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Abstract

Computational fabrication technologies have revolutionized manufacturing by offer-
ing unprecedented control over the shape and material of the fabricated objects at
accessible costs. These technologies allow users to design and create objects with
arbitrary properties of motion, appearance or deformation. This rich environment
spurs the creativity of designers and produces an increasing demand for computer-
aided design tools that alleviate design complexity even for non-expert users.

Motivated by this fact, in this thesis, we address the computational design and
automatic fabrication of flexible structures, assemblies of interrelated elements that
exhibit elastic behavior. We build upon mechanical simulation and numerical op-
timization to create innovative computational tools that model the attributes of
the fabricated objects, predict their static deformation behavior, and automatically
infer design attributes from user-specified goals.

With this purpose, we propose a novel mechanical model for the efficient simula-
tion of flexible rod meshes that avoid using numerical constraints. Then, we devise
compact and expressive parameterizations of flexible structures, that naturally pro-
duce coherent designs. Our tools implement inverse design functionalities based on
a sensitivity-based optimization algorithm, which we further extend to deal with lo-
cal minimum solutions and highly constrained problems. Additionally, we propose
interaction approaches that guide the user through the design process. Finally, we
validate all these contributions by developing computer-aided design solutions that
facilitate the creation of flexible rod meshes and Kirchhoff-Plateau surfaces.

In the first part of this work, we overview the relevant foundations of mechanical
simulation, analyze the optimization problem that arises from inverse elastic design
and discuss alternative solutions. Then, in the second part, we propose a computa-
tional method for the design of flexible rod meshes that automatically computes a
fabricable design from user-defined deformation examples. Finally, in the last part,
we study the design and fabrication of Kirchhoff-Plateau surfaces and present a tool
for interactively exploring the space of fabricable solutions.
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Chapter 1

Introduction

This thesis deals with the computational design of flexible structures. We build
upon mechanical simulation and numerical optimization to develop computer-aided
design tools that facilitate the creation of flexible rod meshes and Kirchhoff-Plateau
surfaces. For this purpose, we define compact parameterizations that determine the
geometry and material of the structures; propose novel mechanical models that allow
us to accurately and efficiently predict their deformed shape in static equilibrium;
and devise optimization methods for the automatic inference of design attributes
from user-defined functional goals. This chapter provides a brief introduction on
these topics, focusing on the challenges that have been faced during the development
of the thesis, and the contributions that resulted from its completion.

1.1 Computational design

Computational fabrication technologies like 3D printing offer unprecedented control
over the shape and material attributes of the fabricated objects, with generally little
additional cost dependent on object complexity. This enables an extremely fast
transition from virtual prototypes to physical realizations. For these reasons, these
technologies have already reached an enormous impact on industrial engineering,
where rapid prototyping of all kinds of products, from furniture to vehicle parts, is
already leading to cost reductions and efficiency gains. In addition, computational
fabrication has also “democratized” production tools and brought them closer to
designers, due to their relatively low purchase and material costs. Having full control
over the geometry and material complexity enables the production of objects with
arbitrary properties of motion, appearance or deformation, among others. Designers
are ultimately responsible for creating the “design” or pattern for the construction
of an object considering aesthetic, functional or economic goals.

1
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However, humans are limited in their ability to handle design complexity. For
instance, they may lack the understanding of the underlying process that drives the
deformation of an object; or it may be too costly to analytically predict the effect
of a texture on the reflectance of the material. In general, regardless of the level
of expertise of the design team, a typical product goes through an iterative process
of analysis, design, prototyping and evaluation that is extremely time consuming.
With computational fabrication technologies being now accessible to the public and
massively adopted in industry, there is an increasing demand of computational tools
that alleviate the burden of design complexity, coming from potential users with a
broad range of expertise levels.

Over the last decade, a large part of the computer graphics community has
engaged in responding to this demand, taking advantage of the community’s sci-
entific heritage. The pursuit of realistic real-world representations has led to data
structures for geometry and attribute representation; algorithms for image analy-
sis, synthesis and simulation; and human-computer interaction techniques. All this
interdisciplinary knowledge has been combined into computer-aided design (CAD)
solutions with the purpose of facilitating the design of fabricable objects.

