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Abstract

Techniques for high dynamic range (HDR) imaging make it possible to capture
and store an increased range of luminances and colors as compared to what can
be achieved with a conventional camera. This high amount of image information
can be used in a wide range of applications, such as HDR displays, image-based
lighting, tone-mapping, computer vision, and post-processing operations. HDR
imaging has been an important concept in research and development for many
years. Within the last couple of years it has also reached the consumer market,
e.g. with TV displays that are capable of reproducing an increased dynamic
range and peak luminance.

This thesis presents a set of technical contributions within the field of HDR
imaging. First, the area of HDR video tone-mapping is thoroughly reviewed,
evaluated and developed upon. A subjective comparison experiment of existing
methods is performed, followed by the development of novel techniques that
overcome many of the problems evidenced by the evaluation. Second, a large-
scale objective comparison is presented, which evaluates existing techniques that
are involved in HDR video distribution. From the results, a first open-source
HDR video codec solution, Luma HDRv, is built using the best performing
techniques. Third, a machine learning method is proposed for the purpose
of reconstructing an HDR image from one single-exposure low dynamic range
(LDR) image. The method is trained on a large set of HDR images, using recent
advances in deep learning, and the results increase the quality and performance
significantly as compared to existing algorithms.

The areas for which contributions are presented can be closely inter-linked in
the HDR imaging pipeline. Here, the thesis work helps in promoting efficient
and high-quality HDR video distribution and display, as well as robust HDR
image reconstruction from a single conventional LDR image.

Keywords: high dynamic range imaging, tone-mapping, video tone-mapping,
HDR video encoding, HDR image reconstruction, inverse tone-mapping, ma-
chine learning, deep learning
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Populärvetenskaplig
sammanfattning

Utvecklingen av kameror har gått mycket snabbt de senaste årtiondena, och
de utnyttjas idag för en stor mängd ändamål. Till exempel är kameran ett
viktigt verktyg inom produktkontroll och övervakning, för att inte tala om inom
filmindustrin som är en av de allra största i världen. Kameran utgör också en
naturlig del i privatpersonens liv, för att dokumentera familj, resor och vardag.
Det genomslag kameran har haft kan ses på den mängd kameror vi omger
oss med, som separata enheter eller integrerade i datorer och telefoner. Men
kameran har sina tydliga begränsningar. Vi har nog alla upplevt situationer
där vi tvingas kompromissa i hur en bild ska exponeras när det finns både
mörka skuggor och ljusa högdagrar i den miljö som ska fotograferas. Även om
en betraktare samtidigt kan urskilja detaljer i både skuggor och ljusa delar, så
klarar inte kameran av att registrera all information. Antingen avbildas de ljusa
delarna som helt vita, eller så försvinner detaljer i de mörka delarna av bilden.
Detta beror på att en konventionell kamera är begränsad i hur stora skillnader i
ljus som kan registreras i en och samma bild. Jämför man med det mänskliga
ögat, så har det en mycket bättre förmåga att uppfatta detaljer i ett stort omfång
av ljusintensiteter.

Med hjälp av tekniker för att fotografera i ett utökat spann av ljusintensite-
ter kan en bild med stort dynamiskt omfång (HDR, från engelskans High
Dynamic Range) infångas, exempelvis genom att kombinera flera bilder med
olika exponering. Inom forskning och produktion har HDR-formatet använts
i många år. Då bilderna kan representera en fysikaliskt korrekt mätning av
det omgivande ljuset kan de t.ex. användas för att ljussätta datorgenererade
fotorealistiska bilder, och i en uppsättning av efterbehandlingsapplikationer.
De senaste åren har HDR-format också etablerat sig på konsumentmarknaden,
exempelvis med TV-apparater som kan visa ett utökat dynamiskt omfång och
en högre ljusintensitet. Också för konventionella skärmar och TV-apparater
kan HDR-bilder tillhandahålla en förbättrad tittarupplevelse. Genom metoder
för s.k. tonmappning kan bildinnehållet komprimeras till ett lägre dynamiskt
omfång, medan detaljer bibehålls i mörka och ljusa bildregioner, och resultatet
efterliknar på så sätt hur det mänskliga ögat uppfattar den fotograferade scenen.
Andra målsättningar för tonmappning är också möjliga, t.ex. att försöka skapa
en bild med den subjektivt bästa kvalitén, eller en bild som så bra som möjligt
återger en specifik bildegenskap.

Denna avhandling presenterar ett antal tekniska forskningsbidrag inom HDR-
fotografi och video. De första bidragen är inom tonmappning av HDR-video.
Först presenteras en studie där existerande metoder för tonmappning av HDR-
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video utvärderas. Resultaten visar på problem som ännu var olösta vid tidpunk-
ten för studien. I ett efterföljande projekt fokuserar vi på att lösa dessa problem i
en ny metod för videotonmappning. Vi visar hur metoden kan åstadkomma hög
bildkvalité med snabba beräkningar, medan detaljnivån bibehålls och bildbrus
undertrycks.

För att spara och distribuera HDR-video kan inte existerande format för stan-
dardvideo användas utan modifikation. Det krävs nya strategier för att uppnå
tillräckligt hög precision och färgåterbildning. I och med att HDR-video etable-
rar sig inom TV-industrin har en standardisering av tekniker för detta ändamål
påbörjats. Avhandlingen presenterar en utvärdering av olika teknikerna invol-
verade i att distribuera HDR-video, samt utveckling av ett ramverk för kodning
och avkodning av HDR-video som använder de bäst presterande tekniker-
na. Den resulterande mjukvaran, Luma HDRv, publiceras med öppen källkod,
och erbjuder på så sätt ett första fritt tillgängligt alternativ för distribution av
HDR-video.

Ett problem med HDR-fotografi är att det krävs dyra, begränsade eller tidskrä-
vande tekniker för att fotografera ett stort dynamiskt omfång. Den absoluta
majoriteten av existerande bilder är dessutom fotograferade med konventionella
metoder, och för att kunna använda dessa i HDR-applikationer behöver det
dynamiska omfånget utökas. Ett av de viktigaste och svåraste problemen med
detta är att försöka återskapa detaljer och information i bildens ljusa delar, och
inga metoder har tidigare lyckats göra det på ett övertygande sätt. I det sista
projektet som presenteras i avhandlingen använder vi de senaste framstegen
inom deep learning (maskininlärning med “djupa”, mycket kraftfulla, modeller)
för att återbilda ljusintensitet, färg och detaljer i bildens ljusa delar. Metoden
lär sig från en stor uppsättning av HDR-bilder, och resultaten visar en stor
förbättring jämfört med tidigare existerande metoder.

Tillämpningarna av de olika forskningsbidragen är tätt sammankopplade i
den kedja/pipeline av tekniker som behövs för att infånga och visa HDR-
bilder. Här bidrar de olika metoderna som avhandlingen presenterar till att
lättare och mer effektivt skapa, distribuera och visa HDR-material. Givet den
senaste utvecklingen och populariteten inom HDR-TV, så förväntas också att
tekniker för HDR-fotografi bara kommer att bli viktigare framöver. Framtiden
för HDR-bilder ser ljus ut!
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Contributions

The thesis provides a set of contributions to the field of high dynamic range (HDR)
imaging. The main focus is on tone-mapping of HDR video, for compressing
the dynamic range to be displayed on a conventional display device (Paper A,
B, C). However, there are also important contributions related to the reverse
problem of reconstructing an HDR image given a low dynamic range (LDR) input
image (Paper E), as well as HDR video encoding (Paper D).

Paper A provides a review that serves as a comprehensive reference, cat-
egorization, and comparative assessment of the state-of-the-art in
tone-mapping for HDR video. It constitutes a complementary part of
the background for the tone-mapping work presented in this thesis,
as it describes the foundations in HDR imaging and tone-mapping.
The report includes a literature overview of tone-mapping in general,
as well as a categorization and description of all, at the time, existing
tone-mapping algorithms for HDR video. Finally, a quantitative anal-
ysis is performed in order to tabulate the strength and weaknesses of
a set of representative video tone-mapping operators.
The publication was presented as a state-of-the-art report (STAR) at
Eurographics 2017 in Lyon, France [84].

Paper B presents the results of a subjective evaluation of tone-mapping op-
erators for HDR video. This constitutes the foundation of the video
tone-mapping contributions in this thesis, and was one of the first
tone-mapping evaluations that considered the temporal domain. The
results show that even though tone-mapping is a well-researched
area, there are still a number of unsolved challenges related to tone-
mapping for HDR video. This laid the ground for the subsequent
work on overcoming the challenges in a novel video tone-mapping
operator (Paper C).
The paper was presented at Pacific Graphics 2013 in Singapore [75].
A pilot study that preceded the work was also described in a talk at
Siggraph 2013 in Anaheim, USA [74]. The technique used in order to
calibrate the different tone-mapping operators was presented in a talk
at Siggraph 2014 in Vancouver, Canada [76]. Finally, a more general
text on strategies and existing work within HDR video evaluation
was included as a chapter [81] in the book “High Dynamic Range Video:
From Acquisition, to Display and Applications” [71].

Paper C introduces a novel tone-mapping operator for HDR video, which
overcomes a number of the problems of the, at the time, existing
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methods. It is temporally stable, while operating locally on the image
with minimal artifacts around edges. It considers the noise character-
istics of the input HDR video in order to not make noise visible in the
tone-mapped version. It compresses the dynamic range to a specified
display device while minimizing distortion of image contrasts. All
calculations run in real-time so that interactive adjustments of all the
parameters are possible.
The paper was presented at Siggraph Asia 2015 in Kobe, Japan [77].

Paper D presents an HDR video codec that is released as an open-source
library and application programming interface (API) named Luma HDRv.
The HDR video encoding is built by first performing a large-scale
evaluation on a high-performance computer cluster, and measuring
differences using a perceptual image quality index. The evaluation
considers a set of existing techniques for color encoding, luminance
transformation, and compression of the final bit-stream. By choosing
the highest performing combination, the final codec pipeline allows
for the best compression performance given the techniques examined.
The paper was presented at the International Conference on Im-
age Processing (ICIP) 2016 in Phoenix, USA [79]. The work was
also described in a talk at Siggraph 2016 in Anaheim, USA [80].
The HDR video codec is available on GitHub: https://github.com/

gabrieleilertsen/lumahdrv.

Paper E demonstrates how recent advances in deep learning can be applied to
the reverse problem of tone-mapping; that is, to expand the dynamic
range in order to reconstruct an HDR image from an input LDR image.
The method can robustly predict high quality HDR image information
given a standard 8 bit single-exposed image. It uses a convolutional
neural network (CNN) in an auto-encoder design, together with HDR
specific transfer-learning, skip-connections, color space, and loss
function. The proposed method demonstrates a steep improvement
in the quality of reconstruction as compared to the, at the time,
existing methods for expanding LDR into HDR images. The quality
of the reconstructions is further confirmed in a subjective evaluation
on an HDR display, which shows that the perceived naturalness of
the reconstructed images are in most cases on par with the ground
truth HDR images.
The paper was presented at Siggraph Asia 2017 in Bangkok, Thai-
land [83]. Code for inference and training with the HDR reconstruc-
tion CNN is available on GitHub: https://github.com/gabrieleilertsen/

hdrcnn.

https://github.com/gabrieleilertsen/lumahdrv
https://github.com/gabrieleilertsen/lumahdrv
https://github.com/gabrieleilertsen/hdrcnn
https://github.com/gabrieleilertsen/hdrcnn


Contents

Abstract i

Populärvetenskaplig sammanfattning iii

Acknowledgments v

Publications vii

Contributions ix

1 Introduction 1
1.1 High dynamic range 2

1.1.1 Definition 2
1.1.2 The dynamic range of the HVS 3
1.1.3 Camera and display dynamic range 4
1.1.4 Calibration 6
1.1.5 Applications 9

1.2 Context 10
1.3 Author’s contributions 12
1.4 Disposition 13

2 Background 15
2.1 Capturing with HDR cameras 16

2.1.1 Single-exposure HDR cameras 16
2.1.2 Multi-exposure HDR camera systems 19

2.2 HDR reconstruction from conventional sensors 21
2.2.1 Temporally multiplexed exposures 22
2.2.2 Spatially multiplexed exposures 23
2.2.3 Single-exposure techniques 25

2.3 HDR distribution 27
2.3.1 Floating point HDR pixel formats 27
2.3.2 HDR encoding using LDR formats 28

2.4 Tone-mapping 33
2.4.1 Categorization 33
2.4.2 Tone-mapping pipeline 35
2.4.3 Temporal aspects 39
2.4.4 Evaluation 40

2.5 HDR displays 43



xii Contents

2.5.1 Professional HDR display devices 43
2.5.2 HDR TVs 44

3 Tone-mapping of HDR video 47
3.1 Motivation 48
3.2 Evaluation of TMOs 49

3.2.1 Parameter calibration 49
3.2.2 Qualitative evaluation experiment 53
3.2.3 Pair-wise comparison experiment 55

3.3 New algorithms 57
3.3.1 Filtering for tone-mapping 58
3.3.2 Tone-curve 59
3.3.3 Noise-awareness 62

3.4 Recent developments 64
3.5 Summary 67

3.5.1 Limitations and future work 68

4 Distribution of HDR video 71
4.1 Motivation 72
4.2 Evaluation 72

4.2.1 Setup 73
4.2.2 Results 74
4.2.3 Comparison to HDR10 75

4.3 Luma HDRv 77
4.4 Summary 78

4.4.1 Limitations and future work 78

5 Single-exposure HDR image reconstruction 81
5.1 Motivation 82

5.1.1 Relation to inverse tone-mapping 82
5.1.2 Where is the dynamic range? 82
5.1.3 Focusing on the important 84

5.2 Deep learning for HDR imaging 86
5.3 Deep learning reconstruction 87

5.3.1 CNN design 87
5.3.2 Training 89
5.3.3 Weight initialization 90
5.3.4 Results 91
5.3.5 Compression artifacts 94
5.3.6 Adversarial training 94

5.4 Summary 98
5.4.1 Limitations and future work 99



Contents xiii

6 Conclusions 101
6.1 Contributions 101

6.1.1 Tone-mapping 102
6.1.2 Distribution 103
6.1.3 Reconstruction 103

6.2 Outlook 104

Bibliography 107

Publications 133
Paper A 135
Paper B 167
Paper C 181
Paper D 199
Paper E 207





Chapter 1
Introduction

A camera is designed for a similar task as the human visual system (HVS) –
to capture the surrounding environment in order to provide information for
higher level processing. Given this similarity, a naïve conception would be
that a physical scene captured by a camera and viewed on a display device
should invoke the exact same response as observing the scene directly. However,
this is very seldom the case, for a number of reasons. For example, there are
insufficient depth cues in the captured image and there are differences in color
and brightness. Also, one of the most prominent differences in many scenes is
a mismatch in dynamic range. The camera and the display are unable to cover
the wide range of luminances that the HVS can detect simultaneously, which
means that there is more visual information available in the scene than what
can be captured and reproduced. For example, when attempting to capture an
object in a dark indoor environment in front of a bright window, one has to
choose between properly exposed background or foreground, while the other
information is lost in dark or saturated image areas, respectively. However, it
is usually not a problem for the human eye to simultaneously register both
foreground and background. The limitations of the camera as compared to the
HVS becomes evident. With techniques for high dynamic range (HDR) imaging
information can be captured in both dark and bright image regions, matching
or outperforming the dynamic range of the HVS.

The thesis presents a number of technical research contributions within the
HDR imaging pipeline. This chapter first gives a brief introduction to the
concept of high dynamic range and the HDR image format. Next, the thesis
contributions are briefly described and put in a context. Finally, the structure of
the thesis is outlined.
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2 Chapter 1 ● Introduction

1.1 High dynamic range

The difference in the dynamic range of the HVS as compared to conventional
cameras/displays gives a natural motivation for developing techniques that
can capture and display HDR images, which can better match the sensation
of watching the real scene. Since a camera sensor is limited in the range of
luminances that can be captured, the most common technique for generating
HDR images is to combine a set of images that have been captured with
different exposure times, as demonstrated in Figure 1.1. With long exposures,
the details in dark image areas are captured while information in bright image
areas disappears due to sensor saturation. With short exposures, the bright
image features can be registered while the darker parts are lost in noise and
quantization. Combining different exposures means that both dark and bright
image features, which are outside the range of a conventional sensor, can be
represented and thereby providing a large increase in captured information and
dynamic range.

1.1.1 Definition

The incident light from the surrounding environment onto a specific point on a
surface in a scene – the illuminance – is reflected based on the properties of the
surface material. The integrated outgoing light over an area in a certain direction
is the luminance, and this is what we measure when registering the light as it
falls on the area of a pixel in a camera sensor. The SI unit for measuring the
luminance in a scene or on a screen is candela per square meter (cd/m2). In the
TV/display manufacturing industry, the same unit is also commonly referred to
as nit (1 nit = 1 cd/m2). In Figure 1.2a, the typical luminances for some objects
are illustrated to give a reference for the range of observable values.

The dynamic range is the ratio between the smallest and largest value registered
by an imaging sensor or depicted on a display. For the HVS, it is between
the smallest and the largest observable luminance of a scene. For a camera
sensor, it is between the smallest detectable luminance above the noise floor
and the largest measurable luminance before the sensor saturates. For a display,
it is between the smallest and largest pixel luminances that can be rendered
simultaneously on the screen. For example, if the lowest and largest values are
0.001 and 1, 000 cd/m2, respectively, the dynamic range is 1, 000, 000:1, or 6 log10
units. In photography, the dynamic range is often measured in stops/f-stops,
which uses log2 units. Alternatively, the dynamic range can also be specified
with the signal-to-noise ratio (SNR), usually specified in decibels, where SNR
= 20 log10 (Iceil/Inoise) dB. For a camera sensor Iceil is the saturation point and
Inoise is the noise floor. For the previous example, we thus have a dynamic range
1, 000, 000:1 = 6 log10 units = 19.93 stops = 120 dB.
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(a) Exp.: 1/180s, -5.8 stops (b) Exp.: 0.3s, ±0 stops (c) Exp.: 20s, +6.1 stops

Figure 1.1: An HDR image can capture the full range of luminances in the scene.
The top row shows 3 of the in total 7 exposure bracketed images used to create the
HDR image in Figure 1.3. The bottom row shows enlarged bright and dark image
areas. The numbers specify absolute exposure times, as well as the relative exposures
in relation to (b). The example demonstrates that a very large difference in exposure
is required in order to capture both highlights (a) and details of shadowed image
regions (c), and there are still some saturated pixels in the brightest highlights of the
darkest image.

From the literature in HDR imaging, it is not exactly clear what the definition
of high dynamic range is and it may vary depending on the application. The
term is generally used for anything that has larger dynamic range than the
conventional cameras/displays. In some cases this may be misleading though,
where an HDR image actually can have a rather limited dynamic range. To
denote images that are not HDR, the terms low dynamic range (LDR) or standard
dynamic range (SDR) are used interchangeably.

1.1.2 The dynamic range of the HVS

Figure 1.2 shows typical dynamic ranges in order to compare the capabilities of
the HVS to different capturing and display techniques. The HVS can observe a
very large range of luminances, from around 10−6 cd/m2 up to 108 cd/m2, for
a total dynamic range of ≈14 log10 units [93]. However, in order to do so the
eye needs to adapt to the different lighting situations. This is achieved partly
by changing pupil size, but mostly from bleaching and regeneration processes
in the photoreceptors. The processes can take considerable time, especially for
regeneration of photopigment when adapting to a dark environment. This is
evident for example when transitioning from a bright outdoor environment into
a dark room – it takes several minutes before details can be discerned, and up to
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30 minutes for complete dark adaptation. There are two types of photoreceptors
on the retina, which are active in different ranges of luminances. The rods are
more sensitive, but provide poor acuity and no color vision, while the cones
are active in brighter environments and give colors and higher resolution. The
working ranges of the different photoreceptors are illustrated in Figure 1.2b.
The range over which only rods are active is termed the scotopic vision, and
when the rods have saturated only the cones are responsible for the photopic
vision. There is a significant overlap in the working ranges, where both rods
and cones contribute, which is the mesopic vision.

The simultaneous dynamic range of the eye, which also is illustrated in Fig-
ure 1.2b, is difficult to quantify due to the complexity of how the HVS operates.
The response range of the individual neural units is limited to around 1.5 log10
units [232]. However, adaptation can be restricted to an area of less than 0.5
visual degrees [251], so that the effective dynamic range over the observed scene
is larger, around 3.7 log10 units [141, 207]. Moreover, we constantly use saccadic
eye movements, and adapt to the lighting close to the focal point both in focus
and exposure. This means that the perceived dynamic range can be much larger
than the actual simultaneous dynamic range of the retinal image.

1.1.3 Camera and display dynamic range

The dynamic range of a camera sensor can vary greatly, from just over 2 log10
units in compact digital cameras, above 4 log10 units for high-end digital single-
lens reflex (DSLR) cameras, and up to 5 log10 units for professional HDR capable
cinematographic video cameras. Figure 1.2c illustrates the dynamic range
for a typical consumer level camera sensor. Luminances above the highest
measurable value for the current exposure time cannot be registered since the
sensor has saturated. Information below the lowest detectable value is lost due
to noise and quantization. This means that the dynamic range can actually
extend to a lower point on the luminance axis, but these values only contain
noise and do not carry any information. The difference in dynamic range
between sensors is mainly due to the ability to handle noise, where e.g. a large
sensor with low resolution can reduce the noise level by integrating over the
larger pixel areas. The noise floor of a sensor can be measured in different ways,
and the numbers reported by manufacturers tend to be very optimistic. This
means that the dynamic ranges specified above, with up to 5 log10 units, can be
difficult to achieve in practice.

In order to capture an HDR image, a set of different exposures can be combined
into one image using methods for HDR reconstruction. Figure 1.2d illustrates
how the dynamic range can be extended in this way. Another strategy for
extending the dynamic range is illustrated in Figure 1.2e. It relies on only one
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single exposure, and the bright image areas are reconstructed by means of deep
learning techniques. This is the topic of Chapter 5.

Finally, Figure 1.2f illustrates the typical dynamic ranges of some display devices.
For a conventional liquid-crystal display (LCD) it is around 2.3-2.7 log10 units,
which approximately matches the dynamic range of a consumer level camera
sensor, Figure 1.2c. However, when the dynamic range of the image is much
higher than the display device, image details are lost in shadows or highlights
when displayed. By applying methods for tone-mapping, using tone-mapping
operators (TMOs), the dynamic range of the image can be compressed to match
the display while retaining most of the details. An example of the differences
between directly displaying an HDR image and by applying a TMO is shown in
Figure 1.3. Tone-mapping is not only applicable for the purpose of mapping an
HDR image to a conventional display. It can also be used to account for smaller
differences in dynamic range and color capabilities of cameras and displays.

For displays, the dynamic range is not the only important feature for supporting
HDR material. For example, an organic light emitting diode (OLED) screen can
have a very large dynamic range even though the peak luminance is equivalent
or less than in a conventional LCD device. This is possible due to the very low
black level, which in principle can be 0. However, if HDR content is scaled
to fit within this range, a large portion of the luminance range will be in the
dark image regions, and even in the rod-mediated scotopic vision range. This
results in a loss in acuity and color vision in the perceived image. It is probably
also not true to nature, so that the displayed luminance is substantially lower
than in the captured scene and thus not intended for scotopic vision. Moreover,
the display is very sensitive to ambient lighting, so that the dynamic range is
drastically decreased as soon as some light is reflected on the screen.

1.1.4 Calibration

Most of the existing digital images are stored using 8-bit integer values, provid-
ing 28 = 256 different levels for representing the intensity of each color channel
in a pixel. HDR images, on the other hand, are typically stored using a floating
point representation, allowing for greater precision and representational power,
with a substantial increase in the range of possible brightnesses and colors.
However, the differences in dynamic range and precision between HDR and
LDR images are not the only aspects when comparing the formats. There is
also a fundamental difference in how the formats are calibrated.

Since a conventional digital LDR image almost exclusively is meant to be
displayed in one way or the other (monitor, projector, printed paper, etc.), it is
calibrated for this purpose. We refer to this format as display-referred images.
Typically, the calibration includes a gamma correction, l = L1/γ, which performs a
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(a) Linear (b) Gamma corrected (c) Tone-mapped

Figure 1.3: Difference between scene-referred linear values (a), gamma corrected
display-referred pixels with γ = 2.2 (b), and a locally tone-mapped image (c), using
the method from Paper C. The tone-mapping can compress the dynamic range
considerably, while retaining local contrast by means of local processing.

non-linear correction of the linear luminance L in order to generate the final
luma value l that should be encoded and sent to the display. The gamma
value is usually in the range γ ∈ [1.8, 2.8], performing a compression of the
dynamic range. Originally, this correction was intended to compensate for the
non-linearity of cathode ray tube (CRT) displays, but it is also used for modern
displays by simulating the non-linearity. This is because the correction also
compensates for a similar non-linearity of the HVS within the range of LDR
image intensities, so that the range of encoded values is closer to linear from
a perceptual standpoint. This means that when encoding an image at the
limited precision provided from 8 bits, the quantization errors due to rounding
off to the nearest representable value, will be perceived as equally large across
the range of pixel values. From applying the correction before encoding, and
undoing it on the display side, the 256 values are in general enough to make
the quantization errors invisible, i.e. it is not possible to distinguish between
pixel value l and l + 1/255 for any value l ∈ [0, 1]. As the gamma correction in
this way relates to perceived brightness, it may be considered a simple form of
tone-mapping for LDR images.

The gamma correction operation can also be extended to account for the display
and viewing environment, with the gamma-offset-gain model [34, 175],

Ld(l) = lγ ⋅ (Lmax − Lblack)+ Lblack + Lre f l . (1.1)
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It models the final luminance Ld emitted from the display surface, as a function
of the luma value l ∈ [0, 1], taking into account the display characteristics and
the ambient lighting of the surrounding environment where the display is
used. The display is characterized by its minimum and maximum luminance;
the black level Lblack and the peak luminance Lmax, respectively. The ambient
lighting affects Ld as it is reflected off the display surface, Lre f l. This term can
be approximated given the measured ambient lighting Eamb (in lux) and the
reflectivity k of the display,

Lre f l =
k
π

Eamb . (1.2)

By inverting the gamma-offset-gain model, a display-referred calibration that
accounts for the particular display and viewing environment can be made.

For digital cameras, the captured image is usually calibrated in-camera, before
encoding. Depending on camera brand and model, the non-linear calibration,
or camera response function (CRF), may have different shapes and accomplishes
different calibration/tone-mapping results. For example, one camera can apply
a larger compression of the dynamic range in order to reveal more of the
RAW pixels captured by the sensor, while another accomplishes better contrast
reproduction. In order to allow for more flexibility, most modern DSLR cameras
provide an option to directly access the linear RAW sensor read-out, so that it
can be prepared for display in post-processing. The RAW image is stored at
an increased bit-depth, typically 12-14 bits, and can contain a wider dynamic
range as compared to the display-referred 8-bit image.

