Radiant Energy Transfer. Research

Report RR-4116. INRIA (page 21).

Sorkine, Olga and Marc Alexa (2007). “As-rigid-as-possible surface modeling”. In: Proceedings

of the Symposium on Geometry processing, pp. 109–116 (page 59).

Št’ava, Ondřej, Bedrich Benes, Matthew Brisbin, and Jaroslav Křivánek (2008). “Interactive

terrain modeling using hydraulic erosion”. In: Proceedings of the Symposium on Computer

Animation. Eurographics Association, pp. 201–210 (pages 19, 146, 147, 149).

Stanculescu, Lucian, Raphaëlle Chaine, Marie-Paule Cani, and Karan Singh (2013). “Sculpt-

ing multi-dimensional nested structures”. In: Computer and Graphics 37.6, pp. 753–763

(page 59).

Sternai, Pietro, Frédéric Herman, Pierre G Valla, and Jean-Daniel Champagnac (2013). “Spa-

tial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): Insights

from numerical modeling”. In: Earth and Planetary Science Letters 368, pp. 119–131

(page 86).

Stock, J and William E Dietrich (2003). “Valley incision by debris flows: Evidence of a topo-

graphic signature”. In: Water Resources Research 39.4 (page 95).

Stomakhin, Alexey, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle (2013).

“A material point method for snow simulation”. In: ACM Transactions on Graphics 32.4,

102:1–102:10 (pages 26, 28).

Svensson, Harald (1959). “Is the cross-section of a glacial valley a parabola?” In: Journal of

Glaciology 3.25, pp. 362–363 (page 98).

Talgorn, François-Xavier and Farès Belhadj (2018). “Real-time sketch-based terrain gener-

ation”. In: Proceedings of Computer Graphics International 2018. New York, NY, USA:

ACM, pp. 13–18 (page 13).

Tasse, Flora Ponjou, Arnaud Emilien, Marie-Paule Cani, Stefanie Hahmann, and Neil Dodg-

son (2014). “Feature-based terrain editing from complex sketches”. In: Computers &

Graphics 45, pp. 101–115 (page 15).

Tasse, Flora Ponjou, James E. Gain, and Patrick Marais (2012). “Enhanced texture-based

terrain synthesis on graphics hardware”. In: Computer Graphics Forum 31.6, pp. 1959–

1972 (page 16).

Tokoi, Kohe (2006). “A shadow buffer technique for simulating snow-covered shapes”. In:

International Conference on Computer Graphics, Imaging and Visualisation, pp. 310–316

(page 27).

Tsuda, Yusuke, Yonghao Yue, Yoshinori Dobashi, and Tomoyuki Nishita (2010). “Visual

simulation of mixed-motion avalanches with interactions between snow layers”. In: The

Visual Computer 26.6, pp. 883–891 (page 27).

Tucker, Gregory E and Gregory R Hancock (2010).“Modelling landscape evolution”. In: Earth

Surface Processes and Landforms 35.1, pp. 28–50 (page 17).

Tychonievich, Luther A. and Mike D. Jones (2010). “Delaunay deformable mesh for the

weathering and erosion of 3D terrain”. In: The Visual Computer 26.12, pp. 1485–1495

(page 18).

174

Bibliography

Vanek, Juraj, Bedrich Benes, Adam Herout, and Ondrej Stava (2011). “Large-scale physics-

based terrain editing using adaptive tiles on the GPU”. In: IEEE Computer Graphics and

Applications 31.6, pp. 35–44 (page 19).

Voss, Richard F. (1991). “Random fractal forgeries”. In: Fundamental Algorithms for Com-

puter Graphics. Vol. 17. Springer, pp. 805–835 (page 13).

Wachspress, Eugene L and GJ Habetler (1960). “An alternating-direction-implicit iteration

technique”. In: Journal of the Society for Industrial and Applied Mathematics 8.2, pp. 403–

423 (page 95).

Wang, Changbo, Zhangye Wang, Tian Xia, and Qunsheng Peng (May 2006). “Real-time

snowing simulation”. In: The Visual Computer 22.5, pp. 315–323 (page 26).

Wei, Hongqiang, Guiyun Zhou, and Suhua Fu (2018). “Efficient Priority-Flood depression

filling in raster digital elevation models”. In: International Journal of Digital Earth 0.0,

pp. 1–13 (pages 39, 48–50).

Whipple, Kelin X and Gregory E Tucker (1999). “Dynamics of the stream-power river incision

model: Implications for height limits of mountain ranges, landscape response timescales,

and research needs”. In: Journal of Geophysical Research: Solid Earth (1978–2012) 104.B8,

pp. 17661–17674 (pages 34, 36).

Willett, Sean, Christopher Beaumont, and Philippe Fullsack (1993). “Mechanical model for

the tectonics of doubly vergent compressional orogens”. In: Geology 21.4, pp. 371–374

(pages 35, 58, 60).

Wither, Jamie, Frédéric Boudon, Marie-Paule Cani, and Christophe Godin (Apr. 2009).

“Structure from silhouettes: a new paradigm for fast sketch-based design of trees”. In:

Computer Graphics Forum 28.2, pp. 541–550 (page 21).