Modern computational design solutions offer four major functionalities (Fig. 1.1):

1. Modeling design attributes. This implies the definition of a design space, i.e.,
finding a computational representation of the possibly complex geometry and
material attributes that determine the fabricated object. In this sense, there is
a preference for exhaustive but compact models that naturally produce “good”
designs yet facilitate user control.

2. Predicting the properties of the fabricated object for a given design. This
has been called forward design and it replaces the costly and time consuming
design cycle. A user knows in advance the mapping from design attributes to
resulting properties, which allows extremely fast iterations without the need
for physical realizations. Forward design involves building a computational
model of the underlying process governing the properties of the object for
simulation (e.g., mechanical elasticity for elastic deformation).

3. Inferring the design of the object that produces some target user-defined prop-
erties. This is the opposite functionality to forward design and has been called
inverse design. This feature aims to replace –or at least reduce the need for–
expert knowledge. The user is not required to know the details of the design,
but only to specify the properties that the fabricated object should fulfill (e.g.,
balance, stability or buoyancy). Through numerical optimization of the com-
putational model built for prediction, the computer infers the corresponding
geometry and material attributes that give rise to user specification.
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4. Guiding the design process. In some design problems, it is not even clear
which is the solution space, i.e., the range of properties that can be achieved
by fabricable objects. Understanding of the solution space may be achieved
by finding high-level descriptors of fabricable properties, so that the user can
easily control them to define targets for inference. Nevertheless, more sophisti-
cated implementations may directly allow designers to virtually navigate only
the space of fabricable solutions, and even suggest alternative paths to spur
the user’s creativity.

Figure 1.1: Modern computational design solutions provide computational models to rep-
resent design attributes and fabricated object properties, and implement numerical meth-
ods allowing the user to navigate both spaces through forward and inverse design.

Fabrication-oriented design tools proposed during the last few years feature some
or all of these functionalities. We have witnessed computational methods for design-
ing objects that can stand on their own [1], spin stably [2] or sound in a specific
manner [3]. It is also possible to create mechanical characters capable of interesting
motions [4] and produce 3D-printable robotic creatures [5] or telescoping struc-
tures [6]. And the list goes on. This rich environment creates fertile ground for
creativity which will go even further in the future, when computational fabrication
technologies become progressively more accessible to the public.

Overview

In this thesis, we deal with the computational design and automatic fabrication of
flexible structures: assemblies of –potentially heterogeneous– interrelated elements
that exhibit elastic behavior. With the development of these methods, we contribute
on each of the functionalities mentioned above: i) we build compact parameteri-
zations of complex structures composed of elastic rods and fabrics; ii) we devise
mechanical models that allow the prediction of their deformation behavior; iii) we
create optimization methods that automatically infer fabricable designs from user-
defined functional goals; and iv) we propose interaction approaches that empower
the user with further understanding and facilitate navigation of the solution space.
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In the following sections, we give a brief overview on these topics, introducing
the scientific and technical challenges that we have addressed, and reviewing the
contributions that we have developed.

1.2 Designing flexible structures

The design and fabrication of deformable objects has been an integral part of human
history since the origins of clothing. The adaptability of deformable materials allows
compliant tools to remain functional in dynamic and constrained environments, and
to safely interact with life forms and fragile objects. Soft materials are being used
increasingly more often for the production of toys, apparel, furniture, architecture
or robots, among others.

Originally limited to rigid materials, computational fabrication methods have
recently opened the door for fast prototyping of deformable objects. While rigid
designs merely require the specification of the geometry, the behavior of a deformable
object is also heavily influenced by the spatial distribution of material attributes.
This poses a grand challenge on computer-aided design as it is non-trivial to model
the continuum mechanics that drive the relationship between the local combination
of geometry and materials, and the corresponding global deformation behavior.