In contrast to the LDR image format, HDR images are not meant to be sent
directly to a display device. Instead, the calibration is scene-referred, so that pixel
values relate to the physical lighting in the captured scene, by measuring the
linear relative luminance. Apart from the high dynamic range and precision
provided, the linearity of pixel values is the most essential attribute of HDR
images.

In techniques for generating HDR images from conventional cameras, either
the linear RAW images can be used, or the non-linear transformation applied
by the CRF needs to be estimated and inverted. An absolute calibration of
the pixels, though, is more difficult to achieve. It depends on a large set of
camera parameters, including exposure time, aperture, gain, etc., as well as the
imaging sensor itself. One option for providing absolute calibration is to use
a luminance meter for measuring a reference point within the captured scene,
and subsequently scale the relative luminances of the HDR image in order to
correspond with the measurement.

Given the different domains of display and scene calibrated images, the process
of preparing an HDR image for display – or tone-mapping – involves not only
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compression of the dynamic range, but also a transformation from a scene-
referred to a display-referred format. The effect of using gamma correction in
order to transform to a display-referred format is demonstrated in Figure 1.3.
The correction compresses the dynamic range so that more of both shadows
and highlights can be displayed. Even more of the image information can be
made visible by also using a tone-mapping operator, which provides a result
that is closer to how the HVS would perceive the real scene.

1.1.5 Applications

In addition to improving the direct viewing experience, on HDR displays
or by means of tone-mapping, HDR imaging is useful in a number of other
applications. As HDR techniques can capture the full range of luminances
in a scene, an HDR image can represent a photometric measurement of the
physical lighting incident on the camera plane. This information is important
for example in image-based lighting (IBL) [60, 247], where an HDR panorama is
used as lighting when synthesizing photo-realistic images in computer-generated
imagery (CGI). IBL is often used within the visual effects (VFX) industry, where an
HDR panorama can be captured at a position in a filmed shot and subsequently
used to insert computer graphics generated image content that complies with
the lighting in the shot.

In general, HDR imaging can be used whenever accurate physical measure-
ments, or information across a larger range of luminances, are needed for
processing or information visualization. This can be the case in automotive
applications and other computer vision tasks, medical imaging, simulations,
virtual reality, surveillance, to name a few.

Although HDR imaging has been used frequently for many years in research
and industry/production, within the last couple of years it has also reached
major applications for the consumer market. In the TV industry, HDR is the
latest buzzword, and an abundance of HDR capable TVs are now available from
a number of manufacturers. Although these devices cannot match the dynamic
range of previous research prototypes [223], they offer a significantly extended
range of luminances and higher peak luminance, as compared to earlier TV
models. The introduction of HDR TV has also pushed forward techniques for
distribution of HDR video, and a standardization process is currently ongoing
[94]. Major online streaming services (Netflix, Youtube, Vimeo, Amazon Prime
Video, etc.) have also started to introduce HDR video in order to provide
material for the HDR TVs. Considering this recent development, the topics
within this thesis are ever so important, and contributions are presented for
both generation, distribution, and display of HDR images and video.
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1.2 Context

Clearly, the increasing applicability of HDR images and video will make for
higher demands on robust techniques for creation, distribution, and display of
the format in the future. This thesis contributes to the field of HDR imaging
in three different areas. These are the software components of the HDR imag-
ing pipeline; reconstruction, distribution, and tone-mapping, as illustrated in
Figure 1.4. The papers that the thesis is built on are listed on page vii in the
preface and their individual contributions on page ix. In order to give a clear
motivation for the thesis within the HDR imaging pipeline, in what follows are
brief descriptions of the papers in the context of the three aforementioned areas:

• Tone-mapping (Paper A, B, C): This is the largest area of contribution, with
three papers that help in advancing techniques for tone-mapping of HDR
video material. The work started with Paper B, which demonstrates an
evaluation of the, at the time, existing methods for tone-mapping of HDR
video. The evaluation reveals a number of issues with the TMOs, such as
loss in local contrast or temporal artifacts and increased visibility of noise.
Paper B is used as a starting point for the techniques presented in Paper
C. This paper proposes a novel real-time tone-mapping operator that can
achieve high local contrast with a minimal amount of spatial and temporal
artifacts. It also considers the noise characteristics of the input HDR video in
order to make sure that the noise level of the tone-mapped video is below
what can be discriminated by the HVS. Finally, in Paper A we recognize
that existing literature that describes the area of tone-mapping is getting
outdated, and do not cover the recent developments related to video tone-
mapping. The paper presents a thorough literature review on tone-mapping
in general, and especially focusing on HDR video. It provides descriptions
and categorization of the state-of-the-art in video tone-mapping, as well as
a quantitative evaluation of their expected performances. The assessment
indicates that many of the problems found in the evaluation in Paper B have
been resolved in the most recent TMOs, including the method in Paper C.

• Distribution (Paper D): HDR video can be stored with existing techniques
for LDR video compression, by encoding at a higher bit-depth. In order
to do so, the HDR pixels need to be mapped to the available bit-depth. A
number of techniques for this mapping have been proposed, but lack in
comparison. Paper D makes a large-scale comparison of such techniques,
as well as different color spaces used for encoding. The paper also presents
Luma HDRv, which is the first open-source library for HDR video encoding
and decoding. The library is accompanied with applications for encoding
and decoding, as well as an application programming interface (API) for easy
integration in software development.
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Figure 1.4: Brief summary of the thesis contributions, where the individual papers
are listed in context of the HDR imaging pipeline. Contributions are made in each of
the software components of the pipeline. A more general illustration of the pipeline
is provided in Figure 2.1 in Chapter 2.

• Reconstruction (Paper E): With increasing popularity of HDR image applica-
tions, but limited availability of HDR image material, an interesting topic is
how to enable using LDR images in these applications. A number of methods
for this purpose have been presented, labeled inverse tone-mapping operators
(iTMOs). However, these are very limited as they boost the dynamic range
without really reconstructing the missing information in the LDR images.
In Paper E we present an HDR reconstruction method that uses recent ad-
vancements in deep learning in order to reconstruct saturated regions of an
LDR image. The method shows a substantial improvement over existing
techniques and makes it possible to use LDR images in a wider range of
HDR applications than was previously possible.

Although the thesis work considers three different aspects of HDR images, in
the HDR imaging pipeline these are closely inter-linked, as demonstrated in
Figure 1.4. A possible scenario for using the contributions in connection could,
for example, be to enable compatibility with existing LDR image material in
HDR streaming. First, the single exposure method in Paper E can be used to
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transform the LDR material into HDR. The HDR video stream is then possible
to distribute with the Luma HDRv codec in Paper D, which allows for open-
source development. Finally, the techniques in Paper C can adapt the HDR
stream to a certain HDR display, or compress the dynamic range in a fast and
robust manner to be displayed in high-quality on a conventional LDR monitor.

1.3 Author’s contributions

The work that is presented in this thesis has been performed in collaboration
with a number of co-authors. In order to clarify the individual contributions
from the author of the thesis, in what follows are brief descriptions of the
author’s work related to each of the papers:

• Paper A: The report is an individual work and literature study, written in a
first draft by the author. The final publication has the same content, but was
complemented, rearranged, and rephrased to a smaller extent after feedback
from the co-authors.

• Paper B: The author implemented a number of methods for evaluation and
conducted major parts of the experiments. The author took part in analyzing
the outcome of the experiments, and in extracting general problems with
existing methods for tone-mapping. The paper was written in a collaborative
effort with the co-authors.

• Paper C: The author implemented the complete tone-mapping operator for
execution on the GPU and together with a graphical user interface. The
filtering method described in the paper was formulated by the author, while
ideas and initial implementations of the tone-curve were provided by a co-
author. The author conducted the comparison study and produced the results.
For the paper, the author wrote most of the filtering and result sections, and
helped in writing other parts.

• Paper D: The author implemented the Luma HDRv codec library and API.
The author conducted the testing on a large-scale computer cluster, with
guidelines and functions for making comparisons provided by a co-author.
The results were put together by the author. The paper was written by the
author, followed by feedback and complementing text by co-authors.

• Paper E: The author was responsible for the idea, design, implementation,
training, putting together results, and writing of the paper. Co-authors
helped in coming up with suitable deep learning architectures and training
strategies, some initial implementation, and evaluation of the results on an
HDR display. The author did most of the paper writing, and co-authors
complemented the text and wrote the section on evaluation using an HDR
display.
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1.4 Disposition

This introductory chapter intended to introduce, define and motivate the field
of HDR imaging. It also briefly described and contextualized the contributions
provided in the thesis. The upcoming chapters will provide a more thorough
background on HDR imaging and discuss the work presented in the different
thesis papers. These chapters constitute the first part of the thesis. The second
part is composed of the five selected papers that have been published within
the scope of the thesis work.

A general background and related work of the field of HDR imaging is provided
in Chapter 2, in the context of the HDR imaging pipeline. To this end, the differ-
ent components of the pipeline are discussed in turn; capturing, reconstruction,
distribution, tone-mapping, and display.

In Chapter 3, the context, content, and contributions of the papers considering
tone-mapping are described. This work makes specific considerations for HDR
video and the implications of tone-mapping of temporally varying data. First, in
Section 3.2 a subjective evaluation of different methods for video tone-mapping
is described (Paper B). In Section 3.3 this is followed by a presentation of a video
TMO that uses a set of novelties in order to enable robust and high-quality
tone-mapping (Paper C). In Section 3.4, a set of quantitative experiments are
explained, which intend to point to which video TMOs can be expected to
render a good level of exposure and contrast, with the least amount of artifacts
(Paper A). For this part of the thesis, Paper A should also be considered a
background description and a literature review, which categorizes and describes
the state-of-the-art in tone-mapping for HDR video.

Chapter 4 treats storage and distribution of HDR video. It describes a large-
scale objective evaluation of the techniques involved in preparing HDR video
for encoding (Paper D). It also presents the Luma HDRv codec, which is built
taking into consideration the results of the evaluation.

Chapter 5 deals with the problem of reconstructing HDR image information
from a single-exposed LDR image. A method that uses deep learning techniques
in order to predict the HDR values of saturated pixels is described and discussed
(Paper E). It makes use of a convolutional neural network that is designed and
trained with special consideration of the challenges in predicting HDR pixels.

Finally, Chapter 6 provides a unified summary of the work and contributions.
The chapter, and the thesis in its whole, is then wrapped up by an outlook
towards the future of HDR imaging, with possible directions for research and
development.





Chapter 2
Background

The HDR imaging pipeline, from capturing to display, is illustrated in Figure 2.1.
The physical scene can be exposed onto one or more imaging sensors, followed
by processing the captured information using techniques for HDR reconstruc-
tion (Section 2.2). Alternatively, an HDR camera can be used in order to directly
infer an HDR image, either with a sensor that can cover a large dynamic range
or with a multi-exposure system (Section 2.1). The captured HDR image or
video sequence is then stored using some HDR capable format, where a variety
of different solutions have been proposed for both static images and video (Sec-
tion 2.3). The next step in the pipeline is to prepare the HDR image for display,
using a tone-mapping algorithm (Section 2.4). The objective is to compress the
dynamic range to the constrained range of the display while retaining visual
image information, and to transform the image to a display-referred format.
The final component in the pipeline is the actual display of the tone-mapped
image, either on an HDR capable display (Section 2.5) or on a conventional
monitor.

This chapter will discuss the five components of the HDR imaging pipeline in
Figure 2.1: capturing, reconstruction, distribution, tone-mapping, and display.
The presentation attempts to cover the most important techniques and literature
within these individual areas, in order to give a background on research and
development in HDR imaging. It also places the individual thesis papers in
relation to previous work, demonstrating how they contribute to the area. For a
wider description of HDR imaging and its applications, the reader is referred to
recent books on the topic, treating HDR imaging in general [28, 175, 211] and
specializing on HDR video [49, 71].

15
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2.1 Capturing with HDR cameras

When it comes to HDR cameras, we discern two different techniques for cover-
ing a large range of luminances; either with multi-exposure camera systems, or
with a single exposure using a sensor that, through some mechanism, has the ca-
pability of capturing a much higher dynamic range as compared to conventional
sensors.

Strictly speaking, the HDR reconstruction step also takes place when using
multi-exposure HDR camera systems, in the same way as for exposure bracketed
images when capturing with a conventional camera. However, these systems are
dedicated HDR capturing devices where the reconstruction potentially could
take place live onboard the camera, as opposed to using a conventional camera
where this is an explicit post-processing operation. Consequently, we categorize
the versatile multi-exposure systems as HDR cameras that directly output HDR
images.

2.1.1 Single-exposure HDR cameras

The most capable single-exposure cameras, in terms of the specified dynamic
range, can be found in the film industry. The increased dynamic range of a
high-end cinematographic camera can partly be attributed to the large size and
production quality of the sensor, which makes for a reduction in the noise floor
of the captured image. There may also be additional techniques used in order
to boost the dynamic range, for example by employing dual gain readouts.
However, these details of the camera construction and capturing techniques are
not always specified for commercial cameras.

The camera manufacturing company RED has probably had the most impact
during the last decade, starting with their first model RED ONE in 2007. In 2013
they released the RED Epic Dragon, with at that time incredible specifications
and a dynamic range that was claimed to be more than 16.5 stops (≈5 log10
units). A major impact has also been from manufacturer ARRI with their Alexa
model. The camera features a dual gain architecture (DGA), which makes use of
two gain readouts from each pixel on the sensor in order to boost the achievable
dynamic range, for a total of 14 stops according to the manufacturer.

There has also been a large development in cinematographic cameras within the
last years, possibly spurred by increasing demands with the establishment of
HDR TVs. RED introduced the Helium 8K sensor in 2016 and the Monstro 8K
large-format sensor in 2017 (although only slightly larger area than a traditional
full-format sensor), which is claimed to have a dynamic range of above 17
stops. Together with the recent camera body called Weapon, the latest flagship
from RED is the Weapon Monstro 8K VV. A recently upcoming contender –
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Figure 2.1: The HDR imaging pipeline, from capturing to display. The three
intermediate blocks represent the software section of the pipeline.
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and allegedly a superior camera in terms of many technical aspects for the
production environment – is a joint effort by Panavision, RED, and Light
Iron in order to create the top-of-the-line cinematographic camera Panavision
Millennium DXL. This device also features an 8K large-format sensor, which is
specified to have a dynamic range of 15 stops. Sony has also recently announced
a top-segment cinematographic camera; the Sony CineAlta Venice, which is the
manufacturer’s next flagship after the F65 model. The camera is scheduled for
release in early 2018. It is equipped with a 6K full-frame sensor, with a 15 stop
dynamic range according to the specifications.

In addition to the high-end cinematographic cameras, there has also been a
segment of more affordable alternatives presented within the last couple of
years. These include, but are certainly not limited to, the Grass Valley LDX 82,
the Kinefinity KineMAX, and the Blackmagic Ursa. The dynamic capabilities
are specified in the range of 15-16 stops according to the manufacturers.

In common for the cinematographic video cameras are specified dynamic ranges
between 14-17 stops, which is significantly higher than in conventional cameras.
However, the measured dynamic range is highly dependent on the specific
measurement procedure, and the manufacturers’ numbers tend to be in optimal
conditions. This means that the specified dynamic ranges can be difficult to
reproduce in practice.

The high-end segment of DSLR cameras is also expected to be close to the
cinematographic devices in terms of dynamic range. There is a trade-off
between pixel size and dynamic range, as larger pixels allow for lower noise
level and traditionally DSLRs have had higher resolution than cinema cameras.
However, this is not always the case anymore, with cinema cameras supporting
8K (≈35 megapixels). Among the abundance of high-end DSLRs, two notable
examples are the Sony α7R III and the Phase One IQ3 100MP. Sony α7R III
uses a full-format sensor and is known for its good noise characteristics. The
large-format sensor in Phase One IQ3 should definitely be in the same category
as the high-end cinema cameras considering the larger sensor (53.7 x 40.4mm)
and its high resolution (101 megapixels). According to the manufacturers, both
these cameras are able to capture a dynamic range of 15 stops. However, in the
tests carried out by Photons to Photos the Sony and the Phase One cameras
were measured to have dynamic ranges of 11.65 and 13.06 stops, respectively
[202]. This highlights the problem of reproducibility of manufacturers’ dynamic
range specifications.

There are also alternative sensor techniques that enable coverage of a signifi-
cantly larger dynamic range, but which impose other forms of limitations. For
example, log sensors are able to extend the range of captured luminances by
having a logarithmic dependence between the light incident on a pixel and the
photo-voltage induced by the photons. However, these have limited resolution
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and weak low-light performance, with high levels of fixed pattern noise (FPN)
[128]. As such, log sensors are typically used for machine vision and surveil-
lance applications, but are too limited for e.g. feature film. One example is the
Photonfocus HD1-D1312, with a 1.4 megapixel CMOS sensor that features a
logarithmic capturing mode that can achieve a dynamic range of around 120
dB (≈20 stops). There are also examples of sensors that use locally adaptive
exposures in order to capture a high dynamic range of linear values. In the
Silicon Vision LARS III (Lokal-AutoadaptiveR Sensor) [158], the integration time
of each pixel is individually and automatically controlled. If a pixel exceeds a
certain reference voltage the integration is terminated, preventing saturation
of the pixel. The sensor technology alleviates the problems with FPN, but
the resolution is limited to 0.37 megapixels. Another type of special purpose
sensor is used in so-called event-based cameras [155]. These capture the temporal
derivatives, with pixels that trigger based on relative changes in intensity, and
which are read as an asynchronous stream. HDR images can then be produced
from integration over time, but as with log sensors the limitations mean that
the main applications are within computer vision.

In summary, there exists a multitude of both cinematographic cameras and
DSLR cameras that qualify into the category of single-sensor HDR – or extended
dynamic range – capturing devices, which extends up to approximately 17 stops
of dynamic range. This is enough to cover the dynamic range needed for e.g.
HDR TV devices, and makes extensive post-processing possible. Alternative
sensor techniques, on the other hand, can capture a larger dynamic range of
around 20 stops, but are limited to e.g. computer vision applications.

2.1.2 Multi-exposure HDR camera systems

In order to capture a dynamic range of ≥20 stops at high resolution and quality,
multi-exposure techniques are still required. This large range of luminances
is for example often needed for IBL, and in other applications that demand
accurate photometric measurements.

There are a number of special purpose HDR cameras commercially available,
which can capture static scenes with a very high dynamic range and resolution,
in order to provide accurate measurement for e.g. IBL. These include devices
such as Spheron SpheroCam HDR, Weiss AG Civetta, and Panoscan MK-3. For
example, the SpheroCam HDR can capture a dynamic range of 26 stops at a
horizontal resolution of up to 100K pixels. The device rotates and captures
vertical scanlines with different exposures, which are combined into a final
HDR panorama.

Also, many conventional cameras now have specific multi-exposure HDR cap-
turing modes implemented. This goes both for more expensive DSLRs and
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low-end cameras such as in smartphone devices. While the HDR capturing tech-
niques can vary, the typical approach is to complement with some additional
exposures, both shorter and longer than the current exposure. After capture,
and onboard the device, the exposures are aligned and fused to an HDR image.
Alternatively, a burst of images with short exposure times can be combined to
improve noise level and dynamic range, such as in Google’s HDR+ software
[112]. With state-of-the-art techniques in image registration, deghosting, and
machine learning, these methods can achieve good results in a variety of situa-
tions, including scenes with moderate amounts of motion. However, for video
sequences or scenes with fast motions, alternative techniques are required.

The most challenging scenario is capturing of HDR video in high resolution and
quality using multiple exposures. A number of techniques have been demon-
strated for this purpose [95, 126, 127, 163, 245, 246, 254]. These will be closer
examined in Section 2.2. However, only a few truly versatile multi-exposure
HDR video camera systems have been built. One example is the prototype
developed in collaboration between SpheronVR and the University of Warwick
[48]. It uses a single lens and partitions the incoming light onto multiple sensors
by means of a beam splitter arrangement. The system captures 30 frames per
second at 1920×1080 pixels resolution and a dynamic range of around 20 stops.
Contrast Optical’s amp HDR prototype, presented by Tocci et al. [236], also
splits the incoming light onto 1920×1080 pixel resolution sensors. A common
approach with this technique is to place neutral-density (ND) filters in front
of the sensors in order to absorb light and thus simulate different exposures.
This means that not all incoming light contributes to the final image. However,
the amp HDR system is able to make use of 99.96% of the incoming light,
exposed on 3 sensors, by reusing the majority of the light that is transmitted
and reflected by the beam splitters. The dynamic range of the prototype was
measured to 17 stops. Recently, the technology has been incorporated in the
commercialized Fathom 4K HDR camera, specified to have a dynamic range
of 13 stops and 4912×3684 pixels resolution [53]. Another example prototype,
shown in Figure 2.2, was developed in collaboration between Linköping Uni-
versity and SpheronVR [135, 136]. It utilizes 4 sensors, differently exposed
through the same lens using beam splitters and ND filters. The device can
capture a dynamic range of 24 stops at 2336×1752 pixels resolution. For HDR
reconstruction from the sensor data, a unified approach is proposed, which
considers debayering, denoising, alignment, and exposure fusion as a single
operation, in order to improve quality and to enable real-time performance.

Finally, in addition to Contrast’s Fathom HDR camera, there are already a
number of devices commercially available that employ multiple sensors, but
which combine the sensory data for other purposes than HDR. For example, the
Light L16 camera has in total 16 individual sensors and lenses. The different
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Figure 2.2: Multi-sensor HDR video camera developed in collaboration between
Linköping University and SpheronVR [136], capable of capturing a simultaneous
dynamic range of up to 24 stops.

images are combined in order to enable a higher resolution and quality than
is possible with the individual sensors, and to provide options for changing
the focal length without using moving optical elements. The camera could
potentially also be modified to use different exposures, in order to enable HDR
capturing. Furthermore, multi-sensor cameras are also popular in surveillance
and virtual reality, for the purpose of capturing panoramic images. For example,
the Axis Q3708-PVE uses 3 sensors for covering a 180 degrees field of view in
video surveillance. Notably, this camera also has a feature termed “Forensic
WDR”, which employs a dual gain setup for increasing the dynamic range
[16]. For multi-sensor HDR capture, however, the different lenses have to be
adjusted to a common image plane. Given that commercial multi-sensor devices
are increasing in number, alternatives for HDR video capturing using such
techniques will most likely become common in the near future.

2.2 HDR reconstruction from conventional sensors

Techniques for combining multiple exposures from conventional sensors, in
order to infer an HDR image, have been around for well over 20 years [61,
160, 164]. A large number of methods have been proposed, both for capturing
different exposures and for how to combine these. We distinguish between
the ones that use altering exposures over time and those that perform the
multiplexing in the spatial domain. Additionally, there are also techniques that
only consider one single exposure, in order to transform a conventional LDR
image for use in HDR applications.
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While multiple exposures can be captured and registered in many different ways,
the problem of optimal fusion of the final pixel values – or HDR reconstruction
– is similar in most methods. The problem is generally composed of two
distinct steps. First, the camera response function (CRF) needs to be estimated
and inverted in order to derive pixel values that are linearly dependent on
captured luminances [61, 186, 217]. In modern DSLR cameras, however, it is
possible to directly access the linear RAW sensor read-out, which is stored
at an increased bit-depth (usually 12-14 bits). Second, the set of differently
exposed linear pixel values should be combined, possibly accounting for the
specific characteristics of the sensor. Trivial methods for HDR fusion include
picking one single exposure per pixel [160] or using a simple triangular filter
[61]. Other methods extend to use a weighting based on the response function
derivative, in order to avoid quantization errors [164], or assuming certain noise
behaviors [186, 217]. Tsin et al. [240] developed on the influence of noise in the
reconstruction, with a weighting that is based on the standard deviation from a
camera noise model. Later methods combine exposures using variance estimates
from more comprehensive sensor noise models, such as the weighting proposed
by Granados et al. [103]. More recent methods also perform the different image
reconstruction steps (demosaicing, denoising, alignment, exposure fusion) as a
unified single operation [109, 114, 135, 136].

2.2.1 Temporally multiplexed exposures

The classical technique for HDR image acquisition is to capture a set of dif-
ferently exposed images one after the other [61, 160, 164]. Without additional
processing, however, the capturing is limited to static scenes, and results in
ghosting artifacts if this is not the case. In order to handle small amounts of cam-
era shake/motion, the exposures need to be globally registered [165, 238, 259].
For dynamic scenes the problem is more difficult, requiring registration on
a local level. There is a large body of work on HDR image registration and
deghosting, facilitating HDR exposure bracketing of dynamic scenes. For ex-
ample, for per-pixel registration optical flow can be used [108, 125, 280], or
patch-based approaches [118, 224]. For a thorough survey and categorization,
we refer to the state-of-the-art report by Tursun et al. [244].

A number of attempts have been made for reconstructing HDR video using
temporal exposure multiplexing. The typical scenario is to use two different
exposure times and alternate between these for every frame. Subsequently, the
inter-frame correspondences are estimated on a local level, so that information
from multiple exposures can be provided for reconstruction in each frame. The
first method to exploit this scheme was proposed by Kang et al. [127], where op-
tical flow is employed for registration of the different exposures. More recently,
Mangiat and Gibson [163] demonstrated improved reconstruction performance
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by using block-based motion estimation followed by motion refinement and
cross-bilateral filtering. Kalantari et al. [126] combined optical flow with a
patch-based matching strategy, which improves reconstruction in regions of fast
motion as compared to the previous methods.

2.2.2 Spatially multiplexed exposures

In order to overcome the inherent problems with a time multiplexed HDR
capturing method, different exposures can be captured in the same shot by
varying the exposure spatially. All such techniques can potentially be used for
HDR video capturing, since dynamic scenes can be recorded without the need
for complicated local registration of the different exposures.

Multiple exposures can be captured simultaneously in three levels of spatial
separation. First, multiple separate camera devices can be used to capture the
same scene. Second, multiple sensors can capture the scene through the same
single lens. Third, different exposures can be interleaved, or spatially encoded
in some other arrangement, on the same single sensor. A number of techniques
within these categories are described next.

Multi-camera methods: Combining images from multiple separate cameras
provides a relatively inexpensive alternative for spatial exposure multiplexing.
For example, there are a number of methods that exploit stereo camera capturing
rigs, where the two cameras are set to capture different exposures [31, 156, 235,
239]. The images require reliable stereo matching in order to align the separated
views of the cameras. This problem can be overcome by aligning the camera
views through an external beam-splitter. Fröhlich et al. [95] captured a wide
variety of HDR videos with such setup using two Arri Alexa cameras, achieving
a dynamic range of up to 18 stops. A more general framework was presented by
McGuire et al. [180], which can capture a unified view with multiple cameras
using an optical splitting tree.