Wojtan, Christopher, Mark Carlson, Peter J. Mucha, and Greg Turk (2007). “Animating

corrosion and erosion”. In: Eurographics Workshop on Natural Phenomena, pp. 15–22

(page 18).

Wullschleger, Stan D, Howard E Epstein, Elgene O Box, Eugénie S Euskirchen, Santonu

Goswami, Colleen M Iversen, Jens Kattge, Richard J Norby, Peter M van Bodegom,

and Xiaofeng Xu (2014). “Plant functional types in Earth system models: past experi-

ences and future directions for application of dynamic vegetation models in high-latitude

ecosystems”. In: Annals of botany 114.1, pp. 1–16 (page 22).

Wyvill, Geoff, Craig McPheeters, and Brian Wyvill (1986). “Soft objects”. In: Advanced Com-

puter Graphics. Springer, pp. 113–128 (page 11).

Yamato, Philippe, Boris JP Kaus, Frédéric Mouthereau, and Sébastien Castelltort (2011).

“Dynamic constraints on the crustal-scale rheology of the Zagros fold belt, Iran”. In:

Geology 39.9, pp. 815–818 (page 66).

Yassemi, Shahram, Suzana Dragićević, and Margaret Schmidt (2008). “Design and imple-

mentation of an integrated GIS-based cellular automata model to characterize forest fire

behaviour”. In: ecological modelling 210.1, pp. 71–84 (page 119).

Zhou, Guiyun, Xiaoli Liu, Suhua Fu, and Zhongxuan Sun (2017). “Parallel identification

and filling of depressions in raster digital elevation models”. In: International Journal of

Geographical Information Science 31.6, pp. 1061–1078 (page 39).

175

Bibliography

Zhou, Howard, Jie Sun, Greg Turk, and James M. Rehg (2007). “Terrain synthesis from

Digital Elevation Models”. In: Transactions on Visualization and Computer Graphics 13.4,

pp. 834–848 (page 15).

176

	Introduction
	Evolving landscapes in virtual environments
	Virtual environments
	Landscapes
	Large scale mountains evolution
	Authoring
	Previous work in landscape generation

	General overview
	Contributions
	Outline
	Publications

	State of the art on landscape modeling
	Terrain representation
	Procedural terrain generation: modeling the effects
	Fractal and noise-based terrains
	Focus on terrain features
	By example
	Methods from artificial intelligence

	Simulation of terrain evolution
	Small scale features
	Hydraulic erosion
	Thermal erosion
	Geologically based simulation
	Plate tectonics

	Ecosystems
	Modeling individual plants
	Methods from Ecology
	Lagrangian simulation
	Statistical synthesis

	Snow
	Lagrangian snow simulation
	Physically-based Eulerian heat transfer
	Procedural surface displacement
	Avalanches

	Full landscape authoring
	Conclusion

	I Large scale mountain formation
	Combining uplift and fluvial erosion
	Background and overview
	 Geological background
	Algorithm overview

	Stream generation
	Stream graph initialization
	Stream tree computation
	Lake overflow

	Erosion
	Results
	Visual realism
	Rendering
	Performance
	Lake overflow
	Stream power erosion

	Conclusion

	Interactive manipulation of tectonically driven uplift
	Overview
	Plate tectonics in geology
	Geologically-inspired interactive simulation

	Earth crust as a viscous material
	Moving plates creation
	Viscous compression
	Uplift from thickness changes

	Earth crust as layered sheets
	Folding of layered materials
	Procedural fold generation
	Uplift update from folds

	Terrain surface generation
	Interactive terrain generation
	Rock layers at the surface

	Implementation, results and discussion
	Architecture
	Qualitative and quantitative results
	Validation and discussion
	User study

	Conclusion

	Glacial erosion
	Overview
	Glacial erosion in Geology
	Governing equations for glaciers
	Efficient simulation of glacial erosion
	Secondary erosion
	Main algorithm

	Ice flux propagation over the terrain
	Path graph computation
	Ice flux propagation

	Steady-state and erosion
	Computations at each iteration
	Convergence

	Debris flow, fluvial and hill slope erosion
	Debris flow and fluvial erosion
	Hill-slope erosion
	Interactions with glacial erosion

	Results and discussion
	Validation experiments
	Efficiency and speed
	Limitations

	Conclusion

	II Combining landscape simulation with medium scale phenomena
	Joint simulation of vegetation and erosion
	Method overview
	Layered landscape model
	Simulation
	Control

	Geomorphological events
	Rainfall and running water
	Temperature
	Lightning
	Gravity
	Fire

	Ecosystem events
	Implementation
	Results and discussion
	Conclusion

	Dynamic snow cover evolution
	Overview
	Simulation method
	Categories of events

	Environmental conditions
	Temperature
	Wind

	Snow cover
	Snowfall
	Snow state changes
	Diffusion of powdery snow
	Wind transport

	Interactive phenomena
	Avalanches
	Ski tracks

	Implementation
	Results and discussion
	Conclusion

	Conclusion
	Summary
	Future work