This topic has received increased attention from the computer graphics com-
munity over the last few years. Most of the works differentiate from each other
in how they define the computational model that represents the design space. This
characteristic is typically determined by the fabrication technology that is being em-
ployed. For instance, some works use a discrete combination of template materials
with different deformation behaviors [7]. Other works focus on changing the overall
shape of the objects to determine their deformation properties [8, 9]. Multi-material
printing technologies allow us to consider an heterogeneous spatial distribution of
material attributes [10, 11]. Nevertheless, several recent works are based on defining
small-scale geometry attributes to overcome the use of a single base material [12, 13].
Alternatively, other works have focused on creating interactive solutions that allow
the user to rapidly navigate the space of fabricable designs [14, 15, 16]

The design and fabrication methods developed in this thesis are in line with the
two latter groups of works. We aim for reducing fabrication complexity by using a
single material, and we rely on local geometry changes to determine the deformation
behavior of the flexible structures. The interrelation between the components of the
assembly poses further challenges for the definition of the design space, which must
be compact, tractable, expressive, and it must naturally produce coherent designs.
At the same time, we favor approaches that enable the designers to define the
properties of the fabricated objects either using high-level descriptors or interactive
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techniques. The latter imposes and additional challenge in terms of performance.

Forward and inverse design functionalities heavily rely on mechanical simulation
and elastic shape design through numerical optimization. These are the two foremost
technical challenges that must be overcome for the computational design of flexible
structures.

1.2.1 Mechanical simulation

The computational design of deformable objects relies on mechanical simulation to
accurately predict which will be the static deformation properties of a given design
once fabricated. The creation of analytical models to explain the behavior of real-
world phenomena has been traditionally addressed by classical physics. Engineering
fields have been devoted to the development of computational model and numerical
methods that allow computers to predict the behavior of materials and structures. In
the last few decades, since the pioneering work by Terzopoulos et al. [17], computer
graphics has heavily contributed to the innovation in this area motivated by the
creation of realistic virtual representations of real-world phenomena.

Our work deals with the design and fabrication of flexible structures composed
of elastic rods and fabrics. The accurate simulation of the elastic behavior of fabric
has been successfully tackled in the past [18, 19]. Similarly, several discrete elastic
models have been suggested for the simulation of individual rods [20, 21]. However,
modeling the deformation behavior of an assembly of elements, possibly of a diverse
nature, has not been addressed so often: the structure should remain consistent and
the different components should interact with each other adequately, i.e., point forces
and rotational torques are transferred. In this thesis, we develop simple yet accurate
computational models for the simulation of elastic rod meshes [22], in chapter 5, and
tensile structures [23], in chapter 6. In both cases, we aim for creating solutions that
satisfy two main requirements:

• Given some material characterization, simulations are experimentally vali-
dated to ensure that models produce accurate predictions of the elastic be-
havior of the structure, more precisely, its shape in static equilibrium.

• Simulations are efficient and avoid using numerical constraints for the coupling
between the different elements. This is preferable so that the computational
model lends itself well to numerical optimization, as this is necessary for inverse
design.

Although developed in the context of a computer-aided design tool, these com-
putational models might be of great use in other scenarios where an efficient yet
accurate simulation is needed, e.g., animation or video games. In chapter 3, we
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review the foundations of mechanical simulation and provide a detailed explana-
tion of all the models used for the development of this thesis, including our own
contributions.

1.2.2 Inverse elastic design

Our tools feature inverse design operators that automatically determine attributes
of the elastic structures such that their deformed shapes in static equilibrium meet
some user-specified goal. Solving this problem constitutes a very hard challenge for
two reasons:

1. Any feasible deformed shape of the structure must be in static equilibrium.
This imposes a hard constraint on the solution space and limits the satisfaction
of user-specified goals, which will be infeasible in most cases.

2. Similarly, the fabrication technology imposes bounds on the design space, as
often it is not possible to use arbitrary fabrication materials or arbitrarily
complex geometry.