Multi-sensor methods: Having multiple cameras with separate optics may
be difficult in terms of calibration, where all lenses need to be synchronized
for equal view, focus, etc. Moreover, the systems tend to be very bulky and
difficult to maneuver. In order to alleviate these problems, the beam-splitter
can be placed behind a single lens in a single camera body, where the light is
split onto multiple sensors [111]. By restricting light using different ND filters,
this setup can capture a stack of exposure bracketed images for HDR image
reconstruction [2, 3, 254]. In more recent work, the multi-sensor concept has
been extended to provide versatile HDR video camera prototypes [48, 136, 236],
as explained in Section 2.1.
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Single-sensor methods: While a multi-sensor HDR camera presents an effec-
tive alternative for capturing multiple exposures in a single shot, the custom-
built systems are expensive. For this reason, a high diversity of techniques have
been explored for capturing multiple exposures simultaneously on a single sen-
sor. Some of the techniques require custom-built sensor add-ons, while others
can be implemented only with modification in camera software. In common
with the methods is that they can potentially be used by existing conventional
cameras. However, since multi-exposure information is captured within the
same sensor, the increased dynamic range comes at the price of lower resolution,
i.e. there is a trade-off between dynamic range and spatial resolution.

The first method for capturing spatially varying exposures in a conventional
sensor was presented by Nayar and Mitsunaga [190]. The spatial variations in
exposure are accomplished by means of an ND filter mask, where 4 different
levels of transmittance are interleaved in a regular pattern over the sensor. The
method was later extended to also include a color filter array for HDR color
acquisition [189], and by optimizing the particular exposure/color filter layout
[270]. Furthermore, there are examples where the layout of the filter mask has
been changed to non-regular patterns [4, 221], in order to alleviate problems
with interpolation aliasing artifacts. Serrano et al. [225] approached the problem
from a different standpoint. Instead of interpolating between spatially varying
exposures, the method uses a learned convolutional filter bank that can decode
exposure patterns with techniques in convolutional sparse coding. Furthermore,
an alternative to the per-pixel ND filter array arrangements is to use a beam-
splitter for partitioning incoming light onto different regions of the same sensor
[162]. The technique can be realized by an optical element that is inserted
between the lens and the camera body of a conventional DSLR camera, and by
using a different ND filter for each of the regions of the sensor.

All the above single-sensor techniques rely on ND filters, which inevitably
restrict some of the incident light on the sensor. Other techniques for accom-
plishing spatially varying exposures include per-row modification of the sensor
readout. This can be done in order to get rows of different exposure [104] or
gain [109, 110, 245] within the same shot. There are also more unconventional
techniques for encoding highlight information in an LDR image. Rouf et al.
[218] proposed a significantly different form of spatial encoding as compared to
per-pixel exposure or gain. The method uses a star filter for capturing, which
scatters highlights as one-dimensional streaks in a sparse set of directions. This
means that 1D techniques can be applied for decoding the information into one
LDR image without the scattered light and one image with recovered highlights.
The two images are subsequently combined into an HDR image.
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2.2.3 Single-exposure techniques

Single-exposure techniques attempt to extend the dynamic range without re-
quiring information from multiple exposures, nor special equipment or cap-
turing techniques. Hence, methods in this category can be applied to the vast
number of existing LDR images and video, facilitating their use in HDR ap-
plications. Single-exposure reconstruction can be separated into three distinct
sub-problems; decontouring, tone expansion, and reconstruction of under/over-
exposed image areas. Additionally, noise is also a highly relevant problem,
deteriorating information in the dark areas of the image. However, denoising
is a classical and well-researched image processing task [43, 44, 54], and not
specific to the single-exposure HDR imaging problem.

Decontouring: LDR pixels are almost exclusively encoded at 8 bits per color
channel. When expanding the dynamic range the quantization can potentially
reveal visible banding artifacts, viewed on an HDR display or by means of tone-
mapping. One method for alleviating the problem is to use a dithering based
method, which applies noise in order to conceal the artifacts. The dithering can
be performed either before [55] or after [5, 35] the quantization. These methods
are intended to conceal false contours at the same bit-depth as the input image.
In order to actually increase the bit-depth, there are a number of filtering based
methods [56, 150, 159, 229]. For example, the method proposed by Daly and
Feng [56] filters the image followed by quantization at the input bit-depth. The
difference between filtered and quantized image represents false contours and
is subtracted from the input image. Although bit-depth extension methods are
limited, they can increase the precision by around 1-2 bits.

Tone expansion: In order to map an LDR image to HDR, the camera response
function (CRF) needs to be inverted, expanding the dynamic range and mapping
the image tones to the linear domain. However, the most common goal for
single-exposure HDR techniques is to display LDR images on HDR monitors.
Given that the result of the tone expansion E is assessed on an HDR display, it
describes a composite mapping E = V ○ f −1, where f is the CRF and V represents
a tone-mapping operation for the particular HDR display. Furthermore, since
it is difficult to reconstruct highlights convincingly, the optimal mapping E
may be different than it would be if this information was available. A second
common goal is to use the LDR image in IBL. If highlight information is missing,
a global boost in brightness generally yields an IBL rendering that is preferred
over the otherwise too dark result. Consequently, tone expansion is, in general,
a different matter than the inversion of a CRF, and the optimal end result may
be very different from the true underlying HDR image.
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A method for expanding the dynamic range of LDR images is commonly
referred to as an inverse tone-mapping operator (iTMO), as introduced by Banterle
et al. [24, 25]. However, dynamic range expansion can be traced back to a simple
trick presented by Landis [143], for the purpose of using LDR images in IBL.
For display of LDR images on HDR displays, a number of perceptual studies
have pointed to the fact that a global mapping may be preferred, either using a
gamma function [36, 177, 178] or a linear scaling [8, 226].

Under/over-exposure reconstruction: The most difficult problem in inferring
an HDR image from a single-exposed image is how to recover lost information
in under- and over-exposed areas. Generally, over-exposure is the most signif-
icant problem, as the majority of HDR applications require the bright image
information but not the dark. A number of iTMOs attempt to alleviate the
problem by applying separate expansion to pixels that are classified as satu-
rated. For example, Meylan et al. [182, 183] applied different linear functions
in saturated and non-saturated image areas. Banterle et al. [24, 25] used the
median cut algorithm in order to derive an expand map for boosting highlights.
The method was also extended for video processing and with cross-bilateral
filtering of the expand map [26]. Another expand map method was presented
by Rempel et al. [214], which simplifies the estimation using a Gaussian filter
for real-time performance. It was later modified by Kuo et al. for improved
robustness [142]. A more recent similar method was described by Kovaleski
and Oliveira [132], using a cross-bilateral expand map [131]. The method aims
at operating in a wider range of exposures than previous iTMOs. A different
approach was proposed by Didyk et al. [64], where a semi-manual classifier
separates the image into diffuse, reflections, and light sources. The diffuse
part is left untouched, while the other layers are expanded to a wider dynamic
range. As compared to the global iTMOs, which expands the dynamic range
without explicit consideration of saturated regions, these highlight boosting
methods are expected to generate results that more closely resembles the true
HDR image. This was also confirmed in a pair-wise comparison experiment
performed by Banterle et al. on an HDR display [27]. However, the boosting is
a very crude approximation of luminance, and it cannot reconstruct details and
colors in saturated image regions.

A second category of methods for correcting over-exposure aims at reconstruct-
ing colors and details given statistics of nearby non-saturated pixels. Zhang
and Brainard [278] applied Bayesian estimation in order to infer the values of
1-2 saturated color channels of a pixel, given information of the non-saturated
channel(s) of the same pixel. Masood et al. [179] extended to use color channel
ratios in a neighborhood of the pixel being reconstructed. Furthermore, Guo
et al. [105] and Xu et al. [267] also considered reconstruction of pixels with all
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color channels saturated, and the methods can handle larger areas of missing
information. However, all these exposure correction methods are limited in
that the dynamic range is extended only by a small amount. High-intensity
highlights are not considered, which are essential for HDR reconstruction.

Finally, there are some methods that aim at reconstructing both high intensities,
colors, and details of saturated image regions. The method proposed by Wang
et al. [255] separates the input image into a high-frequency texture/reflectance
layer and a low-frequency illumination layer. Saturated regions in the texture
layer are reconstructed by transferring – or inpainting – from similar textured
areas in the image. The illumination is approximated by fitting Gaussian lobes
to the saturated areas, similar to how highlight boosting is performed in iTMOs.
While convincing results can be achieved, the method is limited to textured areas
and it requires some manual interaction. More recently, a number of methods
employ deep learning strategies for single-exposure HDR image reconstruction
[85, 151, 176, 276], including the method of Paper E [83]. The paper is discussed
in Chapter 5 and related to the other deep learning reconstruction methods in
Section 5.2. In summary, the method from Paper E can predict high-quality high
intensities, colors, and details in a large range of situations, and in a completely
automatic fashion. It uses a convolutional neural network (CNN) that has been
specifically designed considering the characteristics of HDR data, and which is
trained on a large augmented database of HDR images. The reconstructions
show a substantial improvement in quality over earlier methods and enables the
use of LDR images in a wider range of HDR applications than was previously
possible.

2.3 HDR distribution

In order to store and distribute HDR images and video, either custom encoding
schemes need to be applied or the display-referred HDR pixels can be adapted
for encoding with existing algorithms for LDR images/video. When it comes
to static images, there are a few floating point pixel formats that have been
developed particularly for HDR data. Inter-frame encoding of HDR video, on
the other hand, as well as backward-compatible encoding schemes for static
images, rely on the use of modifications or extensions of existing codecs for
LDR data.

2.3.1 Floating point HDR pixel formats

A natural goal for an HDR image format is to store the linear pixel values with
floating point precision, e.g. in the RGB color space. However, assuming 32-bit
floating numbers, this means that 96 bits per pixel (bpp) have to be used in order
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to encode colors. For a 10 megapixel image, this amounts to a file size of 120
MB with no compression applied, which in many situations is unfeasible. For
this reason, floating point HDR image formats use reduced pixel descriptions.
The two most widely used formats are Radiance RGBE and OpenEXR.

The HDR pixel format used by the Radiance renderer [262] employs the RGBE
pixel description introduced by Ward [257]. It stores RGB values with 32 bits;
8 bits mantissa for each color channel, plus an 8-bit common exponent. The
common exponent makes the format limited in terms of color saturation, i.e.
when there are large differences between color channels. This means that
highly saturated colors outside the sRGB color gamut cannot be represented.
In order to alleviate the problem, there is also an option to use the XYZE pixel
description, which employs the same coding scheme but in the CIE XYZ color
space. The final bit stream is stored uncompressed or by means of run-length
encoding, which means that the format is lossless up to the particular precision
of the pixel representation.

The OpenEXR (EXtended Range) HDR image format [37] was developed by
Industrial Light & Magic (ILM). It was released as an open source library in
2003. The format has gained a widespread use, where it for example often is
employed in the visual effects industry and in commercial software. Pixels are
typically stored with “half” floats, which use 16 bits for each color channel. The
bits are allocated for 1 sign bit, 5 exponent bits, and 10 mantissa bits. There
are also options for 32-bit floats and 32-bit integers. The pixels can be encoded
both by lossy and lossless compression schemes. For example, with ILM’s PIZ
format, there is a lossless compression to around 35-55% of the uncompressed
size, employing Huffman encoding of a wavelet transformed image [124].

As an example of the performances of the two formats, we compute the mean
bit-rate of encoding the entire Stuttgart HDR video dataset captured by Fröhlich
et al. [95]. This represents a diverse set of scenes in 33 HDR video sequences,
with various amount of noise. Thus, it is a good representation of HDR images
in general. With RGBE and run-length encoding, the mean bit-rate is 26.52
bpp. OpenEXR achieves a bit-rate of 23.78 bpp, employing the PIZ wavelet
encoding. For this example, OpenEXR reduces the size to 49.5% as compared to
uncompressed pixels. This means that although the pixel format of OpenEXR
is larger (48 bits) than RGBE (32 bits), the encoding scheme allows for better
compression performance.

2.3.2 HDR encoding using LDR formats

While the floating point formats can distribute high-quality HDR pixels, the
file size is still large compared to common LDR formats. This is especially
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problematic for video sequences, as these HDR formats do not explore inter-
frame correlations. For example, with OpenEXR a 1-minute sequence at full
HD 2K resolution (1920×1080 pixels) and 24 frames/second (fps) would require
around 8.8 GB with the PIZ encoding. While this can be accepted in the industry,
where quality is a high priority, it is not feasible e.g. for HDR TV streaming. In
order to provide viable solutions for lossy encoding of HDR images and video,
a number of different techniques have been suggested for encoding HDR data
using existing LDR codecs. There are several benefits to this strategy. First,
LDR codecs have evolved for a long time and are today very efficient. Second,
by employing an LDR codec it is easy to enable support of HDR material in
existing software, and also to allow for backward-compatibility. Moreover, LDR
codecs rely on integer pixel representations, which allow for better compression
properties as compared to floating points.

Single-layer encoding: The most straightforward approach for adapting scene-
referred floating point HDR pixels for integer encoding is to transform the
luminance to a perceptually linear domain, using a so-called perceptual transfer
function (PTF) or electro-optical transfer function (EOTF). A subsequent round-
ing operation to the particular bit-depth of the LDR codec will then result in
quantization artifacts that are approximately perceptually uniformly distributed
across different luminance levels. The concept is related to gamma correction
for LDR images, which achieves a similar goal. However, gamma correction
is only a good approximation of the HVS response for a very limited range of
luminances. Stretching the gamma correction over a wide dynamic range will
result in that quantization artifacts are perceived as larger for lower luminance
levels. Another alternative is a logarithmic transformation, but this is only
a reasonable approximation for luminance levels within the photopic vision,
approximately above 1 cd/m2 (see Figure 1.2b), and will spend too many bits
on low luminance levels. For this reason, a number of PTFs have been proposed
that rely on psychophysical experiments. These functions have shapes that are
somewhere in-between the gamma and logarithmic mappings, see Figure 2.3.

The first example of HDR image encoding using an existing image file for-
mat was presented by Ward [263]. This is referred to as LogLuv and it is
implemented as an extension to the TIFF (Tagged Image File Format) library.
The pixel format is described with log-transformed luminance and CIE u’v’
perceptually linear chromaticity coordinates. It uses 8 bits for each chroma
channel, 15 bits for log luminance, and 1 sign bit, for a total of 32 bits. While
TIFF describes a number of different encoding schemes, the LogLuv format
is primarily intended for lossless encoding, as described in the baseline TIFF
specification. A similar method for the JPEG 2000 coding scheme was proposed
by Xu et al. [268]. However, this transforms RGB values to the log domain before
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Figure 2.3: The SMPTE ST-2084 standard perceptual transfer function [185], com-
pared to log, gamma, and linear mappings. The functions map physical luminance
in the range 0.005 - 10,000 cd/m2 to integer luma values for encoding at 11 bits. The
gamma function has been stretched to cover the same range of luminance.

encoding each channel with the 16-bit integer format provided by JPEG 2000.
Compared to other methods, the performance of HDR-JPEG 2000 shows advan-
tages for lossy encoding at low bit-rates. In 2009, JPEG XR was made available,
which similarly to JPEG 2000 provides a range of different pixel formats and
bit-depths that can facilitate HDR image encoding [70]. However, compared to
JPEG 2000 the new standard allows for lower computational complexity and
better flexibility.

Mantiuk et al. [166] demonstrated the first method for inter-frame encoding
of HDR video. It is also the first to derive a PTF based on experiments on the
sensitivity of the HVS. The PTF is formulated to ensure that quantization errors
are below the visibility threshold, given the experimental data from Ferwerda
et al. [93]. The pixel format uses the u’v’ color space, storing chroma at 8
bits/channel, while luminance is mapped to 11 bits. This is enough to encode
the full range of perceivable luminances without visible quantization artifacts.
The encoding is implemented by modifying the Xvid MPEG-4 codec so that
it can encode at a higher bit-depth. Additionally, a modification is made for
encoding HDR edge information separately, in order to avoid artifacts around
high contrast edges in synthetic HDR video sequences.

With the introduction and rapid growth in popularity of HDR TV displays,
during the last couple of years there has been a lot of activity around HDR
video encoding. Already with the transition from high definition TV (HDTV) to
ultra HDTV, the ITU-R recommendation BT.2020 was introduced for describing
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a wider color gamut than sRGB (ITU-R BT.709). For HDR, the focus has been on
techniques for single-layer encoding, where PTFs/EOTFs have been standard-
ized through the perceptual quantizer (PQ) function (SMPTE ST-2084) and the
Hybrid Log-Gamma (HLG). These are now part of the ITU-R recommendation
BT.2100, which specifically concerns HDR video distribution. The PQ function
[185] is derived in a similar way as the PTF by Mantiuk et al. [166], but using
contrast sensitivity data by Barten [30]. It is fitted to an analytic function and
describes a mapping for luminance values up to 10,000 cd/m2. It has also
been verified that PQ results in good perceptual uniformity [41] and encoding
performance [79]. The HLG function is a combination of a gamma function
and a log mapping. For low luminance values the gamma function is a good
representation of perceptual linearity, similar to gamma correction for LDR
images, and for larger values, in the photopic vision, the log is representative
according to Weber-Fechner’s law [90]. With the gamma correction in the range
of LDR luminances, encoding with HLG makes it possible to directly display
the LDR range on a standard LDR monitor without depending on metadata.

The initiatives in HDR video encoding have resulted in a set of HDR video
formats that have gained widespread support by HDR TVs and streaming ser-
vices. The HDR10 format specifies luminance encoding using PQ (SMTP2084),
and CbCr color primaries according to recommendation ITU-R BT.2020. Both
luminance and color channels are encoded at 10 bits. The format from DolbyVi-
sion specifies encoding luminance at 12 bits, in order to support levels up to
10,000 cd/m2. Additionally, DolbyVision stores “dynamic” metadata that can
be used to adapt to a certain display device on a per-frame basis. HDR10 has
also been updated in order to support dynamic metadata, in the recent HDR10+
format. Furthermore, HLG has also been introduced as an independent spec-
ification, which is similar to HDR10 but using the HLG transfer function for
better compatibility with LDR displays.

While HDR10 and HDR10+ are open standard specifications, implementations
rely on proprietary codecs, e.g. employing the High Efficiency Video Coding
(HEVC) compression scheme. That is, HDR video distribution has not been
available on open source terms. In Paper D [79] a first open source HDR
video codec, Luma HDRv, is presented. It uses the PQ PTF and u’v’ chromatic-
ity coordinates, together with Google’s VP9 codec. These components were
demonstrated to give the best performance in a large-scale objective evaluation.
However, the software also supports other PTFs and color spaces, so that e.g.
HDR10 can be encoded/decoded. The evaluation and the codec are further
explained in Chapter 4.

Multi-layer encoding: Backward-compatibility for HDR image/video distri-
bution can be achieved by having two disjoint image streams; one with HDR



32 Chapter 2 ● Background

data and one with its LDR counterpart. However, since these are highly cor-
related, a large reduction in file size can be achieved by encoding the streams
together, so that the HDR data is decoded from the LDR component by incor-
porating a residual layer. For the encoding, the LDR stream can be provided
separately, or it can be computed within the encoding scheme using a tone-
mapping algorithm.

The first example of multi-layer image encoding for extending the dynamic
range was proposed by Spaulding [231], separating the HDR image into a tone-
mapped image and a residual layer. A readily available implementation capable
of a much higher dynamic range was provided by Ward and Simmons [260, 261],
with the JPEG-HDR extension to the JPEG coding scheme. The method stores a
tone-mapped image as a standard 8-bit JPEG, which is backward-compatible
with any JPEG decoder. However, a ratio image is provided in the JPEG
metadata tag, so that the original HDR image can be restored when the two
layers are multiplied. In a more recent effort, the JPEG XT standard has been
announced, with the intention of providing HDR encoding with JPEG in a
completely backward-compatible manner, using a two-layer layout [10].

For backward-compatible HDR video encoding, the first method was presented
by Mantiuk et al. [168]. It does not put any restrictions on how the LDR stream
is constructed, as LDR and HDR streams are provided separately to the encoder.
The two streams are then de-correlated by attempting to find a reconstruction
function that can predict the HDR pixels from the LDR counterparts. This
means that the residual of HDR and reconstructed LDR streams is kept to a
minimum. LDR and residual data are subsequently encoded using MPEG-4 and
give approximately a 30% increase in file size as compared to only encoding
the LDR data.

A number of succeeding methods attempt to improve on the layered HDR
image encoding strategy in various ways. For example, Okuda and Adami
[191] used an analytic function for reconstructing HDR from the LDR stream
before computing the residual, where parameters are chosen based on image
content. Lee and Kim [149] explored motion information between frames in
tone-mapping for the LDR stream. The LDR and residual streams are encoded
at different quality levels in order to improve the compression performance.
Based on a statistical model, Mai et al. [161] derived a tone-curve for the LDR
stream that is optimized for the best quality of the reconstructed HDR data.

While backward-compatibility is an important feature in transitioning to better
support for HDR data in general, the single-layer encoding approaches tend to
provide better rate-distortion performance [21, 187]. That is, single-layer HDR
encoding can provide higher quality for a given bit-rate.
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2.4 Tone-mapping

Methods for tone-mapping can reduce the dynamic range of HDR images,
for the purpose of display on a medium that is limited in its dynamic range,
including computer monitor, TV, smartphone, and printed paper. Strictly
speaking, tone-mapping can describe any transformation of image tones, but
the term is almost exclusively referring to a mapping from scene-referred HDR
tones to display-referred LDR pixels. The tone compression generally aims at
revealing information over a larger range of luminances than what is possible
with conventional LDR images, similarly to how the HVS operates.

Techniques for compressing the dynamic range of an image signal dates back
to the 1960s [192]. In the 1980s there were attempts at matching the appearance
between a real-world scene and an image displayed on a screen [184, 249]. In
the early 1990s, the problem was formally introduced in the computer graphics
community [241], for the purpose of displaying images generated by physically
based rendering methods. Subsequently, during the last 25 years tone-mapping
has been an active area of research, resulting in the development of many
hundreds of different methods.

2.4.1 Categorization

In order to distinguish between the large number of existing TMOs, they are
commonly grouped in different ways. The most general distinction is to classify
TMOs as either global or local operators. A global TMO applies the same
operation for all pixels, while a local can change the transformation spatially as
a function of a local neighborhood of pixels. Local TMOs can better preserve
local contrasts of the HDR image, but are generally computationally more
expensive and more prone to generate artifacts.

Another distinction can be made between TMOs that are only designed to
process static images and those that also are applicable for HDR video sequences.
The video TMOs use mechanisms for adapting the tone processing over time,
in order to avoid temporal artifacts such as ghosting and flickering.

Furthermore, a third categorization of TMOs considers the specific intent.
Although the tone-mapping algorithms take an HDR signal and compresses
the dynamic range to the limited range of a display device, the objective, or
intent, of this mapping may vary. The intent is decided upon how the quality
of the final tone-mapping should be evaluated. Following the categorization
introduced in Paper B, a natural differentiation can be made using three major
intents: visual system simulators (VSS), best subjective quality (BSQ) operators,
and scene reproduction (SRP) operators.
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Visual system simulator (VSS): One of the most natural objectives of a TMO
is to attempt to mimic the capabilities of the HVS. Since the HVS can register a
higher dynamic range than a conventional camera, this means that an increased
amount of visual information is made visible as compared to a typical LDR
image. It also means that the deficiencies of the HVS should be simulated,
including loss of acuity, glare, and decreased color saturation in low light con-
ditions. The optimal result of a VSS is the image that minimizes the perceived
difference when comparing the tone-mapped image to the original captured
scene. However, there may also be features for simulating different vision
impairments, such as age-dependent factors and color blindness, which do not
improve the perceptual similarity, but which can demonstrate how the image
may be perceived by an HVS with disabilities.

One of the first VSS tone-mapping algorithms was presented by Ferwerda
et al. [93]. It models the adaptation mechanisms of the HVS, based on a series
of psychophysical experiments. Pattanaik et al. proposed one of the most
comprehensive perceptual models for tone-mapping [198]. It uses a multiscale
representation of luminance, detail, and color processing of the HVS, and it
accounts for both threshold and supra-threshold perception. In subsequent
work, Pattanaik et al. combined adaptation and appearance models in order
to simulate the response of the captured HDR scene [199]. By inverting the
models, the response can be mapped to an LDR display device. A similar
concept was used by Ledda et al., but on a local – per-pixel – level of the image
[145]. Furthermore, Irawan et al. extended the adaptation modeling to also
include the state of mal-adaptation of the HVS [121], thus not assuming that
the HVS is perfectly adapted to the background luminance level. The concept
of mal-adaptation for tone-mapping was further extended by Pajak et al. [193],
in order to work on a local level.

VSS methods are most often based on data from psychophysical experiments,
but there are also examples where actual quantitative measurements are used.
For example, van Hateren employed a model that is built from measurements
performed on the retina of macaques [250]. Moreover, there are also VSS meth-
ods that model the actual HVS components instead of its high-level behavior.
One example is the TMO proposed by Meylan et al. [183], which makes use of
a model that accounts for low-level processing in the retina. The method was
extended for HDR video tone-mapping by Benoit et al. [33].

Best subjective quality (BSQ) operator: A common objective for tone-mapping
is to generate the image that is most preferred upon visual inspection. That is,
the image with highest subjective quality without comparing to the reference
HDR image. Compared to the VSS category, this often means that abilities
which are superior to the HVS are favored, such as increased contrast, sharpness,
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details, and color saturation, as well as a larger compression of the dynamic
range. However, depending on the particular application, and the individual
that is judging the result, the tone-mapping may be very different. The intent
can be established in closer terms, e.g. to better comply with a specific artistic
goal.

There is a large range of TMOs that qualify as BSQ operators, from the first
work within tone-mapping [51, 91, 208, 220], to some of the most frequently
appearing operators in the literature [68, 73, 89, 210]. Also, BSQ tone-mapping
examples often appear in connection to presentations of novel edge-aware
filtering techniques [14, 52, 73, 87, 113, 195], in order to provide a common
application for demonstrating the filtering performance.

Scene reproduction (SRP) operator: A numerical comparison of the overall
perceptual differences between a tone-mapped image and the reference input
HDR image is complex. Instead, a TMO can focus on minimizing the difference
in terms of an isolated image attribute. That is, an SRP operator attempts to
make the tone-mapping invariant to this certain attribute, in order to preserve its
original appearance. The attribute can, for example, be the relative brightness,
contrast, color, or temporal behavior. However, while optimizing for one
particular attribute, the final image may still deviate substantially from the
reference HDR image in terms of other attributes.

With the introduction of tone-mapping to the computer graphics community,
Tumblin and Rushmeier proposed a method for preserving the apparent, or
perceived, brightness of the HDR image [241]. Ward attempted to preserve the
contrasts from the HDR image [258], using a global scaling factor. However,
as this method in essence performs an automatic exposure adjustment, it also
means that much of the visual information is lost in dark and saturated image
areas. Another approach is to aim at minimizing the changes in contrasts,
given that the dynamic range is compressed to a certain display device [77, 170].
Other SRP goals include, for example, preservation of visibility [264], perceived
lightness [133], color appearance [138, 212], and temporal consistency [38, 107].

2.4.2 Tone-mapping pipeline

A tone-mapping method can be designed in many ways. However, the typical
procedure is displayed in Figure 2.4. There are four distinct steps involved,
which can be altered to accomplish different intents:

1. Pre-processing: The scene-referred HDR image is first transformed into a
format that is suitable for the tone compression. The transformation may vary
depending on how the TMO is constructed. For example, there are examples of
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Figure 2.4: Typical pipeline for performing tone-mapping. While the edge-
preserving filtering enables local processing, the pipeline can also describe a global
tone-mapping by substituting this with the identity mapping.

methods that perform the compression in the gradient [89, 148, 254] or contrast
[167] domain. Also, a number of methods attempt to model the appearance
of colors [6, 86, 129, 138, 198, 212]. However, the most common method is to
only consider luminance, and restore colors after this has been compressed
[220]. Furthermore, in most cases tone-mapping is not performed on linear
luminances, but in the log domain. The reason is that in a large range of
luminances the HVS has a close to logarithmic response, according to the
Weber-Fechner law [90]. Therefore, operating on log luminances often makes
for a simpler problem description due to the increased perceptual linearity.
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2. Edge-preserving filtering: Local processing makes it possible to achieve
similar or superior capabilities as the local adaptation mechanisms of the HVS.
However, instead of performing a per-pixel tone-mapping depending on a local
neighborhood, the processing is usually decomposed by means of a low-pass
filter. The filtered image represents the base layer B, which then is used in order
to extract a detail layer D from the HDR luminance L. In the log domain the
details are separated from subtracting the base layer, D = L − B, as illustrated in
Figure 2.4. While the dynamic range of the base layer is compressed, the detail
layer is by-passed this step and added back after the tone compression. In this
way, local contrast and details are preserved. This methodology is analogous
to separating the image into a product of illumination and reflectance layers
[29, 116], which is similar to how the HVS processes a scene. It can discriminate
reflectance over a wide range of luminances while disregarding the illumination
[98]. The reflectance is of low dynamic range and contains image details and
textures, while the illumination is responsible for the high dynamic range and
describes global variations within the scene. Therefore, it makes intuitive sense
to maintain the reflectance unmodified while only compressing the illumination.

For decomposing the image into base and detail layers, the choice of the specific
filter used is critical in order to avoid visible artifacts. For example, some
first attempts at local tone-mapping make use of Gaussian low-pass filters
[51, 123, 208], which assumes that there are no sharp boundaries within the
scene. If this is not the case, there will be haloing artifacts around the sharp
image features. For this reason, a range of different edge-aware filters has been
demonstrated in connection to tone-mapping. Some have been presented solely
for the purpose of tone-mapping, e.g. early attempts that employ multi-scale
structures [12, 198, 210, 242], as well as more recent techniques [20, 77]. There
are also many multi-purpose edge-aware filters that have been used in local
tone-mapping [14, 87, 88, 113, 195, 234]. One of the most frequently appearing
filters in the tone-mapping literature is the bilateral filter [15, 237]. The idea of
local tone-mapping using a bilateral kernel was first discussed by DiCarlo and
Wandell [63], and later independently demonstrated in different formulations
by Durand and Dorsey [73] and Pattanaik and Yee [197]. The filter allows for a
simple formulation, and can also be accelerated in different ways for real-time
performance [1, 50, 194, 265, 269]. However, on smooth high-contrast edges
the anisotropic filter kernels are biased towards one side of the edge. This can
generate gradient reversals in the extracted detail layer, which cause visible
banding artifacts [22, 73, 77]. The problem can be alleviated at the expense of
added computational complexity [22, 52]. For the TMO presented in Paper C
[77], we introduce an iterative and isotropic simplification of the bilateral filter.
The technique is both fast and it overcomes the problems with banding artifacts.
The filter is further explained in Section 3.3.
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3. Tone-curve: A tone-curve V describes a mapping V ∶ L → T that takes the
input relative HDR luminance L and transforms it to a compressed domain of
LDR luminance values T, as shown in Figure 2.5. To avoid inconsistencies in the
output luminance levels, V should be a monotonic nondecreasing function. The
simplest form is a linear function, performing a scaling – or exposure correction
– of luminance levels [258]. A linear scaling in the log domain corresponds to an
exponential function in the linear domain, which can be used to compress the
dynamic range [68, 91, 241]. Moreover, one of the most frequently occurring
functions in the tone-mapping literature is a logistic, or sigmoidal, function,

V(L) = Ln

Ln + σn . (2.1)

The parameter n can be used to control the slope of the function, and σ shifts
it along the horizontal axis. The sigmoid transforms all luminance levels to
the range [0, 1], and it performs a similar compressive mapping as is done by
biological visual systems [188]. The first use within tone-mapping can be found
in the method by Schlick [220], and a few years later Pattanaik et al. introduced
the function to describe an approximation of the photo-receptor response curve
[198].

Image statistics are often accounted for in the aforementioned tone-curves, in
order to adapt to the overall luminance level. For example, σ in Equation 2.1
can be formulated using the image mean or median. However, for an improved
distribution of tone-mapped values the shape of the tone-curve can be controlled
by means of the image histogram [69, 170, 203, 264], similarly as in histogram
equalization. For the TMO presented in Paper C [77], we use the image
histogram in order to minimize the differences in contrasts between input and
tone-mapped images. The tone-curve is further explained in Section 3.3.

4. Post-processing: As a final step in the tone-mapping pipeline, a number
of post-processing operations can be applied. For example, the colors can be
restored from the original image. However, the re-coloring can make for a
visible increase in color saturation, especially when the tone-mapping performs
a very large compression of the dynamic range. The problem can be alleviated
by incorporating a heuristic desaturation operation in the re-coloring step [243],

c = (C
L
)

s
T. (2.2)

Here, T is the tone-mapped luminance, T = V(L), while c and C are tone-
mapped and input color channels, respectively. The amount of color saturation
is specified by the exponent s, where a value s < 1 accomplishes a desaturation.
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Figure 2.5: Different types of tone-curves. These map linear scene-referred lu-
minances to a limited dynamic range. The tone-mapping should be followed by a
display adaptation for mapping to a display-referred format, e.g. by means of gamma
correction. The histogram based tone-curve is derived using the method in Paper C.
A tone-curve that performs histogram equalization in the log domain is also included
for reference. The histogram used is from the input HDR image in Figure 2.4.

There are also attempts at characterizing the behavior of the color saturation in
tone-mapping [11, 171, 204], for automatic calibration of the required desatura-
tion.

After color processing, the final step is to prepare the tone-mapped image for
display, mapping it to a display-referred format. This can be accomplished
e.g. by means of a gamma correction. Display characteristics and viewing
environment can also be accounted for using the display model in Equation 1.1.

2.4.3 Temporal aspects

For HDR video sequences there are some critical differences that need to be
accounted for by a tone-mapping algorithm, as compared to tone-mapping of
static HDR images. The most prominent difference is that temporal coherence
needs to be maintained, both globally and locally. Computational complexity
also becomes an important aspect, as large amounts of data need processing.
Moreover, there are differences caused by the different capturing techniques.
HDR video is, for example, more prone to carry visible amounts of image noise.

Non-trivial TMOs rely on image statistics, so that the tone-curve V(Lp, S(L))
applied to a pixel at position p depends both on the pixel value Lp and on some
measure S(L) over the whole image. Many different statistics can be used, such
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as the image mean, median, or histogram. In an HDR video sequence, these
can change rapidly from frame to frame, which can be perceived as flickering
artifacts in the final tone-mapped output. To prevent this from happening, a
low-pass filter can be applied to S(L) over time. This can be done e.g. using an
exponentially decaying filter kernel over a set of past frames [72, 102, 127, 209],
or equivalently using a leaky integrator. In order to prevent flickering artifacts
in a local tone-mapping algorithm, local image statistics can be filtered over time
[145]. However, this may lead to visible ghosting artifacts. Another alternative
is to filter the final pixel values [33, 250], which promotes temporal coherency
at the cost of introducing motion blur. The per-pixel filtering can also employ
an edge-preserving filter [32], so that filtering is restricted at large temporal
gradients. Finally, the local filtering can be performed over motion compensated
temporal pixels, using block matching [148] or optical flow [20].

There are also techniques for imposing temporal coherence in tone-mapping as
a post-processing step, alleviating flickering artifacts of arbitrary global TMOs
[38, 39, 107]. For local coherence, motion estimation by means of e.g. optical
flow can be utilized, as suggested in methods for imposing temporal coherence
of different types of video processing operations [42, 66, 144].

Classically, HDR images have been produced from either CGI or exposure
bracketing with little restriction on the exposure time. Consequently, image
noise has not been a major problem, especially when noise is considered in
the HDR reconstruction [7, 103, 135]. For HDR video, on the other hand, the
capturing methods are more susceptible to generating noise. Since TMOs use
non-linear mappings, increasing the intensities of dark pixels while doing the
opposite for bright pixels, the visibility of the noise can be amplified. With
denoising methods [44, 54], or per-pixel filtering for temporal coherence [20, 32],
the amount of noise can be reduced. However, this may be expensive, and it is
difficult to remove all noise without introducing artifacts. Another approach is
to control the shape of the tone-curve based on an estimation of the image noise,
in order to not reveal the noise in the tone-mapping [77, 154]. This concept was
introduced in Paper C [77] and will be explained in Section 3.3.

A thorough review of tone-mapping for HDR video is provided in Paper A [84],
including brief descriptions and categorizations of 26 video TMOs from the
literature.

2.4.4 Evaluation

For many image processing operations, assessment of the result can be made
from an averaged direct pixel-wise comparison to a reference image, e.g. by
means of the root-mean-square error (RMSE) or the peak signal-to-noise ratio (PSNR).
Although such measures are not expected to be linearly correlated with the
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perceived differences, they provide direct insight into the obtained performance.
There are also measures that better agree with perceived visual quality, such
as the multi-scale structural similarity (MS-SSIM) index [256] or the HDR visual
difference predictor (HDR-VDP-2) [172]. For tone-mapping, however, these mea-
sures cannot be used directly, as a reference image is not available. Therefore,
an important aspect within tone-mapping is strategies for quality evaluation, in
order to enable comparisons between different TMOs.

There are some methods that have been developed for objective quality as-
sessment of TMOs, comparing the tone-mapped image to the HDR source
[17, 46, 271], or making a similar comparison with video sequences [19, 272].
However, while these measures have been demonstrated to correlate with
subjective evaluations, the heuristics employed cannot completely replace a
human’s high-level judgments, which are based on both long-term memory
and low-level visual information processed by the HVS.

A number of studies have been conducted in order to evaluate the subjective
quality of tone-mapping, attempting to compare different TMOs against each
other. In performing such study, there are a couple of possible strategies for
reference/non-reference comparison of the tone-mapping results, as illustrated
in Figure 2.6:

1. The most straightforward strategy is to evaluate by only displaying tone-
mapped images, in a non-reference setup. This is probably also most true to
how the images are to be viewed in the end. For these reasons, non-reference
evaluations have been employed most often, both for tone-mapped images
[8, 13, 47, 62, 67, 137, 274] and video sequences [75, 201].

2. Another strategy is to make comparisons to the real-world scene. This is a
natural setup and it directly tests one of the main intents of tone mapping,
namely fidelity with reality. However, it is challenging to execute. The
images differ not only in dynamic range, but also in depth cues, field of view,
colors, etc. Despite these differences, a number of studies use this setup
[13, 252, 273, 274], and some have also demonstrated correlations between
reference and non-reference evaluations [47, 139].

3. A third strategy is to compare the tone-mapped image to a reference dis-
played on an HDR monitor [140, 146, 181]. Although the HDR display also
has restrictions as compared to the real-world scene, it provides a more
well-controlled reference.

4. Finally, comparison of isolated perceptual attributes is also possible. It can be
realized e.g. by means of magnitude estimation methods [233], where subjects
judge the magnitude of a certain stimulus. However, more complex attributes
may be difficult to compare, and an overall match in image appearance is
not guaranteed from a limited set of measurements.
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Figure 2.6: Different methods for evaluating the quality of tone-mapping. 1.)
Non-reference perceptual comparison, assessing fidelity with memorized scene or the
subjective quality. 2.) Direct perceptual comparison to the physical scene, assessing
fidelity with reality. 3.) Perceptual comparison with HDR display, assessing fidelity
with HDR reproduction. 4.) Perceptual comparison in terms of isolated image
attributes, assessing the appearance match.

The outcome of a comparison study is also dependent on a range of additional
parameters. In a non-reference setup, a critical parameter is the particular
criteria specified for making a comparison. For example, different results can
be expected if asking to assess the subjective quality as compared to fidelity
with memorized scene. Another deciding factor is how parameters of the TMOs
are calibrated. For the sake of simplicity, a common solution is to use default
parameters. However, with tweaking the tone-mapping quality can potentially
be improved to better agree with a certain intent [76, 273]. Moreover, how
subjects perform the judgments may also affect the result. Assessing quality by
means of e.g. rating, ranking or pair-wise comparisons can impact on precision
and length of the experiment. Nevertheless, the results of the different strategies
are expected to be correlated [47, 139, 174].
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While most evaluations concern assessment of tone-mapped static images, a few
more recent studies particularly focus on video [75, 181, 201]. In Paper B [75] we
report on one of the first evaluations of video TMOs. This reveals a number of
unsolved challenges specific to tone-mapping of video. Furthermore, in Paper A
[84] a quantitative assessment is performed for a number of video TMOs. This
is not intended to deduce which operator is “best” or most preferred. Instead,
it tabulates the individual strengths and weaknesses in terms of a number of
important attributes, indicating which TMO can be expected to show the least
amount of artifacts. The evaluations are further explained in Chapter 3.

2.5 HDR displays

A number of research prototypes have been presented for supporting display of
HDR images and video, with little compromise of the dynamic range. These
have led to a smaller set of professional devices with very high peak brightness.
Furthermore, the last couple of years has seen a rapid growth in the number of
commercial TV devices with increased brightness and dynamic range, which
can support HDR encoded material. There will always be restrictions of displays
though, in terms of e.g. brightness, black level, and color gamut, so that tone-
mapping is required in order to map the HDR stream to the specific display.
However, with HDR displays a much smaller compression of the dynamic range
is required.

2.5.1 Professional HDR display devices

The most common technique for achieving the brightness required for display
of HDR imagery is by means of dual modulation. A liquid crystal display (LCD)
panel is back-lit by a high-intensity light array that can be spatially controlled.
The LCD display modulates the high intensities by displaying a compensation
image, effectively performing an optical multiplication of the independent
images. Typically 8-bit precision is used for both images, which means that
the total bit-depth is doubled. The technique was originally proposed by
Seetzen et al. [222, 223], with two different prototypes. One uses a digital
light processing (DLP) projector back-light and achieves a peak luminance of
2,700 cd/m2, while the other demonstrates a more versatile solution using a
low-resolution array of individually controllable light emitting diodes (LEDs).
The LED-based display can deliver a maximum intensity of 8,500 cd/m2 and a
dynamic range above 200,000:1, but it requires more extensive pre-processing
for decomposing the HDR image into back-light and compensation images.
Since the low-resolution LED array depicts a smoothly varying image, the
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compensation image needs to account for this around sharp features, in order
to avoid bleeding/blooming artifacts in the displayed HDR image.

For research purposes, a number of prototypes have been built following the
technique introduced by Seetzen et al. Most use the projector based setup
[92, 253], which is more straightforward to build. An HDR projector has also
been demonstrated, by Damber et al. [57], which utilizes dual modulation
within the projector in order to lower the black level substantially as compared
to a conventional projector. However, the peak brightness is still limited. In
more recent work, Damberg et al. presented a light steering projection system
[58], which can steer light away from dark to bright image areas. This means
that although the brightness of a full white image is still limited, when the
image only contains smaller highlights these can be boosted to a large extent.
Since natural images often have this property, with an intensity distribution
that has small values towards high luminances, the steering projection could
potentially be an important concept in future HDR projector systems.

The dual modulation prototypes by Seetzen et al. were developed on and real-
ized in 2005 by Brightside (formerly SunnyBrook Technologies). For example,
the DR37-P is back-lit by an LED array and can reach a brightness of 4,000
cd/m2, and the SBT1.3 uses a projector for back-lighting and has a peak lumi-
nance of 2,700 cd/m2. In 2007 Brightside was acquired by Dolby Laboratories,
and production of these devices was terminated. The technology was later used
in the Dolby Pulsar reference monitor, also with a peak brightness of 4,000
cd/m2, and in the HDR47 series by Italian electronics company Sim2. The latest
model, HDR47ES6MB, is specified with 6,000 cd/m2 peak luminance. The most
recent news to the top-performing segment of HDR displays is Sony’s prototype
showcased at CES 2018 [230]. The 85-inch device features 8K resolution and
allegedly it can reach a peak brightness of 10,000 cd/m2.

2.5.2 HDR TVs

We are today in a position where ultra HD is the norm within the consumer TV
market, with most TV devices specified for 4K resolution. Now, 8K resolution
is expected to appear in a very near future. From this previous trend in
maximizing spatial information, the current focus is on expanding in the
intensity domain. TVs with HDR support is a new segment in the TV industry,
which has seen a large development in the last few years. The development
focuses on increasing peak brightness, and improving techniques for local
dimming to achieve better dynamic range. Moreover, a standardization on the
HDR format is currently ongoing, see Section 2.3.

Most HDR TVs use the same principle as the professional – high performance
– HDR displays, with back-light modulation for local dimming. However, the
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back-lighting is less bright and not as precise. The most common technique is
to utilize LCD modulation with back-light provided from LEDs mounted on
the edges of the display panel. This allows for cheaper and thinner construction.
The light from the LEDs is reflected from the rear by means of a set of guides.
A rough local control can be achieved for spatially varying dimming in order
to increase the dynamic range, but blooming can be a problem. There are
also more high-end devices with rear-mounted LED arrays, which can achieve
better local control. However, in contrast to the professional HDR displays, the
LEDs are in general not possible to control on a per-unit level, but instead local
dimming is provided through a set of different zones of LEDs. Currently, in
terms of peak brightness the highest performing LCD HDR TVs can approach –
or even exceed – 1,500 cd/m2, such as the edge-lit Sony X930E or the full-array
Sony Z9D [219].

Another promising technique is organic LED (OLED) display panels, which
do not require back-lighting. Instead, each pixel in an electro-luminescent
layer is individually controllable in terms of emitted light, and can be switched
off to achieve a 0 black level. Although this makes for a very high dynamic
range, OLED displays cannot yet match the LCD based displays in terms of
brightness. Because of this, the dynamic range is very sensitive to ambient
lighting. However, the technique is progressing, for example with the 5 OLED
TVs revealed by LG at CES 2017. These provide 4K resolution and increased
brightness as compared to previous OLED displays, peaking around 700 cd/m2

[219]. Furthermore, there are other single-modulation techniques emerging,
such as micro LED (mLED or µLED) display panels. These use individually
controllable micro LEDs for each pixel, which potentially can allow for higher
brightness than OLED while still having 0 black level.

Clearly, on the consumer market there is an ongoing transition towards HDR
material and HDR displays. The future will see improved techniques for back-
lighting and local dimming, as well as single-modulation solutions. This means
that the dynamic range and brightness capabilities of current professional
devices may soon be surpassed by some HDR TVs, and at a higher resolution.
The future of HDR displays is looking bright!





Chapter 3
Tone-mapping of HDR video

With the plethora of existing tone-mapping techniques, one can argue that there
are not many more avenues to explore within the area. However, the absolute
majority of existing work only considers tone-mapping of static images. Tone-
mapping for HDR video sequences introduces a number of problems that either
do not appear, or are not as prevalent in tone-mapping of static images. This
thesis presents a first systematic survey and evaluation of existing methods for
video tone-mapping, in which a set of problems were identified. Problems that
had not been properly accounted for at the time of the study. These problems
formed the basis for the development of the new TMO presented in this thesis
and in Paper C.

This chapter discusses the work and contributions of Papers A, B, and C, which
focus on tone-mapping of HDR video sequences. Following a short motivation
of the work in Section 3.1, the survey and evaluation from Paper B are described
in Section 3.2. From the findings of the evaluation, the algorithms introduced
by Paper C, which are the topic of Section 3.3, are developed specifically
considering the problems faced in tone-mapping for video. In Section 3.4, the
quantitative evaluation from Paper A is discussed. The evaluation includes
some of the most recent TMOs, and indicates that many of the problems found
in Paper B have been addressed in the most recent work for video tone-mapping.
Finally, in Section 3.5 the chapter wraps up the contributions of the papers and
discusses some of the limitations and possible directions for future work.

For a thorough background on tone-mapping of HDR images and video se-
quences, the thesis provides a literature study of the area in Paper A. This gives
a historical overview of tone-mapping, discusses the particular challenges in
tone-mapping of video sequences, and lists brief descriptions and categoriza-
tions of all TMOs with explicit temporal processing that could be found.

47
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3.1 Motivation

As discussed in Section 2.4.3, the most evident problem faced by video TMOs is
maintaining the temporal coherence. Global problems with coherence can cause
extensive flickering, while local problems can be manifested as e.g. ghosting
artifacts. It is also possible for a local TMO to cause flickering artifacts on a
local level. For example, imagine a spatial artifact caused by the local tone
processing, and which is barely visible in a static image. If the artifact changes
quickly over time due to local variations in image content, it may be perceived
as a significantly more salient degradation in image quality. For these reasons,
explicit consideration of temporal coherence is important in tone-mapping for
video, and especially for local TMOs.

Temporal aspects in tone-mapping were considered already more than 20 years
ago [93] and many VSS methods attempt to model the temporal adaptation
mechanisms of the HVS [33, 93, 121, 199, 250]. There are also examples of other
methods that consider video tone-mapping [32, 102, 170, 209]. However, all
these TMOs were developed when there was an insufficient number of HDR
videos available to allow for thorough testing of the tone-mapping quality.
Consequently, most have only been demonstrated on artificial HDR videos,
such as CGI, panning in HDR panoramas, or from capturing static scenes with
alternating lighting. A few examples also include custom-built techniques and
systems to record HDR video [127, 254]. With the advent of versatile HDR
video camera systems [48, 136, 236] and professional cinematographic cameras
with extended dynamic range, a number of new challenges were introduced.
For example, HDR videos are more likely to contain image noise, which may be
revealed by tone-mapping. The videos can also present challenging transitions
in intensity, and certain dynamic objects that are not common in static HDR
images. One such example is skin tones, which is important to render with the
appropriate hue and saturation.

The lack in testing of existing video TMOs with diverse HDR video data,
motivates the study carried out in Paper B [75]. Furthermore, the problems that
were established by this study motivates the development of new techniques for
HDR video tone-mapping, as presented in Paper C [77]. Finally, with the recent
development in tone-mapping for HDR video, partially due to the findings in
Paper B, the work in Paper A [84] contributes with an up-to-date reference,
categorization, and assessment of the state-of-the-art in tone-mapping for HDR
video.
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3.2 Evaluation of TMOs

The ultimate question when inspecting the multitude of existing TMOs is:
which produces the best results? This question is impossible to answer as it
depends on many individual factors, such as the specific intent (Section 2.4.1),
the particular viewer, and the viewing condition. However, by conducting
perceptual comparison experiments some important insight can be gained given
the certain experimental setup that is used [81].

For the evaluation presented in Paper B, the motivation is not only to provide
a relative ranking of existing methods for video tone-mapping. An important
part of this work is to identify major problems and challenges that need to be
addressed by video TMOs, highlighting the differences as compared to tone-
mapping of static images. For this reason, a number of challenging HDR video
sequences were used in the experiments, captured using a multi-sensor HDR
video camera system [135, 136], as well as a RED EPIC cinematographic camera,
and a computer-generated sequence. This provided a wide variety of content
and genuinely challenging conditions, which the TMOs under consideration
had not been tested for.

The TMOs that were included in the study are listed in Table 3.1. These were
chosen with the criterion of having explicit treatment, or model, of temporal
aspects in the tone-mapping. The study considered VSS methods, but other
operators were also included since these may yield competitive performance
although the intent differ.

3.2.1 Parameter calibration

A major difficulty in staging an evaluation experiment with image processing
operations is that the operations may require parameter calibration in order to
achieve optimal results. This is complicated mainly due to two reasons:

1. Computationally expensive operations cannot be tweaked with real-time
feedback of the result, which is essential in order to make a calibration
experiment feasible. The problem is even more pronounced in evaluation of
video operations – the parameters may affect temporal aspects, which require
the result of a particular calibration to be assessed on video sequences. Thus,
it may take many minutes, or even hours, to process the large number of
frames needed for assessment of one single parameter calibration.

2. In general, the operators have many parameters that can be tweaked. How
can we find the perceptually most optimal point in a high dimensional space
of parameters?

Because of these difficulties, most previous studies of TMOs use the default pa-
rameters that were suggested by the authors of the different methods. However,
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Name Processing Intent

Visual adaptation TMO [93] Global VSS

Time-adaptation TMO [199] Global VSS

Local adaptation TMO [145] Local VSS

Mal-adaptation TMO [121] Global VSS

Virtual exposures TMO [32] Local BSQ

Cone model TMO [250] Global VSS

Display adaptive TMO [170] Global SRP

Retina model TMO [33] Local VSS

Color appearance TMO [212] Local SRP

Temporal coherence TMO [38] Global SRP

Camera TMO (see Paper B) Global BSQ

Table 3.1: List of video TMOs included in the study of Paper B. See Section 2.4.1 for
a description on the different categorizations. The bottom TMO uses a conventional
camera curve, measured from a Canon 500D DSLR camera, with the exposure setting
filtered over time.

default parameters are not always available, or they can produce unacceptable
results in certain situations. Another strategy was reported by Yoshida et al.
[273], where a parameter adjustment experiment was conducted prior to the
evaluation. In this experiment, a number of observers, experienced in imaging,
were to choose between a limited set of different parameter calibrations. We
generalize this idea and suggest a method for perceptual optimization of pa-
rameters, which potentially can explore the complete multi-dimensional space
of parameters. The method was used in Paper B, but was described in closer
details in subsequent work [76].