The associated constrained optimization problem heavily relies on mechanical
simulation and has been repeatedly formulated throughout the extensive literature
on computational design of deformable objects [7, 14, 10, 16, 24, 25]. Standard
numerical optimization methods could be used to solve such problems, but they often
do not guarantee finding a good solution. Together with an appropriate definition of
the design and solution spaces, challenges come with the selection of the particular
optimization approach. In this thesis, we adopt an approach based on the iterative
navigation of the equilibrium constraint manifold, similar to [14, 26]. Built upon
this idea, we make additional contributions to deal with two problems:

1. Local minimum solutions. In the context of flexible rod meshes (chapter 5),
we identify the attributes of the design space having the largest effect on the
reduction of the bulk fitting error, and we propose a multi-resolution algorithm
that incrementally considers additional design parameters using interpolation.

2. Highly constrained problems. In the context of Kirchhoff-Plateau surfaces
(chapter 6), we propose a two-step algorithm to interactively explore the so-
lution space of highly constrained problems, for which user-specified goals are
generally too far from being feasible.

Optimization challenges similar to ours are common across many other design
problems, and other authors might find inspiration in our solutions to face their own
challenges. In chapter 4, we formally characterize our shape optimization problem,
and we discuss other alternative solving approaches.
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1.3 Flexible rod structures

Rods are curve-like elastic bodies that have one dimension (”length”) much larger
than the others (”section”). Assemblies of rods are extensively used in structure
engineering, where rigid truss structures are specially valued for their light weight,
high stiffness and low cost in terms of transport, storage and assembly time [27, 28].
Their flexible counterpart are called active-bending structures, and appear in com-
bination with elastic membranes for the creation of tensile structures that provide
more design freedom and reduce the amount of external supports needed [29, 30].
The use of rod-like structures has been mainly restricted so far to architectural ge-
ometry applications, and has just started to receive attention from the computer
graphics community for more general design applications like minimizing printing
material [31] or producing wire meshes [32], reciprocal frames [33] and tensegri-
ties [34], among others.

Figure 1.2: In this thesis, we explore the computational design and fabrication of two
instances of elastic rod assemblies: flexible rod meshes (left) and Kirchhoff-Plateau surfaces
(right).

Nevertheless, these structures are still underused and, as we demonstrate in this
thesis, might find many other potential applications. We validate our computa-
tional tools with the design and fabrication of two different instances of flexible rod
structures: flexible rod meshes and Kirchhoff-Plateau surfaces (Fig. 1.2).

1.3.1 Flexible rod meshes

Flexible rod meshes are assemblies of elastic rods. These structures are lightweight,
relatively low-cost and can also form the support structure of solid objects if filled or
dressed with other materials. But most importantly, the global deformation prop-
erties of a rod mesh can be adjusted simply by locally varying the cross-sectional
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properties of the rods, i.e., the radii. Consequently, a heterogeneous deformable ob-
ject can be fabricated in one piece and from a single base material. This constitutes
a key feature in the current scenario of low-cost consumer level printing machines.

In chapter 5, we consider flexible rod meshes as an implementation of deformable
surfaces and push the limits of their expressive power. Our computational tool takes
as input several poses of a deformable surface with known boundary conditions and
automatically computes the rod mesh that best approximates the desired shapes.
From several deformation instances with different elasticity properties, we seek a
unique design that generalizes all the behaviors. From the design perspective, this
facilitates producing complex deformation features like anisotropy, heterogeneity and
model merging. In order to solve the associated optimization problem, we propose a
simulation-based approach where the selection of the design space and the definition
of a proper optimization strategy are essential.

In this thesis, we have explored the potential of flexible rod meshes for toy and
apparel design, but they might also find potential application in other fields like
furniture design, soft-robotics, orthotics or wearable assistance.

1.3.2 Kirchhoff-Plateau surfaces

Kirchhoff-Plateau surfaces (KPS) are planar rod meshes embedded in pre-stretched
fabric that deploy into complex three-dimensional shapes. In their deformed state,
these structures consist of a combination of piece-wise minimal surface patches,
i.e., patches shaped as the surface of minimum area that spans a given boundary.
Furthermore, such boundaries can only assume shapes corresponding to the static
equilibrium of a planar rod mesh under membrane tension. These seemingly complex
shapes may attract the attention from the design and research communities for two
main reasons:

• From an application point of view, minimal surfaces are appreciated for their
smooth aesthetic appearance and inherent material efficiency and structural
stability. Minimal surfaces are widely used for light-weight and cost-efficient
structures, ranging from large-scale roofs, canopies and shade systems, to
acoustic deflectors, light diffusers and decorative elements for interior design.