Interpolated calibrations: In order to solve the first of the above mentioned
problems, enabling tweaking of computationally expensive video TMOs with
real-time feedback, we suggest to interpolate between a sparse set of pre-
computed parameter calibrations. However, linear changes in parameter values
may result in highly non-linear changes in image content. This means that at
certain locations in the parameter space, the interpolated video can deviate
substantially from the ground truth calibration. The differential ∂LΘ/∂θk caused
by a change in parameter value θk can be used to quantify changes in image
content, e.g. by means of the RMSE,
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E(θk) =

¿
ÁÁÁÀ 1

N∑p
∣
∂Lp,Θ

∂θk
∣
2

, (3.1)

where the image L is calibrated with the K-dimensional parameter vector
Θ = {θ1, ..., θK}. The sum is taken over all N pixels p in the image. The measure
E(θk) may change non-linearly across the range of the parameter. In order to
make the changes uniform, the normalized inverse of the integrated parameter
changes describes a transformation to a linearized domain,

Λ(θk) = ∫
θk

θk,min
E(φ)dφ, (3.2a)

θ̂k = Γ(θk) =
Λ−1(θk)

∫
θk,max

θk,min
Λ−1(φ)dφ

. (3.2b)

Here, Λ(θk) integrates the image changes between the minimum and the current
parameter value. With a sparse uniform sampling of the transformed parameters
θ̂k, the RMSE interpolation error is kept to a minimum over the range of the
parameter. For a simple demonstration, Figure 3.1 shows the images for a
uniform sampling of the parameter σ in Equation 2.1, between 0.05 and 3. That
is, θk = σ ∈ [0.05, 3]. Using three calibrations for interpolation, θk = {0.05, 1.525, 3},
the error is large close to small values. By instead sampling the parameter
in the transformed domain, θ̂k = Γ(θk), the error is significantly reduced as
exemplified in Figure 3.2.

The transformed parameter calibration not only increases interpolation quality;
it also improves the perceptual linearity of parameter changes. This means that
parameter adjustments are more intuitive and easier to control.

In practice, the linearization transformations are calculated over a set of video
sequences, in order to find a function that generalizes better to different situa-
tions. However, the linearization of a particular parameter θk at a certain point
Θa in the parameter space is not guaranteed to be valid at a different point
Θb. A more general approach should not consider each parameter individually.
Furthermore, more sophisticated metrics could also be used, to allow for mini-
mal interpolation error in terms of perceived differences. These considerations
could be topics for future work in calibration for subjective evaluation. For our
purpose, the simple method described above was found to work well in the
parameter adjustment experiment.

Parameter optimization: With the interpolation strategy, a very limited num-
ber of sampling points can be used for interactive exploration of the parameter
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(a) Linear parameter changes

(b) Interpolation between 3 images

(c) Absolute error between (a) and (b)

Figure 3.1: Linear changes of the tone-mapping parameter σ in Equation 2.1, in the
range σ ∈ [0.05, 3]. Using 3 interpolation images, at σ = {0.05, 1.525, 3}, there are large
errors when image content is changing rapidly.

space. In the example in Figure 3.2, 3 points generate approximations with
small errors, but to generalize to more complicated situations we use 5 points
in the parameter adjustment experiment. However, even though this is a small
number of sampling points, for a large number of dimensions, K, sampling
the entire parameter space is impractical or even impossible. Moreover, it is
also a very difficult problem to find the optimal point in such high dimensional
space. To overcome these problems, we employ a conjugate gradient search,
as proposed by Powell [205]. The search strategy allows for finding the local
optimum of a non-differentiable function, from searching along conjugate gra-
dient directions. The method is also robust to the high variance that is expected
to be present in perceptual measurements. For an example, Figure 3.3a shows
how the conjugate directions are explored for finding the optimal point in a
2D parameter space, using a few linear searches. Figure 3.3b shows the same
example, but where errors are introduced in the searches. The optimal point
can still be found by complementing with a few additional searches.

Given the search and interpolation strategies, a perceptual parameter optimiza-
tion is performed by interpolating between 5 videos along one direction of the
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(a) Parameter changes in linearized domain

(b) Interpolation between 3 images

(c) Absolute error between (a) and (b)

Figure 3.2: Mapping the parameter σ to a domain where uniform changes in the
parameter value yields approximately uniform changes in image content. This means
that interpolation errors are smaller and better distributed across the parameter
range. The 3 images used for the interpolation are located at parameter settings
σ = {0.05, 0.4, 3}.

parameter space. The user is presented with a slider for selecting the optimal
position along the direction. When this is found, 5 new videos are generated so
that the search can continue along the next direction. This procedure is repeated,
choosing directions according to Powell’s method, in at least two full iterations,
i.e. along ≥ 2K directions given K parameters. For the results in Paper B, four
TMOs were selected for parameter optimization. These were the ones that did
not offer default values or were deemed to generate unacceptable results with
the default parameters. Four expert users performed the experiment on three
different HDR video sequences, and the average optimum was used as final
calibration.

3.2.2 Qualitative evaluation experiment

From initial experiments, presented in a pilot study [74], it was revealed that
many of the existing methods for tone-mapping of HDR video produce unac-
ceptable temporal artifacts. In order to identify and estimate the magnitude of
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(a) Perfect judgments (b) Noise applied

Figure 3.3: Parameter optimization in a 2D space by means of conjugate gradient
updates, where the conjugate directions are illustrated in red. The examples show
how exploration is performed with perfect measurements (a), and with noise caused
by non-consistent perceptual judgments (b). The method is robust to the noise and
can still find a good local optimum with additional iterations.

the different problems, a qualitative analysis was performed prior to the main
subjective study and quality comparison.

Five expert users provided ratings of six tone-mapped HDR video clips. The rat-
ings were made both in order to assess generated artifacts (flickering, ghosting,
consistency, and noise level) and for measuring the appearance reproduction
in terms of individual image attributes (brightness, contrast, and color satu-
ration). The experiment provides valuable insights into common problems in
video tone-mapping. Also, based on the results, four TMOs were excluded
from the final pair-wise comparison experiment due to excessive flickering or
ghosting artifacts. Since these artifacts are visually very prominent, it would
not make sense to attempt making comparisons. With flickering or ghosting as
the most salient feature in a tone-mapped video, it would potentially mask out
comparisons in terms of other features.

In order to draw high-level conclusions from the qualitative experiment, the
result presented in Paper B have been distilled in Figure 3.4. To this end, we
provide an overall objective score of expected artifacts for each TMO, estimated
by averaging over all different artifacts and across all the six video sequences.
However, the ratings for noise level have been excluded. This is due to the
observation that noise is a less objectionable image artifact, which can be
accepted to a larger extent compared to other artifacts. The attribute ratings
have been averaged in a similar fashion, using the absolute value of the scores.
The errors provided in Figure 3.4 have also been averaged in the same way
as the ratings. Thus, error bars represent the average standard errors for all
individual sequences and categories. Calculating the standard errors across all
the sequences and rating categories would be less informative, resulting in very
large values.
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The different plots in Figure 3.4 facilitate a direct comparison between the
qualitative ratings and the subjective preference results from the pair-wise
comparison experiment. The conclusions will be discussed in the next section.

3.2.3 Pair-wise comparison experiment

The final pair-wise comparison experiment was performed using the non-
reference method, see Figure 2.6, asking for the video that appears most true to
nature, or conception of the true scene. Although this task can be considered
vaguer than a reference comparison, the setup is closer to how videos are
viewed in real-life situations.

In total 18 observers conducted the experiment, comparing 7 TMOs in 5 HDR
video sequences. The results are summarized in Figure 3.4, together with
the averaged results from the rating experiment. The detailed results are
provided in Paper B, reported individually for the 5 video sequences. The
results are scaled in just-noticeable difference (JND) units [200], providing relative
per-sequence quality differences. That is, the absolute level may differ between
the sequences. In order to approximate an overall single quality indication for
each TMO, we need to average the results across different sequences. To do so,
while accounting for the different absolute levels, the per-sequence average is
subtracted prior to averaging across sequences,

Qt =
1

Ns
∑
s∈S

qt,s − µs, (3.3a)

µs =
1

Nt
∑
t∈T

qt,s. (3.3b)

Here, S and T are the set of sequences and TMOs, respectively. There are in
total Nt TMOs and Ns sequences. qt,s is the quality level of a certain TMO t
and sequence s. The measure Qt should only be regarded as an indicator of
the overall quality of the TMO t over the set of evaluated sequences, since the
JNDs have been estimated per-sequence. The error bars in Figure 2.6 have also
been calculated by averaging and thus represent mean 95% confidence intervals
across the sequences.

First, Figure 3.4 demonstrates the overall artifact levels and attribute rendition
problems of the four most problematic TMOs, which experience excessive flick-
ering or ghosting artifacts. These are all local TMOs, and were excluded from
the subjective evaluation. The remaining TMOs can all be regarded as global
operators and seem to be significantly more robust in the temporal domain. This
highlights the problems in retaining temporal coherence in advanced methods
for local tone-mapping. The conclusion is not that global TMOs are preferred
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Figure 3.4: Results of qualitative rating experiment (image attributes and artifacts)
and the pair-wise comparison experiment (subjective preference). The attribute and
artifact ratings have been averaged across all the different attributes and artifacts,
respectively, and across sequences. The relative subjective preferences have been aver-
aged over mean subtracted per-sequence results. Error bars represent mean standard
errors for the ratings, across artifacts/attributes and sequences. For the subjective
preferences, error bars represent average sequence 95% confidence intervals.
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over local TMOs, but rather that at the time of the evaluation there was a lack
of temporally robust local methods for tone-mapping. Therefore, one of the
major problems in video tone-mapping is to achieve a good level of detail and
local contrasts, without introducing visible artifacts over time. These two goals
are contradicting to a certain extent, where local processing increases the risk of
generating spatial and temporal artifacts.

Among the global methods, the Camera TMO, using a simple camera curve,
shows competitive performance in some of the sequences. However, for more
complicated scenes the histogram-based methods can better adapt to the specific
scene content and produce a higher level of overall contrast while compressing
the dynamic range. This observation also agrees with other TMO evaluations
performed on video sequences [201].

Figure 3.4 also reveals a connection between the two experiments performed in
Paper B. There is a high negative correlation between the qualitative judgments
and the end subjective quality. That is, with an increase in artifact and color
rendition ratings, there is a decrease in subjective quality. This points to the
importance of producing results with little artifacts and with well-balanced
brightness, contrast, and colors. The ratings are apparently very good indicators
of the performance in terms of subjective preference, where a weighted sum
of the different ratings can be used as an accurate prediction of the subjective
quality in the pair-wise comparison experiment. This also agrees with previous
studies in quality of tone-mapping for static images, which show a correlation
between separated image attributes and subjective quality [46, 47, 139]. For
video material, however, the ratings on temporal artifacts are clearly of high
importance, where high artifact ratings provide substantial evidence of a low
subjective quality.

The work in Paper B concludes with a list of problems that were considered im-
portant to address in future development within tone-mapping for HDR video.
This includes the challenge of maintaining a good level of detail and contrast,
while at the same time not introducing temporal artifacts. Treatment of noise is
also recognized as an important aspect of HDR video tone-mapping, which has
received little attention in the literature. Moreover, efficient algorithms should
be promoted, due to the large increase in data to be processed. These problems
were subsequently dealt with in the work presented in Paper C.

3.3 New algorithms

The goal of the work in Paper C is to cater for high-quality local tone-mapping
in real-time, without introducing visible temporal or spatial artifacts. To achieve
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this, we present a set of novel techniques for a) how to perform local tone-
mapping, b) how to formulate a tone-curve for dynamic range compression,
and c) taking into account the noise characteristics of the HDR input.

Relating to the categorization in terms of intent, as explained in Section 2.4.1,
the TMO in Paper C most closely resembles an SRP method. The tone-curves
attempt to preserve contrasts from the HDR scene as close as possible given
the limitations of a certain target display. However, the technique for detail
preservation also allows for strong enhancement without introducing visible
spatial or temporal artifacts, which allows for artistic freedom inline with the
BSQ tone-mapping intent.

3.3.1 Filtering for tone-mapping

As described in Section 2.4.2, detail-layer separation is usually performed by
means of edge-preserving filtering. There exists a large number of different
multi-purpose low-pass filtering techniques, which adapt to the edges within an
image. One of the most common applications of such filters is noise reduction.
However, this application differs from detail extraction in two important aspects.
First, details are often significantly larger features than image noise. This means
that an increased filter support is needed, both in the spatial and in the intensity
domain. Second, while the filtered image is the end result in the case of noise
reduction, for tone-mapping it is used to extract a detail layer from the input
image. This detail layer is highly sensitive to how the filter accounts for image
edges and easily reveals artifacts due to bias within anisotropic filter kernels.

One of the most commonly used multi-purpose edge-preserving filters in tone-
mapping is the bilateral filter [15, 73, 237]. It allows for a simple formulation
and can also be accelerated in different ways for relatively fast evaluation. Given
the pixel value Lp, at position p within the image L, the filtered pixel, L̂p, is
computed as

L̂p = ∑
q∈Ωp

ωs(∣∣q − p∣∣)ωr (∣∣Lq − Lp∣∣) Lq. (3.4)

The point q runs over a local neighborhood Ωp surrounding point p. The
bilateral weights ωs and ωr are usually formulated with Gaussian kernels,
decaying with increasing spatial distance and intensity difference, respectively.
Thus, filtering is suppressed both at large spatial distances from p and across
large differences in intensity (edges). Since ωr modulates the individual filter
weights, the bilateral kernel makes for an anisotropic filtering close to edges, as
visualized in Figure 3.5. This means that the filter can be biased towards the
side of an edge that is closer in the intensity domain. The bias is manifested
in a sharpening effect in the filtered image. For most applications, this is not
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a problem and not visually prominent for small filter kernels. However, in
detail extraction for tone-mapping, the bias can create visible banding/ringing
artifacts, where the image gradients are reversed as compared to the input
image. For an example of the sharpening effect and banding artifacts in the
detail layer, Figure 3.5 demonstrates detail extraction by means of the bilateral
filter.

The artifacts in the detail layer are especially problematic for the BSQ intent,
which often favors an exaggerated level of local contrasts. The same problem can
also be found with the majority of the classical edge-preserving filters. Moreover,
in video sequences the banding artifacts generally show an incoherent behavior
from frame to frame, increasing their visual prominence.

In order to prevent banding artifacts, and enable robust tone-mapping in BSQ
operators and video sequences, the filter from Paper C is based on isotropic
filter kernels. In Equation 3.4, if the bilateral weight ωr is removed, what
remains is a standard Gaussian low-pass filter, L̂p = (Gσ ∗ Lp). Instead, by
weighting different Gaussian convolutions, it is possible to adapt spatially to
the image content and avoid filtering across edges,

Lk
p = (1−ωr) Lk−1

p +ωr (Gσk−1
∗ Lk−1

p ) . (3.5)

The filtering is performed iteratively, k = {1, 2, ..., K − 1, K}, L0 = L, L̂ = LK, simi-
larly to a diffusion process. In each step, the filtered image is weighted using
the edge-stop function ωr (∣∣∇Lk−1

p ∣∣), based on the gradient ∇Lk−1
p at the point

p. This means that in uniform areas the end result is equivalent to filtering
with a large Gaussian kernel, while the filter support is smaller close to edges.
On the edges, there is no filtering, which is preferred over risking introducing
artifacts. Also, since the edge itself is the most salient feature, it masks the re-
duced amount of extracted details in these regions. An example of the spatially
varying isotropic filter kernels is visualized in Figure 3.5, together with the
filtered image and extracted details. The details are effectively extracted using
the isotropic filtering technique, without creating the banding artifacts.

Since the isotropic detail extraction filtering strategy is based on a sequence
of separable Gaussian filters, it allows for efficient execution. The filter is
implemented for hardware acceleration, computed by consecutively convolving
the image with 1D filter kernels stored in the constant memory of the GPU.

3.3.2 Tone-curve

A tone-curve controls how the dynamic range of an HDR image should be
compressed over the range of different luminances. Inevitably, since the dy-
namic range of a display device is limited, this means that contrasts have to be
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Figure 3.5: Example of detail extraction for tone-mapping. The input image is
locally tone-mapped, with an enhanced level of details. This is accomplished with
the detail extraction diffusion from Paper C and compared to using bilateral filtering.
The detail extraction diffusion employs isotropic filtering kernels, which prevent the
banding artifacts that are common to the anisotropic kernels of the bilateral filter.
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compressed, or distorted. Traditionally, the tone-curve is S-shaped to preserve
contrasts in middle tones at the cost of higher distortions in low and high
tones, see Figure 2.5. In Paper C, the derivation of a tone-curved is posed as
an optimization problem, with the objective of minimizing the distortions in
contrasts.

Given a tone-curve V ∶ L → T, which maps the HDR luminance L to a com-
pressed tone value T, in broad terms this amounts to the optimization problem

arg min
V

∣∣Π(L)−Π (V(L)) ∣∣, (3.6)

where Π(L) is the contrast of L. This is subject to V mapping to the dynamic
range of the target display device. By parameterizing the tone-curve as a piece-
wise linear and monotonically increasing function, the slopes of each segment
can be optimized given the image histogram for representing the probability
distribution of contrasts over different luminance levels. An analytic solution
can be derived and solved for very efficiently.

Examples of the minimum contrast distortion tone-curves are demonstrated in
Figure 2.5 and Figure 3.6. These use the same input HDR image, but are plotted
in linear and log domains, respectively. Compared to histogram equalization,
the slope is constant for bin probabilities above a certain threshold (viewed in
the log domain, Figure 3.6). This is in order not to increase contrasts from the
tone-mapping. Contrasts should only be preserved to the extent possible and,
therefore, the slope needed to achieve this should not be exceeded.

The content-adaptive nature of the tone-curve allows for minimal contrast
distortions in different situations. Thus, a good overall distribution of contrasts
in the tone-mapped image can be achieved. However, in order to better maintain
local image contrasts, the tone-curves are computed over a set of local image
regions. In order to avoid discontinuities due to widely different local image
content, the tone-curves are computed by blending the local histograms with a
small amount of the global image histogram. The mapping is then performed
for each pixel using a per-pixel tone-curve interpolated from neighboring tone-
curves.

The spatially varying tone-curves mean that the compound TMO in Paper
C has two mechanisms for local adaptation. The local regions used for the
tone-curves are on a relatively large spatial extent, in the vicinity of 5 visual
degrees, while the detail separation filtering preserves or enhances the more
local image features (approximately operating around 1 visual degree).

In order to maintain coherence over time, the nodes of the local tone-curves
are temporally filtered, either using a low-pass IIR or an edge- stop filter. Due
to the nature of the detail extraction filter that is employed, which only uses
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Gaussian filters, there are no visible temporal artifacts related to the details.
Hence, the tone-curve filtering is enough to ensure temporally coherent local
tone-mapping of video sequences.

The tone-mapping pipeline follows the steps in Figure 2.4, using the special-
purpose detail extraction filter and the minimum contrast distortions tone-
curves. As a final step, the tone-mapped image is passed through the inverse
of the display model in Equation 1.1. This transforms the image to a display-
referred format, accounting for display dynamic range and ambient lighting.

3.3.3 Noise-awareness

The presence of image noise has largely been disregarded in tone-mapping of
static images, as this has not been a major problem. For video sequences, on
the other hand, noise is an important aspect due to the difference in capturing
techniques as compared to static images. While noise reduction has been
researched for a long time, and also accounted for in HDR reconstruction, there
is little work on the problem of noise specifically for tone-mapping.

Since a tone-curve generally compresses the dynamic range while attempting to
preserve image content, the dark image areas are often boosted in intensity. This
means that the noise is amplified and that noise not visible in the original image
is revealed. The TMO presented in Paper C uses a noise-aware tone-mapping
strategy for controlling the shape of the tone-curve, in order to make sure that
noise is kept hidden in the dark image areas of the image. Based on measured
or estimated noise characteristics, this is done by adding a saliency term that
scales the bin probabilities of the histogram before optimizing for minimum
contrast distortion. That is, preserving contrasts is not the only objective in the
optimization – it should not be at the cost of revealed noise. Furthermore, since
noise can also be retained in the detail layer, this is scaled according to the noise
characteristics when it is added back after the tone compression.

Given knowledge about the viewing conditions and the noise level, the proposed
method can ensure that noise is kept below the visibility threshold of the HVS.
This noise-aware tone-mapping strategy presents a light-weight technique that
is complementary to classical denoising methods. For example, if there is a
substantial amount of noise, the end result can come out darker than intended,
in order to conceal the noise. On the other hand, with denoising algorithms it
is difficult to remove all the noise without introducing filtering artifacts, and
the artifacts and/or remaining noise can be revealed by the tone-mapping. By
combining denoising and noise-awareness the best compromise can be made
between both removing and concealing noise.

An example of the impact of a noise-aware tone-mapping is shown in Figure 3.6.
The image is captured with exposure bracketing, so that it contains only a very
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Figure 3.6: Demonstration of the noise-aware techniques from Paper C. In the
images in (c) and (d), artificial noise has been added. The tone-mapped images
in (b) and (c) use the same tone-curve and detail level, disregarding noise. The
tone-mapping in (d) uses the noise-aware processing (tone-curve and detail scaling).
The tone-curves are shown in (a), where the noise-aware version is computed by
taking into account the amount of noise that has been added to the noisy images.
The differences in tone-mapping are best viewed in the electronic version of the
thesis. However, it should be noted that since the result may be viewed in different
conditions (dynamic range, viewing distance, etc.), it cannot be guaranteed that noise
is not visible in the noise-aware tone-mapping.
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Name Processing Intent

Zonal coherence TMO [39] Local SRP

Motion-path filtering TMO [20] Local BSQ

Noise-aware TMO, Paper C [77] Local SRP

Table 3.2: List of video TMOs included in the comparisons in Paper A, in addition
to the TMOs listed in Table 3.1. Thus, in total 14 TMOs were considered.

small amount of noise, as shown in the tone-mapping in Figure 3.6b. Next,
noise has been artificially added followed by tone-mapping with the same
tone-curve and detail level. The result reveals clearly visible amounts of noise,
in Figure 3.6c. By using the noise-aware mechanisms, the added noise can
be concealed in darker image areas and by reducing the level of details, as
demonstrated in the tone-mapping in Figure 3.6d. Comparing the naive and
the noise-aware tone-curves, in Figure 3.6a, the latter has a decreased slope for
the dark parts of the image which contain most noise. In this way, the image
noise is not boosted from the tone-mapping.

3.4 Recent developments

While Paper A provides an introduction and overview of tone-mapping, and
particularly for video TMOs, it also attempts to assess the latest progress in
video tone-mapping. To this end, an objective evaluation is performed, which
is similar to the one in Paper B. This includes all the 11 TMOs (Table 3.1) that
were considered in Paper B, plus three more recently published TMOs. These
are listed in Table 3.2 and include the TMO from Paper C. They have all been
developed specifically considering the challenges in tone-mapping of HDR
video.

As opposed to the perceptual qualitative experiment of Paper B, the evaluation
made in Paper A makes use of a set of quantitative measures for assessing
temporal artifacts and image attributes:

1. Temporal incoherence: The temporal coherence at a pixel p in frame t, is
measured using the cross-correlation ρ(Lp,t, Tp,t) between the HDR lumi-
nance L and tone-mapped luminance T. The correlation is measured in a
window over K frames in time, from t − ⌊K/2⌋ to t + ⌊K/2⌋. It is formulated
to account for different types of adaptation that can take place in the tone-
mapped video. For example, when adapting to a new lighting situation a
pixel of the tone-mapped video can potentially make a transition in intensity
that is opposite in direction as compared to the same pixel in the HDR. This
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should not be directly penalized by the correlation measure. As an example,
this situation can occur if the scene contains a light source that is switched
on in the HDR video sequence. The light can affect the background to show
an increase in luminance, while at the same time the tone-mapping has to
lower the overall brightness in order to fit the light source into the limited
dynamic range of the display.
The measure ρ can be used for evaluating both the global correlation,

Φglobal = ρ
⎛
⎝

1
N∑p

Lp,t,
1
N∑p

Tp,t
⎞
⎠

, (3.7)

and the mean local correlation,

Φlocal =
1
N∑p

ρ (Lp, Tp) . (3.8)

Here, N is the number of pixels in each frame. The final measure for incoher-
ence is then formulated as 1−max(0, Φ), disregarding negative correlations.

2. Details: The level of detail preservation in the tone-mapped images is esti-
mated by extracting detail layers from both original HDR and tone-mapped
images. The mean absolute values of the detail layers in the log domain
represent the total amount of details within the images. Then, by comparing
the measures between HDR and tone-mapped images, the decrease/increase
in the amount of details after tone-mapping can be deduced.

3. Exposure: The amount of over- and under-exposure of a tone-mapped image
are measured as the fractions of pixels that are bright and dark, respectively.
This is different from measuring absolute brightness, but can better indicate
if the tone-mapped image retains information in dark and bright image
areas.

4. Noise visibility: In order to measure how much the visibility of noise
has been increased or reduced by the tone-mapping, a set of computer-
generated images are used. These are noise-free or contain very low levels
of noise. After adding artificial noise to the HDR images, the perceptual
difference compared to the noise-free image is measured using HDR-VDP-
2 (v2.2) [172]. By tone-mapping both the original and the noisy images,
the perceptual difference can then be measured also after the tone-mapping.
Then, comparing the visibility of the noise, before and after the tone-mapping,
the difference indicates if the noise-visibility is reduced, retained or boosted
by the TMO.

The image attributes (details and exposure) are different than the ones used
in Paper B (brightness, contrast and color saturation). Furthermore, the noise
measure is also different, comparing the difference in noise-visibility as opposed
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Figure 3.7: Temporal incoherence for the 11 TMOs in Table 3.1, measured from
qualitative ratings in Paper B, and for the 14 TMOs in Tables 3.1 and 3.2 using the
quantitative measures described in Paper A. The ratings and the measures have been
evaluated over different sets of HDR video. Still, there is a good overall correlation
between the two. Error bars show mean standard errors.

to the absolute perceived level of noise. However, the measure for temporal
coherence is expected to be similar between the two evaluations. This is also
confirmed in Figure 3.7, where the temporal artifact ratings from Figure 3.4 are
plotted next to the sum of the global and local incoherence measures (using
Equations 3.7-3.8). The three most recent TMOs lack the rating results, but
for the other TMOs there is a high correlation between the perceptual ratings
and the quantitative measures. The two evaluations are also performed with
different sets of HDR videos, demonstrating that the correlation generalizes to
different HDR video sequences.

While Figure 3.7 shows a general agreement between perceptual and quan-
titative measurements, for some of the TMOs the differences are larger. For
example, the Cone model TMO performs a per-pixel filtering that is punished
by the quantitative measure. Perceptually, the problem is not as prominent,
since motion-blur is much less objectionable than e.g. flickering. Also, the
Visual adaptation TMO measures much higher using the quantitative approach,
presumably due to the way adaptation is handled by the method, allowing for
rapid changes in intensity.

One of the central problems discovered in Paper B, which is one of the main
focuses in Paper C, is the difficulty in performing local tone-mapping with a
good level of local contrasts, while at the same time retaining a good temporal
coherence. From the quantitative measurements in Paper A, we can show
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some evidence of this problem being addressed by the more recent TMOs. In
Figure 3.8 the measured difference in details between HDR and tone-mapped
images is plotted against the estimated coherence. This is taken as the negative
sum of local and global incoherence, so that a higher value means better
coherence. The figure shows that among the TMOs used in the evaluation
in Paper B, only the global methods can retain a good temporal coherence.
However, these cannot preserve the level of image details that is present in
the original HDR images. The TMO that comes closest is the Display adaptive
TMO, presumably due to its content-adaptive tone-curve, which renders better
local contrast than a simpler tone-curve (e.g. in the Camera TMO). With three of
the more recent TMOs (Table 3.2), which focus on HDR video tone-mapping,
temporal coherence can be retained without sacrificing image details.

All in all, the results of the quantitative measurements in Paper A indicate which
TMOs can be expected to render tone-mapped videos with good temporal
coherence, details, exposure and low noise visibility. Given the discussion in
Section 3.2.3, on how the different ratings provided for the qualitative evaluation
in Paper B correlates with the end subjective preference, we can also expect
that this is true for the different measures provided in Paper A. That is, the
TMOs that provide the best result in terms of the different measures, can also
be expected to provide competitive performance in a subjective comparison.
Especially the measure of temporal coherence is central for tone-mapping of
video, and this shows a general agreement with the perceptual ratings. In light
of these observations, we can further confirm that the TMO from Paper C is
capable of generating high-quality results with minimal amounts of artifacts.

3.5 Summary

The recent availability of high-resolution HDR video with a wide variety of con-
tent has made it possible to test TMOs against challenging dynamic scenes. The
work presented in Paper B is the first to do so, and the results point to several
deficiencies with the, at the time, existing TMOs for HDR video. The method
in Paper C follows up on the work and proposes techniques for alleviating the
specific problems that were pointed out by the study. Finally, in Paper A a
quantitative analysis is performed, which shows that the method indeed can be
expected to produce good local tone-compression while maintaining temporal
coherence and without revealing image noise. Thus, the papers follow a natural
chain of motivations, from uncovering existing problems, followed by develop-
ing techniques for addressing these, and finally verifying that tone-mapping
with good performance can be expected. Moreover, a broad background and
up-to-date reference on tone-mapping for HDR video is provided through the
state-of-the-art report in Paper A.
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3.5.1 Limitations and future work

While the experiments in Paper B provide a number of important insights to
the problem of tone-mapping for HDR video, there are also several difficulties
in evaluating the performance of TMOs. It cannot be emphasized enough that
TMO evaluation is a very difficult task, and insights hereof were also gained
through the evaluation work. The results of a study are highly dependent on
the particular experimental setup. For example:

• The Mal-adaptation TMO, which is ranked as the best performing TMO
in Figure 3.4, was also included in the parameter adjustment experiment.
Other TMOs may potentially also gain in visual performance with optimized
parameters.
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• Details regarding interpretation, implementation, and usage of methods,
or bugs in the code for that matter, can potentially affect the results. It is
sometimes difficult to entirely conform to how the original authors of a
method intended for it to be implemented and used. The work in this thesis
applies the best efforts in order to stay true to the different methods that
were evaluated.

• Generalization of performance from a limited set of sequences cannot be
guaranteed.

With the rapid increase in HDR video and methods for tone-mapping of such,
there are ample opportunities and motivation for conducting more studies. With
differences in e.g. material, TMO selection, and experimental setup, further
insight can be gained, facilitating future development.

While the techniques in Paper C make for high-quality video tone-mapping
with minimal amounts of artifacts, there are also some situations which are
more difficult to tackle. For example, the detail extraction filter has problems
with detecting thin images features. For large amounts of detail enhancement,
this can result in visible halo artifacts upon close inspection of such features in
the final tone-mapping. The problem could potentially be resolved by exploring
a better edge-stop criterion. Moreover, the tone-curve compresses the dynamic
range of the HDR input to entirely fit the dynamic range of the display. This
means that highlights, such as fire and light sources, in some situations may look
artificial, see e.g. the lamp in Figure 1.3c. Special considerations could be made
in high-intensity image regions, in order to allow for some clipping. Finally,
the local tone-curves can in certain situations reveal visible borders between
regions, despite the interpolation. Future work could explore how to better
blend tone-curves, how to evaluate tone-curves based on content-dependent
local regions, or how to employ local tone-curves at multiple spatial scales.

In addition to improving the different techniques of the method in Paper
C, future work could also explore other aspects that are not included in the
TMO. For example, it could be complemented with dedicated color appearance
modeling. It would also be of interest to investigate the different parameters, in
order to facilitate easier or automatic calibration that depends on the situation.

Another interesting avenue for future exploration is to investigate applications
of the different quantitative artifact and attribute measures from Paper A. For
example, these could potentially be combined in order to create a subjective
quality index. This would be specially tailored for evaluation of HDR video tone-
mapping, using the temporal incoherence measure as an important component.





Chapter 4
Distribution of HDR video

HDR imaging has for many years constituted an important component in
computer graphics applications within research and production. The last
decade has also shown a steady increase in research interest in HDR video.
Moreover, within the last couple of years HDR has been introduced to the
consumer market and, spurred by latest developments in HDR TV displays, it
is rapidly gaining in popularity. Hence, there is a lot of activity around HDR
video for commercial purposes and standardization has been ongoing for quite
some time. However, the concept of HDR video for the consumer market is still
in its infancy. There is a long way to go before hardware and software have fully
adapted to this new format. One of the most central aspects of the transition
towards HDR support is how to encode the HDR video content, providing
viable options for distribution in different situations.

With the developments around HDR video distribution, there is a need for com-
paring and evaluating the techniques that have been proposed for the different
components of the HDR video encoding pipeline. This chapter discusses the
work and contributions of Paper D, which aims at assessing a number of such
techniques. The work also recognizes the lack in availability of non-proprietary
solutions for HDR video encoding, by presenting the Luma HDRv software,
which is released under open source terms. In Section 4.1, a brief context and
motivation is provided, followed by a discussion of the evaluation from Paper
D in Section 4.2. The Luma HDRv codec is described in Section 4.3, and the
chapter is summarized in Section 4.4, together with a discussion on limitations
and possible directions for future work.

71
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4.1 Motivation

As described in Section 2.3.2, the most straightforward, convenient, and efficient
strategy for encoding of HDR video, is to make use of existing video codecs that
are intended for LDR data [166]. This requires the floating point, scene-referred,
pixels to be transformed to an integer format that is better suited for encoding.
In the same manner as gamma correction and the sRGB color space (BT.709)
make quantization errors spread approximately perceptually uniformly across
the range of LDR values, this transformation should accomplish a similar goal
for HDR values. Moreover, the encoding of the transformed luminance needs to
be performed at an increased precision (usually 10-12 bits) as compared to LDR
data. Despite active development of different techniques for how to transform
HDR luminances and colors, these lack a comprehensive comparison. One
previous comparison was performed by Boitard et al. [41]. They conducted a
perceptual study for estimating the minimum bit-depth required for encoding
HDR data without visible distortions, and the perceptual uniformity of different
color and luminance encodings. This is accomplished by evaluating differences
between gradient patches, which are encoded with the different techniques.
Compared to this work, the evaluation in Paper D aims at assessing the final
overall quality of different encoding schemes when applied to a wide variety of
natural HDR videos.

Another observation that motivated the work of Paper D was that, while
standards had been specified for the purpose of HDR video distribution, at the
time there were no solutions available for HDR video encoding on open source
terms. The work that is described in Paper D presents both a comparison of
different pixel encodings and an open source HDR video codec solution. For
each of the components in the encoding pipeline, the codec is designed by
choosing the technique that indicates the best performance in the comparisons.

4.2 Evaluation

The individual steps that are involved in preparing an HDR video for integer
encoding with a video codec are illustrated in Figure 4.1. Assuming that
the input HDR pixels are specified by RGB colors, these are transformed to
decorrelated luminance and chrominance channels. Next, the luminance is
mapped with the PTF, to a domain of increased perceptual linearity. If the color
separation is omitted, preserving the RGB coordinates, all channels need to be
transformed by the PTF. Following a quantization to the target bit-depth, the
final bit-stream is then compressed with a conventional video codec.
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Figure 4.1: The pipeline for preparing HDR video for integer encoding with a
conventional video codec. The numbers 1-3 are components for which the different
settings are compared in the evaluation in Paper D. As indicated, the Luma HDRv
software provides a layer of HDR specific features that can adapt a codec for HDR
video. While any video codec can be used, that provides encoding at 10-12 bits,
Luma HDRv is currently bundled with VP9.

4.2.1 Setup

The evaluation in Paper D considers 33 HDR video sequences, encoded at 15
different quality levels and using 9 different settings of the encoding pipeline.
Due to the excessive amount of data (4,455 videos in total), a subjective evalua-
tion was not an option. Moreover, many of the compared conditions experience
only sub-threshold differences, so that it would be difficult to differentiate be-
tween the videos in a subjective comparison. For these reasons, the perceptual
similarity comparing the input videos and the encoded-decoded counterparts
were instead measured with two perceptual objective measures: HDR-VDP-2
[172] and PU-MSSIM; the multi-scale structural similarity index (MSSIM) [256]
applied after perceptual uniform (PU) encoding [18]. Both measures have been
demonstrated to correlate well with subjective comparisons. For a closer de-
scription of the practicalities involved in quality prediction of HDR content, we
refer to the explanations by Mantiuk [173].

Although the comparisons were made by means of computational measures, the
large amount of data was still a problem, requiring encoding of the 4,455 videos,
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and with close to 0.5M image to image comparisons. As the objective measures
are computationally expensive, the total time of the evaluation would be several
months running on a single multi-core machine. Instead, the computer cluster
at High Performance Computing Wales1 (HPC Wales) was employed, which
made it possible to run all comparisons in a matter of a few days.

4.2.2 Results

The evaluation in Paper D considers different settings for three of the compo-
nents in the HDR video encoding pipeline, as illustrated by the numbers 1-3 in
Figure 4.1. Each component is treated separately, by varying its settings while
keeping the rest of the pipeline unchanged. Following, the different settings
and the results are briefly described:

1. Color transformation: The YCbCr color difference encoding is commonly
used for video material. In the ITU-R Recommendation BT.2020, this was
extended to a wider gamut, as compared to the previous BT.709, in order to
accommodate HDR content. However, even the updated specification cannot
represent the full gamut of visible colors. In Paper D we compare YCbCr to
the wider gamut of Lu’v’ [263], and also include RGB as a reference.
The results in Paper D show a clear advantage of Lu’v’ over YCbCr. This
also agrees with the results presented by Boitard et al. [41], demonstrating
that Lu’v’ is better at separating the information between luminance and
chrominance, thus decreasing the inter-channel correlations. Finally, compar-
ing Lu’v’ and YCbCr to encoding directly in RGB space shows, as expected,
how the latter is clearly inferior.

2. Perceptual transfer function: Three different perceptual luminance encod-
ings (PTFs) are included in the evaluation, and compared to a logarithmic
mapping. The PTFs are a) PQ-Barten [185], b) PQ-HDRV [166], and c) PQ-
HDR-VDP [172]. These are derived in a similar fashion, but using different
psychophysical measurements. PQ-Barten is commonly referred to as PQ
(perceptual quantizer) and is employed e.g. in the standards of HDR10 and
Dolby Vision. This function is plotted in Figure 2.3 together with the log
transform. PQ-HDRV and PQ-HDR-VDP show some variations, but have
similar shapes as PQ-Barten.
The results in Paper D show that the simple log transform clearly gives
inferior performance. This is expected, as the log transform only is a good
approximation of perceptual linearity for larger luminances (photopic vision).
However, from the measurements it is difficult to differentiate between the
three perceptual encodings. All three are most likely good options for
luminance encoding in HDR video.

1 http://www.supercomputing.wales

http://www.supercomputing.wales
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3. Video codec: Since the work in Paper D aims at providing an open source
solution for HDR video encoding, the underlying codec itself needs to be
released on similar terms. At the time of the evaluation there were not
many such choices that were able to encode at an increased bit-depth. The
choice fell on Google’s VP9, which has been demonstrated to have a similar
performance as the widely used H.264/AVC standard [216]. The older
MPEG-4 Part 2 encoding, provided through the XVID codec, is also included
for comparison. This was used in the seminal HDR encoding work by
Mantiuk et al. [166], modified to provide a higher bit-depth.
As expected, the results in Paper D show a substantial improvement using
the more recent VP9 codec. It is able to provide the same HDR-VDP-2 quality
prediction as XVID, but at around half the bit-rate.
With the transition from H.264/AVC to H.265/HEVC, a significant improve-
ment in encoding performance can be achieved [216]. Although there were
no open source implementations of HEVC at the time of the evaluation,
the situation is different today. The possibilities in improving encoding
performance using more recent codecs will be discussed in Section 4.4.

4.2.3 Comparison to HDR10

For all of the comparisons discussed above, the range of encoded luminance
is between 0.005 cd/m2 and 10,000 cd/m2. Furthermore, the transformed
luminance, or luma, is encoded at 11 bits, while the final chrominance channels,
or chroma, are encoded at 8 bits. These bit-depths have been demonstrated
to be the minimum required in order to make sure that quantization artifacts
are kept below the visibility threshold for the particular range of luminances
when encoding using the Lu’v’ color space [41, 166]. The YCbCr encoding, on
the other hand, requires > 8 bits per chroma channel, as it is not as effective
in decorrelating information between luminance and chrominance. This was
e.g. shown in the experiments by Boitard et al. [41]. The same experiments also
indicated that the final luma channel using the YCbCr color space may require
a slightly less number of bits than for the Lu’v’ transformation. 10 bits luma
was also demonstrated to be enough by Miller et al. [185]. That is, it seems
that YCbCr and Lu’v’ provide different distributions of information between
luminance and chrominance. While 10 bits for both luma and chroma channels
is the minimal requirement for YCbCr, 11 and 8 bits are better suited for luma
and chroma, respectively, of the Lu’v’ color space.

While Lu’v’ luma/chroma at 11/8 bits was determined to be the best choice from
the evaluation in Paper D, and is used as default settings for the Luma HDRv
codec, the evaluation do not include a comparison to YCbCr luma/chroma at
10/10 bits. The latter option corresponds to the most widely used HDR encoding
standard, HDR10. In order to give additional insight into the differences
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Figure 4.2: Rate-distortion plots, comparing the Lu’v’ color space at 11/8 bits
luma/chroma (Luma HDRv) and the YCbCr color space at 10/10 bits luma/chroma
(HDR10). These bit-depths indicate the best performance for the respective color
spaces, as compared to encoding YCbCr at 11/8 and Lu’v’ at 10/10. Error bars denote
standard errors.

between these two settings, Figure 4.2 complements Paper D with an additional
comparison. This has been estimated in the same manner as the comparisons
in Paper D, using the same 33 HDR video sequences provided by Fröhlich et al.
[95], and encoding with VP9. Also, PQ-Barten is employed by both Luma HDRv
and HDR10. However, the comparison is made only in terms of HDR-VDP-2
and with only 1 second from each video instead of 5 seconds as was used in
the original experiments. The results for Luma HDRv and HDR10 in Figure 4.2
have been estimated from the per-sequence results in Figure 4.3, averaging
across equal bit-rates of the sequences at 7 different sampling points. For each
sequence, the qualities at these specific bit-rate sampling points have been
computed from interpolation between neighboring measured bit-rates.

For comparison, the results in Figure 4.2 also include YCbCr encoded at 11/8
luma/chroma and Lu’v’ encoded at 10/10 luma/chroma. Thus, the rate-
distortion plots that use 11/8 luma/chroma are the same as in Paper D, com-
paring these to 10/10 luma/chroma. However, there may be some smaller
differences compared to the results in Paper D, due to different sampling
and filtering, and since a newer version of VP9 is used for encoding. The
results show that, as expected, the YCbCr color encoding benefits from 10/10
luma/chroma, as in HDR10, and that the opposite is true for Lu’v’. However,
there still seem to be clear advantages of using the Lu’v’ color space, especially
at higher bit-rates.
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(b) Luma HDRv (Lu’v’, 11/8 bits)

Figure 4.3: Per-sequence rate-distortion plots of the 33 different HDR video se-
quences evaluated, using the settings of HDR10 (a) and Luma HDRv (b).

4.3 Luma HDRv

The software that was implemented and released together with Paper D, Luma
HDRv2, provides C++ libraries/API and applications for HDR video encoding
and decoding, as well as playback of HDR video:

• libluma_encoder and libluma_decoder: Libraries for preparing, encoding,
packaging, and decoding HDR video. In the current version, Luma HDRv
is bundled with VP9 for the final encoding of luma and chroma. Packaging
is provided through the Matroska3 container, which makes it easy to add
support for Luma HDRv in existing applications.

• lumaenc and lumadec: Applications that can encode and decode HDR videos
with a range of settings using the Luma HDRv libraries. The default settings
employ the best performing techniques from the evaluation, Section 4.2.
However, there are options to change the settings for each of the components
in Figure 4.1. The input/output HDR video can either be stored as OpenEXR4

frames [37], or it can be piped from/to the PFSTools5 HDR processing
applications [169] to allow for extended compatibility with HDR formats.

• lumaplay: Minimal HDR video player that decodes and displays the video
with OpenGL/GLSL. The simple GUI of the player provides options for
changing the exposure of the video, in order to reveal the full dynamic range.

2 http://lumahdrv.org/
3 http://www.matroska.org
4 http://www.openexr.com
5 http://pfstools.sourceforge.net

http://lumahdrv.org/
http://www.matroska.org
http://www.openexr.com
http://pfstools.sourceforge.net
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Luma HDRv provides a light-weight layer on top of any high bit-depth codec,
as illustrated in Figure 4.1. It is currently released bundled with Google’s VP9
codec, but it would not require a big update to allow support for other codecs.
Thus, Luma HDRv can be thought of as a video codec abstraction layer, which
makes it possible to add the processing required for encoding and decoding of
HDR video.

With the different settings provided by Luma HDRv, it is possible to encode
according to existing HDR video standards. For example, by encoding colors
from the YCbCr color space, with 10 bits luma and chroma, the result complies
with the most widespread standard, HDR10. In the latest release of Luma HDRv,
the packaging has also been updated in order to store the correct metadata
associated with HDR10. This makes the video compatible with applications
that support HDR10 and can decode VP9 video stored in a Matroska container.
For example, it has been verified that HDR10 encoded with Luma HDRv can be
uploaded to Youtube and Vimeo, where it is correctly recognized and processed
as HDR video.

4.4 Summary

The area of HDR video distribution is becoming increasingly more important
with the ongoing transition to HDR content, especially within the TV industry.
The work discussed in this chapter contribute to the area by providing insights
to compression efficiency for a number of different pixel encoding schemes, and
by making the Luma HDRv open source HDR video coding software available.
In order to complement this work, which is presented in Paper D, we have also
recognized that the YCbCr and Lu’v’ spaces may require different proportions of
bit-depth between luma and chroma, to allow for optimal encoding performance.
This is not considered in Paper D, which uses 11 bits luma and 8 bits chroma for
all of the luminance-chrominance separated conditions. In Section 4.2 we have
complemented with an additional comparison, which indicates a significant
improvement of the 11/8 bits Lu’v’ luma/chroma used as default settings in
Luma HDRv, as compared to the 10/10 bits YCbCr luma/chroma specified by
HDR10.

4.4.1 Limitations and future work

With the activity around HDR video, we expect that the there will be an
increasing number of solutions available for HDR video distribution, and also
open source alternatives. For example, BBC’s Turing codec provides an open
source implementation of the HEVC compression scheme. Turing supports
HDR video encoding integrated with the codec, using the PQ-Barten and
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Hybrid Log-Gamma (HLG) transfer functions. There are also a number of
additional royalty-free alternatives to HEVC that, similarly to the Turing codec,
have appeared within the last year or so. As with the Turing codec, it will likely
become more common that such implementations provide direct HDR support
by integrating the transformations needed with the codec, and providing a
specific encoding option for HDR content.

An interesting development is also the initiative from the Alliance for Open
Media (AOM), where a group of the leading internet companies have joined
forces, including Apple, Amazon, Cisco, Google, Intel, and Netflix. The first
objective of AOM is to create the next generation video codec, AV1, with
increased performance as compared to HEVC. AV1 will be released as an
open and royalty-free video codec, in order to avoid the patenting problems
associated with existing video codecs such as AVC and HEVC. AV1 will be built
by considering a number of elements from existing open source video codec
initiatives, such as Google’s VP10, Mozilla’s Daala, and Cisco’s Thor.

Given this direction of development, with open source high performing video
codecs that potentially can support HDR content, the Luma HDRv software
may soon be considered obsolete. However, we believe that Luma HDRv still
can provide a useful HDR abstraction layer and packaging application, which
gives easy and flexible control over the HDR specific settings of the encoding.
This can be achieved by making a more explicit disconnection of the codec
used under the hood, as illustrated in Figure 4.1, so that Luma HDRv easily
can be compiled with a number of different codecs. This would allow for
a joint and easy to use interface, where a range of different HDR specific
encoding settings could be controlled regardless of the particular underlying
codec. Moreover, Luma HDRv also provides an API that makes HDR video
encoding and decoding easy to integrate in software development.

Another possible direction for future work is to extend both the evaluation in
Paper D, as well as Luma HDRv, with alternative solutions for color encoding,
luminance encoding, and video codec. For example, it would be interesting
to see how the HLG function compares to the other PTFs. Also, following the
discussion above, comparisons could be made in order to see how a HEVC
implementation compares to VP9 for HDR video encoding, and what improve-
ments can be expected from the AV1 codec when this becomes available. Finally,
a perceptual study could be performed on a selected number of videos and
conditions, in order to connect the objective results to expected subjective
preference.





Chapter 5
Single-exposure HDR image

reconstruction

Throughout the thesis, we have emphasized the benefits of HDR images. A
wide variety of applications can take advantage of the extra information that
the format provides. However, due to the inherent limitations of conventional
camera sensors, HDR image capturing is still expensive and/or time-consuming.
Moreover, the absolute majority of existing image and video material do not
provide HDR information. Therefore, there would be great benefits in being
able to estimate the extra information from a single-exposure image, so that
HDR images can be provided from an unmodified conventional camera, or
derived from the vast amount of existing images.

In this chapter, the method from Paper E is discussed, which takes a machine
learning approach to the problem of HDR reconstruction from a single-exposure
image. The method can provide convincing HDR images in a wide range of
scenes, provided that areas with all color channels saturated are limited in size.
The reconstruction is possible by making use of the recent progress in deep
learning, and from careful considerations in terms of data augmentation of a
gathered set of HDR images that are used for training. First, the single-exposure
reconstruction problem is closer defined and motivated in Section 5.1. Then, the
recent trend of applying deep learning strategies in HDR imaging is discussed
in Section 5.2. In Section 5.3 the techniques used in Paper E, and extensions
thereof, are described. Finally, Section 5.4 summarizes the chapter and provides
a discussion on the limitations of the work, as well possible directions for future
work.

81
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5.1 Motivation

5.1.1 Relation to inverse tone-mapping

In Section 2.2.3, the problem of inferring an HDR image from a single exposure
was divided into the three sub-problems of 1) decontouring, 2) tone expansion,
and 3) reconstruction of under/over-exposed image areas. Most inverse tone-
mapping operators fall into the second category and the objective is usually
not to reconstruct the HDR image as close as possible. Instead, they attempt
at achieving the best visual performance in end applications such as HDR
display or IBL. For display on an HDR capable device this means that global
mappings are generally preferred [177, 226], due to problems in reconstructing
colors and details in over-exposed areas. Thus, saturated image regions remain
saturated on the HDR display. Since we are accustomed to viewing images
with saturated pixels, this may work well. For IBL, on the other hand, the
iTMOs that attempt to boost highlights using expand maps or similar can be
expected to provide better reproduction of the lighting from high-intensity
light sources. However, due to problems in estimating the saturated image
regions, the rendering quality can generally benefit from a global boost in image
intensity of the IBL panorama.

The iTMOs can give substantial improvements when using LDR images in
HDR applications. However, due to the different problems, the end HDR
image can actually deviate more from the ground truth HDR image than the
input LDR image. The problem of actually reconstructing, or approximating,
the missing information as close as possible, similar to HDR reconstruction
from multiple exposures, is conceptually different from the iTMO approaches.
Although there are some previous methods that consider the reconstruction of
colors and details in saturated pixels [105, 179, 267, 278], these only work for
smaller corrections of over-exposure, or for textured highlights by requiring
some manual interaction [255]. In Paper E we show successful reconstruction
of both colors, details, and high intensities, which have not been demonstrated
to be possible before. With the reconstructed information, LDR images can
be used in a much wider range of HDR applications than previously possible,
such as exposure correction, tone-mapping, and glare simulation. And for other
applications, such as HDR display and IBL, the result can be much closer to
what a real HDR image would yield.

5.1.2 Where is the dynamic range?

Comparing LDR to HDR images, in general the most significant difference is
due to lost information in over-exposed image areas. This can be explained by
inspecting the image histograms of natural HDR images. An example is plotted
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Figure 5.1: The histograms of the images from Figure 5.5, calculated in the log
domain. The vertical lines show the 5% and 95% percentiles. However, due to log axis,
it may seem like more than 5% of the pixels are located above the saturation point.
The log axis helps in showing the tail of decaying high intensities of the distribution,
which contains a small fraction of pixels but a large fraction of the dynamic range.

in Figure 5.1, which shows the distribution of pixel values in the log domain
for the HDR image in Figure 5.5. The left and right vertical lines show the 5%
and 95% percentiles, respectively. That is, the histogram values outside the left
and right lines contain 5% of the darkest and brightest pixels, respectively. The
distance between the lines is ≈2 log10 units, which is in the order of the dynamic
range of a conventional camera sensor. This means that, for this example, such
sensor can capture around 90% of the image information. The information lost
in dark image regions shows less than 0.5 log10 units of additional dynamic
range, and does not contribute very much to the final image. The information
that is lost due to saturation of the sensor, on the other hand, contains an
additional >3 log10 units of dynamic range. Figure 5.1 also shows how the
information above the saturation point (right line) has been clipped, in order to
simulate an LDR image. Consequently, the rightmost histogram bin contains
about 5% of the pixels. By mapping the clipped image through a camera curve,
quantizing to 8 bits, and reconstructing the lost information using the method
in Paper E, the histogram of the reconstructed HDR image shows that most of
the dynamic range has been recovered. Thus, by providing reconstruction of
only 5% of the saturated pixels, the dynamic range is boosted by several log10
units.

Although the above example uses a night scene, with a very skewed distribution
of pixels, natural images, in general, show similar statistics, where a small
number of bright pixels store a large amount of the dynamic range. This is
illustrated in Figure 5.2, which is computed from averaging over the database
of >3,700 HDR images used in Paper E. The blue and red histograms have
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Figure 5.2: Averaged histograms in the log domain, using the 3.7K HDR images
from Paper E. The two histograms have been computed after normalization by
anchoring the 5% and 95% percentiles to 1, respectively, for the two different averages.
For the 5% normalization the averaged histogram is dominated by noise at low
values. Median filtered histograms are provided to better illustrate the shapes of the
histograms.

been calculated after each image has been normalized using the 5% and 95%
percentiles, respectively. The distribution of the 5% darkest pixels decreases
fast and is soon dominated by image noise. In the 5% brightest areas, the
slope of the histogram is less steep and there is information available for many
log10 units. Although there are low probabilities for the brightest pixels, these
are often important in HDR applications and capture the very essence of high
dynamic range.

5.1.3 Focusing on the important

In Paper E we consider the problem of reconstructing pixels that have been
clipped due to sensor saturation. As discussed above, this is the most important
problem when transforming an LDR image to HDR.

The darkest pixels are only revealed in less common situations, e.g. when
an image is captured with an overall too short exposure, or in extreme tone-
mapping situations. Nevertheless, reconstruction of under-exposed pixels
would probably also be well-suited for the same method as presented in Paper
E. However, the most prominent feature of dark pixels is noise, which makes the
problem considerably different from reconstruction of saturated pixels. Also,
noise in the ground truth data will be a significant issue, as seen in Figure 5.2,
making training problematic.

The problem of decontouring would likely also be well-suited for deep learning.
In the same manner as for predicting under-exposed pixels, there are very
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Figure 5.3: Luminances across one row of pixels from Figure 5.5. The row is
indicated with the respective colors in the images in Figure 5.5. The horizontal lines
correspond to the vertical lines in Figures 5.1.

different characteristics of this problem, where more local information needs to
be reconstructed in order to undo the quantization.

Attempting within the same trained network to do solve all the three different
problems of over-exposure, under-exposure, and quantization can be thought
of as trying to do in-painting, denoising, and super-resolution in a single
operation. It is unlikely that this would give satisfying results. The sub-
problems of inferring HDR from a single-exposed 8-bit image have equally
distinct differences as these three applications. Therefore, in order to allow
for higher quality reconstruction of the most important pixels, it is a sensible
strategy to treat over-exposure as a separate problem.

Reconstruction of over-exposed image regions is in many situations also a
tractable problem, which is facilitated by the spatial arrangement of the sat-
urated pixels. A common property of the most intense parts of a scene, e.g.
specular highlights, light sources, sun, and moon, is a limited spatial extent.
This can be seen in Figure 5.3, which shows one row of pixel values, as illus-
trated in Figure 5.5. The pixels with high luminance are often represented by
sharp peaks, which only extend short distances in the image space. This makes
it easier to approximate the clipped pixels from neighboring information. The
figure also demonstrates the luminances of the row from the LDR image, as
well as from the HDR image reconstructed using the method from Paper E.

In the LDR image in Figures 5.1 and 5.3, there are still pixels below the line that
indicates where under-exposure starts. This is because a display-referred image
can express a relatively large contrast. If the linear RAW image captured by a
camera sensor would be noise-free, the dynamic range between the smallest
and largest representable pixel value would be in the range 3.6− 4.2 log10 units,
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for bit-depths between 12− 14 bits. By compressing the dynamic range using a
non-linear CRF, it can be fitted to the 8 bits provided in a conventional image.
Thus, the 8-bit display-referred image can represent a captured dynamic range
that is much larger than would be possible if it was scene-referred. However,
as mentioned above, the dark pixels are usually deteriorated from noise and
quantization, which makes the effective dynamic range much lower.

5.2 Deep learning for HDR imaging

Deep learning has shown a great success in a wide range of computer vision and
image processing tasks, especially using convolutional neural networks (CNNs).
A CNN learns the weights of a number of filter kernels in each layer of a deep
neural network, where the layers represent different abstraction levels. By
convolving the image with the learned filter weights, features can be extracted
at different spatial locations using the same kernel. CNNs have shown un-
precedented performance in applications such as image classification [134, 227],
object detection [215], semantic segmentation [157], colorization [119, 277], style
transfer [97], super-resolution [65], and many more.

The field of deep learning has seen a tremendous progress and gain in popular-
ity over the last decade. Combined with the recent increase in HDR image data,
e.g. due to a number of publicly available HDR video datasets [23, 40, 95, 136],
deep learning for HDR imaging is now an interesting topic to be explored.
There are only very few examples of deep learning for HDR imaging published
before the year 2017, including estimation of reflectance maps from images
[213]. In 2017, however, a number of publications appeared. These make use
of CNNs for a variety of problems related to HDR imaging, demonstrating
various degrees of improvement over previous work. For example, there are
CNNs for HDR reconstruction from multiple exposures in separate images
[106, 125, 266] and from single-shot, spatially varying, exposures [9]. Other
techniques attempt to estimate outdoor [115] and indoor [96] illumination maps
from conventional LDR images. Furthermore, there are examples of HDR image
quality assessment [122], estimation of the camera response function from a
single LDR image [152], and tone-mapping of HDR images [117].

The idea of deep learning HDR image reconstruction from a single exposure,
was first introduced by Zhang and Lalonde [276], who used a CNN to predict
HDR panoramas from LDR images for the purpose of IBL. However, the method
is limited to low-resolution outdoor images, where the sun is assumed to be
located at a certain azimuthal position. There are also more general methods,
which were developed concurrently or after the work in Paper E was published.
The methods by Endo et al. [85] and Lee et al. [151] predict a set of LDR images
with different exposures, which subsequently are combined into an HDR image.
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Marnerides et al. [176] proposed to use a multi-level CNN, which processes
local and global information in separate branches. These methods are to some
extent complementary to Paper E, as they consider the compound problem of
transforming an LDR image to HDR. The method by Marnerides et al. can also
in certain situations produce better approximation for large saturated areas,
with less tiling artifacts due to the multi-level network. In comparison, the
method in Paper E only attempts at recovering information in over-exposed
image regions. The rest of the image is taken from the input LDR image, by
applying an inverse CRF. As discussed in Section 5.1, pixel saturation is the most
prominent problem in inferring HDR from LDR and also tractable to attempt to
solve. By focusing on this, we are able to provide better dynamic range recovery
as compared to the other methods. For example, the presented results of the
concurrent methods have not demonstrated successful reconstruction of intense
highlights and light sources, which are important in e.g. IBL and a number of
post-processing applications. Moreover, we argue that, by focusing on saturated
pixels, the quality level of reconstructed colors and details demonstrated in
Paper E is not possible to achieve with other currently existing methods.

5.3 Deep learning reconstruction

5.3.1 CNN design

Paper E uses a CNN in an auto-encoder design, as illustrated in Figure 5.4. The
encoder takes a display-referred LDR image as input and transforms it to a
latent representation of 512 feature maps. The encoder uses the convolutional
layers of the VGG16 network [227], where pooling operations down-sample the
W ×H pixels image to an encoded resolution of W/32×H/32 pixels. The decoder
reconstructs the image from the encoded representation, using a number of
consecutive convolutional and up-sampling layers. Since the architecture is
a fully convolutional network (FCN), it is able to process any image that has
horizontal and vertical resolutions that are multiples of 32.

While the encoder processes display-referred pixels, the decoder reconstructs
scene-referred values in the log domain. However, at some point in the deeper
layers of the auto-encoder the concepts of display-referred and scene-referred
are lost, and the latent feature representation cannot be said to have a particular
calibration. This allows for a connection directly between the different domains
of the encoder and decoder.

In order to provide better details for the decoder’s reconstruction, there are
skip-connections that by-pass information from the encoder to decoder. These
include a transformation, D = log ( f −1(E)), as demonstrated in Figure 5.4,
which accounts for the different domains of the encoder and decoder. The
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Figure 5.4: Overview of the single-exposure deep learning pipeline from Paper E.
The encoder transforms the display-referred input to a latent feature representation.
The decoder reconstructs a scene-referred HDR image in the log domain. The final
image is computed from interpolating between input and CNN output using the
blend map α. The inverse CRF, f −1, transforms from display-referred to linear pixel
values. The numbers for the CNN layers specify the depth of each layer used in the
different levels.

transformation linearizes the encoder layer E using a static inverse CRF, f −1,
followed by transforming to the decoder layer D in the log domain. However,
as mentioned above, the concept of calibration is lost somewhere in the deeper
layers of the auto-encoder. Thus, while the domain transformation makes for a
better starting point in the top-most layers, so that only the residual has to be
reconstructed, it is probably not needed for the deepest layers. However, it is
not clear how deep into the architecture the transformations are beneficial, so
they are applied to all skip-connections.

In order to focus only on the saturated regions, as discussed in Section 5.1, the
output from the decoder is blended with the input. To this end, the LDR image
x is linearized using a static inverse CRF, f −1(x), while the reconstructed image
ŷ is given in linear values by transforming from the log domain, exp(ŷ). The
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blend map, α, draws pixels from the reconstructed image around saturated
areas, while retaining the input image for non-saturated pixels.

5.3.2 Training

The objective function that the CNN is trained to minimize, is split into two
separate terms. One compares the log illumination of the CNN output, log( Î),
and the ground truth, log(I). The second term compares the log reflectance of
reconstruction, log(R̂), and ground truth, log(R). The separation of the images
into illumination and reflectance is performed using a Gaussian filtering of
the log luminance, similar to how detail/base layer decomposition is done in
tone-mapping. As described in Section 2.4.2, separate consideration of these at-
tributes is motivated from a perceptual standpoint. For the purpose of learning
to reconstruct HDR images, the illumination-reflectance loss can produce results
that are visually more robust, with less visible artifacts. Moreover, it provides
an option for prioritizing the different terms depending on the application, e.g.
to provide better illumination approximation in IBL applications.

Given the image decomposition, the layers are combined to a scalar loss, L,
according to

L = λ∑ ∣α (log( Î)− log(I))∣2 + (1− λ)∑ ∣α (log(R̂)− log(R))∣2 , (5.1)

where the scalar λ controls the relative importance of illumination and re-
flectance. The blend map, α, is used to limit the loss to only the areas around
saturated pixels, as illustrated in Figure 5.4. Specific pixel indices are dropped
for readability, but the summations average across all pixels of the respective
layers. The weights of the CNN are optimized for minimal loss, from back-
propagation using gradient descent with momentum, employing the ADAM
(adaptive moment estimation) optimizer [130].

The CNN is trained on a gathered set of ≈1.1K HDR images and ≈2.6K HDR
video frames. The videos are sampled by selecting every 10th frame from a total
of 67 HDR video clips. In order to simulate LDR images for training input, and
to augment the database with more samples, the concept of a virtual camera
is employed. This simulates a number of LDR images from each input HDR
image scene in a stochastic procedure, where each of the following parameters
is randomly sampled:

1. Position and size of a cropped area.

2. Horizontal image flipping.

3. Exposure setting, selected so that 5-15% of the total number of pixels are
saturated and clipped.
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4. Two settings of a parametric camera response function.

5. Standard deviation of added image noise.

6. Color hue and saturation.

In total, the HDR images are augmented to create a training set of ≈125K,
320× 320 pixels, LDR-HDR image pairs. Nevertheless, the amount of training
data may still be a limiting factor. In order to provide a better starting point
for the optimization, the network is pre-trained on a larger set of simulated
HDR images. The images are selected from the Places database [279], by only
choosing images that are not saturated. An image is considered not saturated if
less than a very small fraction of the image uses the highest pixel value. In total,
a subset of around 600K images satisfy the criteria. These are subsequently
linearized from assuming a static CRF, followed by processing with the same
virtual camera procedure as above. However, only one LDR-HDR image pair is
created from each image and the exposure is selected to saturate 10-30% of the
image pixels.

By performing a two-stage training procedure, it is possible to achieve a sig-
nificant increase in reconstruction quality as compared to only training on the
native HDR data. The first stage uses the simulated HDR dataset to optimize
over a very wide variety of images and pixel saturation situations. However,
the simulated images are limited in dynamic range, which means that it is not
possible to reconstruct intense highlights and light sources after this training
phase. In the second stage, the optimization is fine-tuned on the native HDR
data, which allows for training the architecture to recreate a significantly higher
dynamic range.

5.3.3 Weight initialization

A deep neural network is a complex model, specified from a vast amount of
trainable parameters. Since the objective function, Equation 5.1, is non-convex
over the parameter space, finding a global minimum is in practice impossible.
However, this is in general not a problem for optimization of neural networks,
since most of the local minima tend to have costs close to the global minimum
[101]. Still, there might be a significant difference between minima at different
locations in the parameter space, so that a difference in starting point for the
optimization can affect the final result. This is especially true if there is a
limitation in the amount of training data available for optimization. A common
strategy for selecting starting point is to use pre-trained weights, which may
have been optimized for a completely different task. Since the basic feature
extraction that is performed by a CNN often is similar for different tasks,
and application-specific processing mainly happens in deeper layers, this can
facilitate finding a good local minimum.
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For the training of the CNN in Paper E, we make a number of design and
training choices that are intended to improve on the starting point for the
optimization. As described in Section 5.3.2, weights are first optimized over a
simulated HDR dataset. In order to provide a good starting point for this pre-
training, the encoder convolutional layers are initialized from VGG16 weights
pre-trained for classification on the Places database [279]. The decoder up-
sampling filters are initialized to perform bilinear interpolation. Moreover, the
skip-connected layers provide a better starting point by including the domain
transformation shown in Figure 5.4. These layers are concatenated with the
decoder layers, and then combined by learning how to fuse the information.
The fusion is initialized to perform an addition of the layers, similar to how
residual networks do. The remaining weights, for convolution within the latent
representation and for the final layers of the decoder, are specified using the
Xavier initialization method [99].

5.3.4 Results

The single-exposure HDR reconstruction CNN can provide convincing pre-
dictions of over-exposed pixels in a standard LDR image, as shown in the
example in Figure 5.5. In the input LDR image, Figure 5.5a, the exposure
is set to reproduce details of the darker foreground. Figure 5.5b shows that
when decreasing the exposure by 3 stops in post-processing, of the already
captured image, it becomes clear that there is no information available in the
brighter parts of the image. A single exposure is incapable of registering both
details in darker regions of the scene and the high-intensity lighting. In fact,
many different exposures are required to capture the dynamic range of the
scene, as illustrated in Figure 1.1. The reconstruction using the trained CNN is
displayed in Figure 5.5c, where the enlarged regions show how colors, details,
and high intensities can be inferred with high quality. The limitations are also
evident. While smaller spatial neighborhoods can be reproduced to be visually
indistinguishable from HDR images without ground truth reference, the larger
area of the lamp lack in reconstructed details. However, the reconstruction still
offers a huge improvement as compared to the input image, and would allow
for high-quality results in many HDR applications, including IBL.

While large areas with saturation in all color channels are difficult to reconstruct,
it is a much easier problem if there is some information left in one of the
channels. This is demonstrated in Figure 5.6, where the input image shows well-
exposed buildings, but where a large portion of the sky is over-exposed. In the
input image with decreased exposure, it is evident that there are many pixels
with lost information due to sensor saturation. In Figure 5.6c, the over-exposed
pixels have been color coded to show which color channels are saturated. The
saturated channels have a value of 0 and the others have maximum value.
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±0 stops
±0 stops

±0 stops

±0 stops

(a) Input LDR image

-3 stops
-6 stops

-3 stops

-4 stops

(b) Input LDR image, with decreased exposure

-3 stops
-6 stops

-3 stops

-4 stops

(c) Reconstructed HDR image

-3 stops
-6 stops

-3 stops

-4 stops

(d) Ground truth HDR image

Figure 5.5: Reconstruction of a high resolution LDR image (1920×1280 pixels). The
exposures of the images and enlarged regions have been reduced according to the
specified numbers of stops. The HDR images are displayed after applying gamma
correction. The colored lines correspond to the scanline plots in Figure 5.3.



5.3 ● Deep learning reconstruction 93

±0 stops

(a) Input LDR image

-3 stops

(b) Input LDR, reduced exposure

±0 stops

(c) Saturated pixels

-3 stops

(d) Reconstructed HDR image

Figure 5.6: Reconstruction from an iPhone 6S camera. The input image experiences
a total of 34.5% saturated pixels, as seen by the large over-exposed area in (a-b).
However, many pixels still have information in the blue color channel, as visualized in
(c), where only the black areas show saturation in all color channels. The information
allows for successful reconstruction, (d).

This means that black corresponds to saturation in all channels. In cyan areas,
only the red channel has saturated, and in blue areas both red and green
channels are saturated. Although a total of 34.5% of the pixels are saturated,
the saturation is distributed according to 53.5%, 42.7%, and 7.1% saturation in
the red, green, and blue channels, respectively. With the information that is
left in the blue channel, reconstruction is much simplified, as can be seen in
the reconstruction in Figure 5.6d. The example also demonstrates successful
generalization, where the image is captured by a smartphone camera with
unknown CRF and post-processing applied.
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5.3.5 Compression artifacts

The trained model in Paper E is limited in how much lossy image compression,
and the artifacts thereof, can be tolerated. The reconstruction is highly sensitive
to differences in the information around saturated image areas, and even a visu-
ally imperceptible degradation caused by compression artifacts can completely
break the reconstruction.

In order to account for compression artifacts in the reconstruction, we have
complemented the training from Paper E with a new dimension of data augmen-
tation. In addition to the list of parameters of the virtual camera in Section 5.3.2,
the final image is stored with JPEG compression, choosing a random quality
level in the range 30-100. Training with the updated augmentation is done only
in the second phase, on the native HDR dataset, initializing the CNN with the
same pre-training parameters as in Paper E.

In Figure 5.7, a comparison is made between reconstruction with and without
including lossy compression in the training, for a number of different JPEG
quality levels. In this example, when compression has not been considered in
training, the reconstruction is heavily affected already at the maximum JPEG
quality level. With lowered quality level, the reconstruction soon shows very
little improvement over the input LDR image. Including compression artifacts
in the training leads to a significant improvement in reconstruction quality
on JPEG images. However, inspecting the reconstructions on lossless LDR
images, the original weights can better reproduce image details. One possible
explanation for this is that the CNN trained with compression learns to perform
a selective low-pass filtering of the images. Since the ground truth HDR images
in the training do not contain compression artifacts, the network attempts to
suppress the blocking artifacts produced by the JPEG encoder.

5.3.6 Adversarial training

As mentioned in relation to the example in Figure 5.5, there is a limit to how
large areas with all channels saturated that can be convincingly reconstructed.
This limit is highly dependent on image content, and therefore hard to quantify.
The difficulty in reconstructing content in large areas is an inherent problem
with image-to-image training using a pixel-wise loss, as the L2 loss in Equa-
tion 5.1. Even if there was an infinite number of different HDR images for
training, and a successful optimization could be made across those, the result
would lack in details. This is due to the fact that the reconstruction will be
optimal in an L2 sense, comparing to all the provided possible solutions. Con-
sequently, the best reconstruction is the average across all these solutions. If
it was possible to select, for each image, only a single solution out of all the
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Lossless JPEG, 100 JPEG, 80 JPEG, 60 JPEG, 40

(a) Without including compression in training

Lossless JPEG, 100 JPEG, 80 JPEG, 60 JPEG, 40

(b) With JPEG compressed training images

Figure 5.7: Reconstruction of JPEG compressed LDR images at different quality
levels, using the image from Figure 5.5. The color codes refer to the marked areas
in Figure 5.5. The lamp and facade are displayed at -6 and -3 stops, respectively,
followed by gamma correction.
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possibilities, there would be a higher loss over the database, despite providing
more convincing representations of true scenes.

The concept of adversarial training, using generative adversarial networks (GANs)
[100], can be thought of as forcing the solution of a neural network towards one
particular mode, thus alleviating the averaging problems with a direct loss. This
is achieved by having one generative model that attempts at capturing samples
from a certain data distribution, and one discriminative model that estimates
the probability of the sample coming from the training data as opposed to being
generated. Both models are trained simultaneously. The generator attempts
to fool the discriminator, and the latter tries to separate generated samples
from true training data. This training strategy has been applied to CNN
generators, using deep convolutional GANs (DCGANs) [206], which map a vector
of uniformly distributed noise, through a set of convolutional up-sampling
layers, to a natural image output.

In order to apply DCGANs in a supervised training setting, one possible so-
lution is to formulate a combined loss, containing one pixel-wise term and
one adversarial term. While the pixel-wise loss assures that the image out-
put complies with a ground truth, the adversarial term promotes solutions
that faithfully capture the image statistics. In practice, this means that more
sharp features and details, which better convey a convincing solution, can be
reproduced. The strategy has shown promising results e.g. for the purpose of
inpainting [196], which is similar to our problem.

To confirm that adversarial training also can aid in reconstructing larger satu-
rated image regions, we modify the context encoder (CE) used by Pathak et al.
for inpainting [196]. This uses an auto-encoder generator network, where the
latent representation is stored in a 1D fully connected layer with 4000 numbers.
The generator takes a display-referred image as input and predicts an inpainted
image in the same domain. We complement the network with skip-connections
between encoder and decoder, so that fine details can bypass the deeper lay-
ers. Also, the loss is evaluated over the complete image, instead of only in a
rectangular region with missing information.

We follow the recommendations on how to construct and train a DCGAN that
is reasonably stable to train [206], with input/output layers specifying pixel
values in the range [−1, 1], batch normalizations, and leaky ReLu. Since the
range of the output is limited, we scale the intensity of the input image by a
factor 1/3. This enables learning of highlights that are at most 3 times brighter
than the input, in display-referred values. For training, we use the same subset
of Places images that were used for pre-training in Section 5.3.2. The images
are captured by the virtual camera in Section 5.3.2, where the exposure is set
so that 20-40% of the pixels are saturated. 2 captures are made in each of the
images, for a total of 1.2M training images.
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Input Saturated pixels Pixel-wise L2 loss Context enc. (CE) Skip-conn. CE Ground truth

Figure 5.8: Adversarial highlight hallucination on test images from the Places
database. The test images have been clipped such that 30% of the pixel information
is lost in the highlights, as can be seen in the second column, which is visualized
in the same way as in Figure 5.6. Compared to using only a pixel-wise L2 loss, the
context encoders (CE) can hallucinate visually plausible image features (e.g. specular
reflections on iceberg and clouds on sky). Skip-connections make the CE better
preserve details in areas around highlights (see for example mountains and plants in
the second row). In some cases the hallucinated structures from adversarial training
can be perceived as artifacts (bottom row). Images are shown at ≈3 stops exposure
reduction.
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Some results of the adversarial highlight inpainting are shown in Figure 5.8.
The figure also includes examples of training without the adversarial term
and with the original inpainting context encoder, without skip-connections.
The examples clearly show that adversarial training can help in hallucinating
new and plausible information, such as the specular highlights of the iceberg
and the clouds on the skies. This is not possible by using only the pixel-loss,
which generates blurry features and lack in detail. Finally, comparing the
skip-connection network to the original context encoder, it can much better
preserve details when only one or two color channels have saturated, since
the available information can be passed to the decoder without having to be
compressed within the latent feature vector.

Although visually convincing results can be generated with the adversarial
training methodology, it is also highly unpredictable. Results can be widely
different from one training iteration to the next and in many cases predicted
structures can be perceived as artifacts, as shown in the bottom example in
Figure 5.8. Furthermore, the fully connected latent representation of the auto-
encoder makes it limited to the image resolution used in the training (128x128
pixels in our case). Finally, the predictions are restricted to a maximum output
intensity, which is a significant limitation for HDR images.

When it comes to image resolution, there are examples of fully convolutional
networks that incorporate adversarial training, and which can predict high reso-
lution images in high quality. One example is the deep ResNet for single image
super-resolution by Ledig et al. [147]. However, the problem of super-resolution
is significantly different, and more local in nature, as compared to inpaint-
ing large areas in the spatial domain. There are also some promising recent
methods for inpainting, which utilize FCNs together with adversarial training
[120, 153, 275]. These attempt to include a more high-level understanding of the
images in order to create features that are semantically meaningful. In general,
there is a lot of research interest around GANs, with new training strategies
appearing frequently. Hence, it is expected that it is only a matter of time before
robust single-exposure HDR image reconstruction can be performed at high
resolution with aid of adversarial training. For the work in Paper E, we opted
not to include GANs, to allow for a more robust and less limited reconstruction.

5.4 Summary

The work in Paper E makes it possible to reconstruct HDR images from single-
exposure LDR images in a wide range of situations. Compared to previous
methods, the results show unprecedented quality in terms of details, colors and
intensities of the reconstructed saturated image regions. From the subjective
experiment in Paper E, performed on an HDR display, it is also confirmed
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that the CNN reconstruction provides convincing HDR images. In most cases,
the predictions are comparable to the ground truth HDR images in terms of
perceived naturalness.

The presented method excels at recovering intensities of small highlights, such as
specular reflections and street lights, which would require many exposures with
classical capturing methods. For the purpose of IBL, this enables renderings
that are very close to what the ground truth HDR images would give. This has
not been possible previously, where methods for inverse tone-mapping only
can attempt to boost saturated image regions in order to provide renderings
that are visually more appealing, but not necessarily true to nature. Also, in
situations where dynamic HDR panoramas are required for IBL, the CNN
HDR reconstruction can potentially be useful in order to increase the dynamic
range of already captured HDR videos. Here, the reconstruction can help in
recovering high intensity highlights that are outside the range of what can be
captured in a HDR video camera.

The HDR reconstruction CNN is made available online1, together with trained
weights, so that inference can be made using any LDR images. Additional
weights, which have been trained with compression artifacts included (Sec-
tion 5.3.5), are also provided. Finally, the code has also been complemented
with training script and virtual camera code, so that the model can be trained
with different data, and possibly tweaked for improved results.

5.4.1 Limitations and future work

While the method in Paper E can predict very high intensities in smaller
saturated regions and highlights, there is still some under-estimation of the very
brightest pixels. This can, for example, be seen in Figure 5.3, where the brightest
reconstructed pixels are around 100 times more intense than in the input LDR
image. However, in the ground truth HDR image there are pixels with more
than 1,000 times larger luminance. Also, as demonstrated in Figure 1.1, the
most intense pixels should be even larger, since there are some saturated pixels
in the shortest exposure. This HDR image has been captured with 7 different
exposures, which is more than for many of the HDR images in the training
dataset. For example, many of the images are taken from HDR videos, which
often can be more limited in dynamic range as compared to static images. Thus,
there is an inherent difficulty in learning how to reconstruct the extreme pixels,
as the training data also experience saturation.

One of the most central aspects of successful learning is the training data. While
HDR images are starting to become available in larger quantities, the number

1 https://github.com/gabrieleilertsen/hdrcnn

https://github.com/gabrieleilertsen/hdrcnn
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of images is still not comparable to the very large image databases, e.g. Places
and Imagenet, which are used for learning other imaging tasks. There are
other datasets that potentially can be used in order to improve performance,
such as from Google’s HDR+ project [112], SJTU HDR Video Sequences [228],
the RAISE [59] and FiveK [45] datasets of RAW images, etc. All these sources
provide images at an increased bit-depth. However, the images show relatively
limited extensions in dynamic range and/or are saturated in high-intensity
image regions. The latter issue can potentially make the under-estimation of
extreme intensities more pronounced. One possible option for incorporating
the data in the training would be to use it for pre-training of the network, or by
attempting to only select images that do not include saturated regions.

Another natural extension of Paper E is to consider the reconstruction of video
sequences. This would require investigating how to ensure temporal coherence
in the reconstruction. Moreover, the added dimension makes it interesting to
explore how to perform the reconstruction of a frame given predictions of the
previous frames, placing a conditioning in the temporal domain.

In the current reconstruction pipeline, there is no mechanism for quality control
of the output. In certain situations, e.g. when large areas are saturated, the
reconstructed pixels can experience artifacts. In order to improve robustness,
it would be of interest to ensure that the reconstruction result makes sense, so
that it cannot be of visually lower quality than the input image.

Finally, as discussed in Section 5.3.6, a very interesting avenue for future work is
to employ adversarial training, in order to be able to hallucinate image content
in larger saturated regions.



Chapter 6
Conclusions

In this thesis and the included papers, we have presented a set of contributions
at different steps of the HDR imaging pipeline. Starting from a high-level
introduction to the concept of high dynamic range imaging and video, the
background follows up with an overview of research and production related
to HDR imaging. The field of HDR imaging has grown rapidly over the last
two decades (see Figure 6.1), and the background attempts to give a broad
description in relation to the different components of the HDR imaging pipeline.
Following, in the paper specific chapters the thesis work is then discussed.
This is done in an attempt to not repeat the details that can be found in the
individual papers, but rather to provide a higher level discussion around the
motivation, contributions, implications, limitations, and possible directions for
future work. To this end, a set of new examples and results help in mediating
this information and complement the thesis papers with some new insights.

This chapter concludes the thesis with a final summary of the contributions of
the thesis papers in Section 6.1. We also summarize some of the new insights
and results that were provided throughout the first part of the thesis. Finally,
Section 6.2 reflects over the current and future situation in HDR imaging

6.1 Contributions

Contributions have been presented within three of the software components
of the HDR imaging pipeline, as illustrated in Figure 1.4. For each of the
components, the thesis also contributes with a number of complementing
discussions, details, and results related to the papers.

101



102 Chapter 6 ● Conclusions

6.1.1 Tone-mapping

The first contribution to tone-mapping is the qualitative and subjective evalua-
tion of video TMOs presented in Paper B. This demonstrates that, at the time
of the work, there were a number of challenges that needed to be addressed
in order to allow for robust tone-mapping of content captured with HDR cam-
era systems. We believe that this evaluation has had a distinct impact on the
subsequent research on video tone-mapping, where it often is used in order to
motivate the need for developing new HDR video processing algorithms.

The second contribution is the novel tone-mapping operator in Paper C, which
is specifically tailored considering the challenges in tone-mapping of natural
HDR video sequences. The method produces high levels of detail and local
contrast, without revealing spatial and temporal artifacts. The dynamic range is
compressed by minimizing the distortions of contrasts in the mapping, where
special considerations are made in order not to reveal visible noise. All the
computations run in real-time on high-resolution videos, by implementing the
method for hardware acceleration.

The third contribution is the literature review and quantitative evaluation in
Paper A. The work serves both as an up-to-date comprehensive reference and
categorization of video TMOs, and as a comparative assessment of the latest
development in tone-mapping for HDR video.

In addition to the contributions of the individual tone-mapping papers, the
thesis provides a number of additional insights:

1. First, by discussing the papers in combination, it is evident how they follow a
natural chain of development. The work starts with an evaluation of existing
techniques for tone-mapping of HDR video, then uses the findings in order
to develop a new and improved video TMO. Finally, the improvements
of the new method are confirmed in the literature study and quantitative
evaluation.

2. We show additional details of the technique used for calibration of video
TMOs. This is an important topic, as it can to a large extent affect the
outcome of an evaluation. The technique enables using interpolation between
a sparse set of videos, by sampling in a linearized parameter space. Then,
optimization is performed by means of a conjugate gradient search in the
parameter space, using perceptual judgments as the objective function.

3. In Paper B it is noted that there seems to be a correlation between the
qualitative ratings and the subjective preferences measured from the pair-
wise comparison experiment. To confirm this, we compile the results from
the two experiments and illustrate them side-by-side for each evaluated TMO.
This demonstrates an evident correlation between the experiments, where a
higher artifact and attribute rating predicts a lower end subjective preference.
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4. Finally, we also show a clear correlation between the quantitatively measured
temporal incoherence in Paper A and the qualitative incoherence ratings
from Paper B. This observation confirms that the quantitative approach
indeed provides a good measure of temporal artifacts.

6.1.2 Distribution

The work in Paper D shows two contributions to the area of HDR video
distribution. First, a set of methods involved in preparing HDR data for
encoding are compared. The performance is evaluated in terms of two objective
metrics, computed over a set of 33 different HDR video sequences. The results
demonstrate that the perceptually based luminance and color encodings allow
for a significant increase in quality for a given bit-rate. Second, based on the
results of the comparisons, the Luma HDRv codec and API is built by using
the best performing techniques as the default settings. The software is made
available on open source terms, and to our knowledge it was the first freely
available HDR video codec.

In the thesis, we complement the paper with additional results and insights:

1. We perform a new evaluation, which compares the Lu’v’ and YCbCr color
spaces at two different combinations of luma/chroma bit-depth. The results
indicate that YCbCr benefits from 10/10 bits luma/chroma instead of the
combination 11/8 that was used in Paper D. The results also show that, as
expected, the 11/8 combination is the better choice for Lu’v’. Although the
performance increased for YCbCr, the Lu’v’ encoding still provides a better
rate-distortion trade-off.

2. Also, due to the activity around HDR TV, we provide a discussion on the
recent developments in HDR video codecs. While open source alternatives
for HDR video encoding are starting to become available, we discuss how
Luma HDRv still can provide a useful tool. It can provide a versatile HDR
encoding abstraction layer, which can be used with different encoders under
the hood.

6.1.3 Reconstruction

With the work in Paper E, we contribute by providing a novel solution to the
difficult problem of inferring HDR pixels in a single-exposed LDR image. By
utilizing deep learning strategies, we are able to demonstrate results that far
exceed what was previously possible. While we are restricted to reconstruction
in saturated image regions, the results produced by the trained CNN allow for
using LDR images in a larger number of HDR applications than was previously
possible.
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In order to complement the paper, the thesis provides some new results and
discussions:

1. A thorough discussion and analysis of the single-exposure HDR reconstruc-
tion problem is provided, which is facilitated by extracting statistics from a
large HDR image dataset. The analysis motivates focusing on the saturated
image regions, as there is a high gain in dynamic range for few successfully
reconstructed pixels.

2. An additional optimization is performed, which includes JPEG compressed
training images. It shows substantial improvements in reconstruction quality
on images that are degraded by compression artifacts. The trained parame-
ters are made available online, together with code for running inference and
for performing optimization of the CNN.

3. Finally, GANs are discussed and shown to generate promising results. As
opposed to using only a pixel-wise loss, complementing with an adversarial
loss allows for reconstructing sharp hallucinated image features in large
saturated image areas. However, there are many limitations to be overcome
with adversarial training, but we believe that it is only a matter of time before
this can be done.

6.2 Outlook

The high activity around HDR imaging within the research community can be
seen from the increasing number of publications each year. Figure 6.1 shows
the yearly count of publications over the last 25 years, according to Google
Scholar, which contain the specified search phrases in the title. There might
be publications that use “high dynamic range” or “tone mapping” in the title,
but do not consider images or video. It is also most certainly the other way
around, where publications treat HDR imaging but do not specify this in the
title. However, the plots give an indication of the increasing interest in HDR
imaging. With this past and ongoing research, we will most likely see a rapid
increase in the use of HDR images and video in the near future.

For display of HDR images, the recent introduction and popularity of HDR
TVs mean that the format has truly been established on the consumer market.
This trend is likely to continue, and not only for display on HDR capable TVs.
For a conventional display device, there are also great benefits in supporting
HDR material. The format allows for flexibility when preparing an image
or video for the display, taking into account the certain display parameters
and environmental factors (Equation 1.1). For example, higher contrast and
brightness is required in a bright environment in order to match the viewing
experience in a dark room as close as possible. Thus, performing tone-mapping
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Figure 6.1: The number of publications per year that contain the different terms in
the title, according to Google Scholar. Citations and patents are not included in the
searches.

on location can make for minimal differences in the viewed content in different
situations. It also allows for personal adjustments, maximizing the subjective
quality on a per-unit level. While LDR images also can be tweaked to some
extent in order to satisfy the aforementioned goals, the HDR format allows for
significantly more extensive processing.

On the capturing side, in the future there will probably be more options
that utilize multiple sensors, also for consumer level products. One possible
direction of development is to combine different types of sensors. For example,
a larger conventional sensor can capture the majority of details, while a log
sensor registers a low-resolution HDR image. The fusion of the different types
of sensory data will likely use a machine learning approach, in order to better
handle areas with missing information. In general, there will most likely also be
a continuing increase in learning based post-processing methods for improving
image quality. This is especially expected for mobile devices, where there are
physical constraints on optics and sensors due to the limited size. In order
to enable extensive image reconstruction algorithms, custom chips for image
processing could be put on-board the device. This has already been realized
with Google’s Pixel Visual Core chip in the Pixel 2 smartphone, but will likely
be common in the future. Given such development, it could, for example, be
possible to reconstruct HDR images directly in the device using neural networks,
such as the method presented in Paper E.
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[216] M. Řeřábek and T. Ebrahimi. Comparison of compression efficiency
between HEVC/H.265 and VP9 based on subjective assessments. In
Proceedings of SPIE, Optical Engineering + Applications, volume 9217, 2014.
[page 75]



Bibliography 127

[217] M. A. Robertson, S. Borman, and R. L. Stevenson. Estimation-theoretic ap-
proach to dynamic range enhancement using multiple exposures. Journal
of Electronic Imaging, 12(2):219–229, 2003. [page 22]

[218] M. Rouf, R. Mantiuk, W. Heidrich, M. Trentacoste, and C. Lau. Glare
encoding of high dynamic range images. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2011), pages 289–296,
2011. [page 24]

[219] Rtings.com. Peak brightness of TVs. https://www.rtings.com/tv/tests/

picture-quality/peak-brightness, Accessed: 2018-04-15. [page 45]

[220] C. Schlick. Quantization techniques for visualization of high dynamic
range pictures. In Photorealistic Rendering Techniques, pages 7–20, 1995.
[pages 35, 36, and 38]

[221] M. Schöberl, A. Belz, J. Seiler, S. Foessel, and A. Kaup. High dynamic
range video by spatially non-regular optical filtering. In Proceedings of
IEEE International Conference on Image Processing (ICIP 2012), pages 2757–
2760, 2012. [page 24]

[222] H. Seetzen, L. A. Whitehead, and G. Ward. 54.2: A high dynamic range
display using low and high resolution modulators. SID Symposium Digest
of Technical Papers, 34(1):1450–1453, 2003. [page 43]

[223] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead,
M. Trentacoste, A. Ghosh, and A. Vorozcovs. High dynamic range display
systems. ACM Transactions on Graphics, 23(3):760–768, 2004. [pages 9
and 43]

[224] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman, and
E. Shechtman. Robust patch-based HDR reconstruction of dynamic scenes.
ACM Transactions on Graphics, 31(6):203:1–203:11, 2012. [page 22]

[225] A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia. Convolu-
tional sparse coding for high dynamic range imaging. Computer Graphics
Forum, 35(2):153–163, 2016. [page 24]

[226] F. D. Simone, G. Valenzise, P. Lauga, F. Dufaux, and F. Banterle. Dynamic
range expansion of video sequences: A subjective quality assessment
study. In Proceedings of IEEE Global Conference on Signal and Information
Processing (GlobalSIP 2014), pages 1063–1067, 2014. [pages 26 and 82]

[227] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[pages 86 and 87]

https://www.rtings.com/tv/tests/picture-quality/peak-brightness
https://www.rtings.com/tv/tests/picture-quality/peak-brightness


128 Bibliography

[228] L. Song, Y. Liu, X. Yang, G. Zhai, R. Xie, and W. Zhang. The SJTU HDR
video sequence dataset. In Proceedings of International Conference on Quality
of Multimedia Experience (QoMEX 2016), 2016. [page 100]

[229] Q. Song, G. M. Su, and P. C. Cosman. Hardware-efficient debanding and
visual enhancement filter for inverse tone mapped high dynamic range
images and videos. In Proceedings of IEEE International Conference on Image
Processing (ICIP 2016), pages 3299–3303, 2016. [page 25]

[230] Sony. Sony news releases January 09, 2018. https://www.sony.net/

SonyInfo/News/Press/201801/18-002E/index.html, 2018, Accessed: 2018-04-15.
[page 44]

[231] K. E. Spaulding. Using a residual image to extend the color gamut and
dynamic range of an sRGB image. Proceedings of IS&T PICS Conference,
2003, pages 307–314, 2003. [page 32]

[232] L. Spillmann and J. S. Werner. Visual perception: The neurophysiological
foundations. Elsevier, 2012. [page 4]

[233] S. Stevens. Psychophysics: Introduction to Its Perceptual, Neural, and Social
Prospects. John Wiley & Sons, 1975. [page 41]

[234] K. Subr, C. Soler, and F. Durand. Edge-preserving multiscale image
decomposition based on local extrema. ACM Transactions on Graphics, 28
(5):147:1–147:9, 2009. [page 37]

[235] N. Sun, H. Mansour, and R. Ward. HDR image construction from multi-
exposed stereo LDR images. In Proceedings of IEEE International Conference
on Image Processing (ICIP 2010), pages 2973–2976, 2010. [page 23]

[236] M. D. Tocci, C. Kiser, N. Tocci, and P. Sen. A versatile HDR video
production system. ACM Transactions on Graphics, 30(4):41:1–41:10, 2011.
[pages 20, 23, and 48]

[237] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In Proceedings of International Conference on Computer Vision (ICCV 1998),
pages 839–846, 1998. [pages 37 and 58]

[238] A. Tomaszewska and R. Mantiuk. Image registration for multi-exposure
high dynamic range image acquisition. In Proceedings of International
Conference on Computer Graphics, Visualization and Computer Vision (WSCG
2007), 2007. [page 22]

[239] A. Troccoli, S. B. Kang, and S. Seitz. Multi-view multi-exposure stereo.
In Third International Symposium on 3D Data Processing, Visualization, and
Transmission, pages 861–868, 2006. [page 23]

https://www.sony.net/SonyInfo/News/Press/201801/18-002E/index.html
https://www.sony.net/SonyInfo/News/Press/201801/18-002E/index.html


Bibliography 129

[240] Y. Tsin, V. Ramesh, and T. Kanade. Statistical calibration of CCD imaging
process. In Proceedings IEEE International Conference on Computer Vision
(ICCV 2001), volume 1, pages 480–487, 2001. [page 22]

[241] J. Tumblin and H. Rushmeier. Tone reproduction for realistic images.
IEEE Computer Graphics and Applications, 13(6):42–48, 1993. [pages 33, 35,
and 38]

[242] J. Tumblin and G. Turk. LCIS: a boundary hierarchy for detail-preserving
contrast reduction. In Proceedings of SIGGRAPH 1999, Annual Conference
Series, pages 83–90, 1999. [page 37]

[243] J. Tumblin, J. K. Hodgins, and B. K. Guenter. Two methods for display
of high contrast images. ACM Transactions on Graphics, 18(1):56–94, 1999.
[page 38]

[244] O. T. Tursun, A. O. Akyüz, A. Erdem, and E. Erdem. The state of the art
in HDR deghosting: A survey and evaluation. Computer Graphics Forum,
34(2):683–707, 2015. [page 22]

[245] J. Unger and S. Gustavson. High-dynamic-range video for photometric
measurement of illumination. In Proceedings of SPIE, Sensors, Cameras,
and Systems for Scientific/Industrial Applications VIII, volume 6501, 2007.
[pages 20 and 24]

[246] J. Unger, S. Gustavson, M. Ollila, and M. Johannesson. A real time light
probe. In Proceedings of Eurographics Annual Conference, Short Papers and
Interactive Demos, pages 17–21, 2004. [page 20]

[247] J. Unger, J. Kronander, P. Larsson, S. Gustavson, J. Löw, and A. Ynnerman.
Spatially varying image based lighting using HDR-video. Computers and
Graphics, 37(7), 2013. [page 9]

[248] J. Unger, F. Banterle, G. Eilertsen, and R. K. Mantiuk. The HDR-video
pipeline - from capture and image reconstruction to compression and
tone mapping. In Eurographics 2016 Tutorials, 2016.

[249] S. D. Upstill. The Realistic Presentation of Synthetic Images: Image Processing
in Computer Graphics. PhD thesis, University of California, Berkeley, 1985.
[page 33]

[250] J. H. van Hateren. Encoding of high dynamic range video with a model of
human cones. ACM Transactions on Graphics, 25:1380–1399, 2006. [pages 34,
40, 48, and 50]



130 Bibliography

[251] P. Vangorp, K. Myszkowski, E. W. Graf, and R. K. Mantiuk. A model of
local adaptation. ACM Transactions on Graphics, 34(6):166:1–166:13, 2015.
[page 4]

[252] C. Villa and R. Labayrade. Psychovisual assessment of tone-mapping
operators for global appearance and colour reproduction. In Proceedings
of Colour in Graphics Imaging and Vision (CIC 2010), 2010. [page 41]

[253] R. Wanat, J. Petit, and R. Mantiuk. Physical and perceptual limitations of
a projector-based high dynamic range display. In Theory and Practice of
Computer Graphics. The Eurographics Association, 2012. [page 44]

[254] H. Wang, R. Raskar, and N. Ahuja. High dynamic range video using split
aperture camera. In Proceedings of IEEE 6th Workshop on Omnidirectional
Vision, Camera Networks and Non-classical Cameras (OMNIVIS 2005), 2005.
[pages 20, 23, 36, and 48]

[255] L. Wang, L.-Y. Wei, K. Zhou, B. Guo, and H.-Y. Shum. High dynamic
range image hallucination. In Proceedings of Eurographics Conference on
Rendering Techniques (EGSR 2007), pages 321–326, 2007. [pages 27 and 82]

[256] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity
for image quality assessment. In Proceedings of Asilomar Conference on
Signals, Systems Computers, (ACSSC 2003), volume 2, pages 1398–1402,
2003. [pages 41 and 73]

[257] G. Ward. Real pixels. Graphics Gems II, pages 80–83, 1991. [page 28]

[258] G. Ward. A contrast-based scalefactor for luminance display. Graphics
gems IV, pages 415–421, 1994. [pages 35 and 38]

[259] G. Ward. Fast, robust image registration for compositing high dynamic
range photographs from hand-held exposures. Journal of Graphics Tools, 8
(2):17–30, 2003. [page 22]

[260] G. Ward and M. Simmons. Subband encoding of high dynamic range
imagery. In Proceedings of Symposium on Applied Perception in Graphics and
Visualization (APGV 2004), pages 83–90, 2004. [page 32]

[261] G. Ward and M. Simmons. JPEG-HDR: A backwards-compatible, high
dynamic range extension to JPEG. In Proceedings of Color and Imaging
Conference (CIC 2005), volume 2005, pages 283–290, 2005. [page 32]

[262] G. J. Ward. The RADIANCE lighting simulation and rendering system.
In Proceedings of SIGGRAPH 1994, Annual Conference Series, pages 459–472,
1994. [page 28]



Bibliography 131

[263] G. Ward Larson. LogLuv encoding for full-gamut, high-dynamic range
images. Journal of Graphics Tools, 3(1):15–31, 1998. [pages 29 and 74]

[264] G. Ward Larson, H. Rushmeier, and C. Piatko. A visibility matching tone
reproduction operator for high dynamic range scenes. IEEE Transactions on
Visualization and Computer Graphics, 3(4):291–306, 1997. [pages 35 and 38]

[265] B. Weiss. Fast median and bilateral filtering. ACM Transactions on Graphics,
25(3):519–526, 2006. [page 37]

[266] S. Wu, J. Xu, Y. Tai, and C. Tang. End-to-end deep HDR imaging with
large foreground motions. arXiv preprint arXiv:1711.08937, 2017. [page 86]

[267] D. Xu, C. Doutre, and P. Nasiopoulos. Correction of clipped pixels in
color images. IEEE Transactions on Visualization and Computer Graphics, 17
(3):333–344, 2011. [pages 26 and 82]

[268] R. Xu, S. N. Pattanaik, and C. E. Hughes. High-dynamic-range still-image
encoding in JPEG 2000. IEEE Computer Graphics and Applications, 25(6):
57–64, 2005. [page 29]

[269] Q. Yang. Recursive bilateral filtering. In Proceedings of European Conference
on Computer Vision (ECCV 2012), pages 399–413, 2012. [page 37]

[270] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar. Generalized assorted
pixel camera: Postcapture control of resolution, dynamic range, and
spectrum. IEEE Transactions on Image Processing, 19(9):2241–2253, 2010.
[page 24]

[271] H. Yeganeh and Z. Wang. Objective quality assessment of tone-mapped
images. IEEE Transactions on Image Processing, 22(2):657–667, 2013.
[page 41]

[272] H. Yeganeh, S. Wang, K. Zeng, M. Eisapour, and Z. Wang. Objective qual-
ity assessment of tone-mapped videos. In Proceedings of IEEE International
Conference on Image Processing (ICIP 2016), pages 899–903, 2016. [page 41]

[273] A. Yoshida, V. Blanz, K. Myszkowski, and H.-P. Seidel. Perceptual evalua-
tion of tone mapping operators with real world scenes. In Proceedings of
SPIE, Human Vision and Electronic Imaging X, volume 5666, 2005. [pages 41,
42, and 50]

[274] A. Yoshida, R. Mantiuk, K. Myszkowski, and H.-P. Seidel. Analysis of
reproducing real-world appearance on displays of varying dynamic range.
Computer Graphics Forum, 25(3), 2006. [page 41]



132 Bibliography

[275] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image
inpainting with contextual attention. arXiv preprint arXiv:1801.07892, 2018.
[page 98]

[276] J. Zhang and J.-F. Lalonde. Learning high dynamic range from outdoor
panoramas. In Proceedings of IEEE International Conference on Computer
Vision (ICCV 2017), 2017. [pages 27 and 86]

[277] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In
Proceedings of European Conference on Computer Vision (ECCV 2016), pages
649–666, 2016. [page 86]

[278] X. Zhang and D. H. Brainard. Estimation of saturated pixel values in
digital color imaging. Journal of the Optical Society of America A, 21(12):
2301–2310, 2004. [pages 26 and 82]

[279] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning
deep features for scene recognition using places database. In Proceedings
of International Conference on Neural Information Processing Systems (NIPS
2014), pages 487–495, 2014. [pages 90 and 91]

[280] H. Zimmer, A. Bruhn, and J. Weickert. Freehand HDR imaging of moving
scenes with simultaneous resolution enhancement. Computer Graphics
Forum, 30(2):405–414, 2011. [page 22]



Publications



Publications 

The papers associated with this thesis have been removed for 

copyright reasons. For more details about these see:  

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147843 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147843

	Abstract
	Populärvetenskaplig sammanfattning
	Acknowledgments
	Publications
	Contributions
	Contents
	1 Introduction
	1.1 High dynamic range
	1.1.1 Definition
	1.1.2 The dynamic range of the HVS
	1.1.3 Camera and display dynamic range
	1.1.4 Calibration
	1.1.5 Applications

	1.2 Context
	1.3 Author's contributions
	1.4 Disposition

	2 Background
	2.1 Capturing with HDR cameras
	2.1.1 Single-exposure HDR cameras
	2.1.2 Multi-exposure HDR camera systems

	2.2 HDR reconstruction from conventional sensors
	2.2.1 Temporally multiplexed exposures
	2.2.2 Spatially multiplexed exposures
	2.2.3 Single-exposure techniques

	2.3 HDR distribution
	2.3.1 Floating point HDR pixel formats
	2.3.2 HDR encoding using LDR formats

	2.4 Tone-mapping
	2.4.1 Categorization
	2.4.2 Tone-mapping pipeline
	2.4.4 Evaluation

	2.5 HDR displays
	2.5.1 Professional HDR display devices
	2.5.2 HDR TVs


	3 Tone-mapping of HDR video
	3.1 Motivation
	3.2 Evaluation of TMOs
	3.2.1 Parameter calibration
	3.2.2 Qualitative evaluation experiment
	3.2.3 Pair-wise comparison experiment

	3.3 New algorithms
	3.3.1 Filtering for tone-mapping
	3.3.2 Tone-curve
	3.3.3 Noise-awareness

	3.4 Recent developments
	3.5 Summary

	4 Distribution of HDR video
	4.1 Motivation
	4.2 Evaluation
	4.2.1 Setup
	4.2.2 Results
	4.2.3 Comparison to HDR10

	4.4 Summary
	4.4.1 Limitations and future work


	5 Single-exposure HDR image reconstruction
	5.1 Motivation
	5.1.1 Relation to inverse tone-mapping
	5.1.2 Where is the dynamic range?

	5.2 Deep learning for HDR imaging
	5.3 Deep learning reconstruction
	5.3.1 CNN design
	5.3.2 Training
	5.3.3 Weight initialization
	5.3.4 Results
	5.3.5 Compression artifacts
	5.3.6 Adversarial training

	5.4 Summary
	5.4.1 Limitations and future work


	6 Conclusions
	6.1 Contributions
	6.1.1 Tone-mapping
	6.1.2 Distribution
	6.1.3 Reconstruction

	6.2 Outlook

	Bibliography
	Publications