• From a theoretical point of view, at small scale, these structures can be easily
manufactured by 3D-printing planar rods onto stretched fabric, as recently
demonstrated by [35]. Being able to easily design and manufacture instances
of the Kirchhoff-Plateau problem may intrigue theorists and designers that
have struggled with producing physical realizations.

From a design perspective, considering the highly constrained solution space, we
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cannot expect that there exists a design that closely approximates a user-defined
target shape, but nevertheless KPS provides ample room for shape abstraction,
interpretation and creativity.

In chapter 6, we turn away from fully-automated solutions in favor of a user-
guided but computer-assisted design paradigm. Here the user is responsible for
creating the topology of the rod mesh and for transforming it into the desired shape
using a set of modeling tools that implement editing operations directly on the
equilibrium state of the surface. We highlight a two-step optimization scheme which
is essential for the implementation of the inverse design functionality, which allows
the designer to effectively navigate the space of feasible solutions interactively. We
demonstrate our method by designing a diverse set of complex-shaped KPS, each
validated by a physically fabricated prototype.

1.4 Contributions and publications

The main contributions of this thesis are the following:

• A mechanical model for the accurate and efficient simulation of flexible rod
meshes that implicitly handles coupling between rods without requiring nu-
merical constraints or any additional degrees-of-freedom. (Chapter 3)

• A computational model for the representation of the design space of flexible
rod meshes that is compact, expressive and naturally produces good quality
designs through Hermite interpolation. (Chapter 5)

• A multi-objective sensitivity-based optimization method for the inverse elastic
design of flexible rod meshes. In combination with the previously mentioned
mechanical model and design space definition, it allows us to infer the design
attributes of a rod mesh such that its static equilibrium matches an arbitrary
number of user-defined goals with specific boundary conditions. (Chapter 5)

• A multi-resolution optimization strategy for improving the convergence of in-
verse elastic design problems, which adaptively increments the detail level of
the design space parameterization when needed. (Chapter 5)

• A computational model for the compact representation of the design space of
Kirchhoff-Plateau surfaces that naturally handles coupling between rods and
fabric using collocation and Laplacian interpolation. (Chapter 6)

• A complete computational tool for the design of Kirchhoff-Plateau surfaces
that features multiple editing operations affecting both the design and solu-
tion spaces. Such editing operations include: i) forward geometry and topology
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editing, with real-time feedback on the resulting deformation, ii) sensitivity-
based modal exploration of the solution space, iii) interactive inverse modelling
of the equilibrium shape with design constraint preservation, and iv) visual-
ization of mechanical properties for decision-making. (Chapter 6)

• A two-step optimization strategy based on incrementally exploring an approx-
imation to the solution space in order to define close-to-feasible target defor-
mations for the inverse elastic design problem. (Chapter 6)

The results corresponding to the contributions of this thesis are compiled in the
following two works published as a first author in ACM Transactions on Graphics,
and presented at the ACM SIGGRAPH conference:

• Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A.
Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and fabrication
of flexible rod meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015).

• Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Compu-
tational design and automated fabrication of Kirchhoff-Plateau surfaces. ACM
Trans. Graph. 36, 4, Article 62 (July 2017).

1.5 Outline

The rest of the thesis if organized as follows:

• Related work. Chapter 2 reviews the main works that have inspired and
influenced the development of this thesis, grouping the extensive literature in
two general themes: mechanical simulation and computational design.

• Mechanical simulation. Chapter 3 overviews the relevant foundations of
mechanical simulation and describes in detail the mechanical models and nu-
merical solvers that have been developed in this thesis, focusing on rod-mesh
and thin-shell mechanics and the static equilibrium computation.

• Inverse elastic design. Chapter 4 presents a formal characterization of the
inverse elastic design problem, describes some numerical solving methods, and
analyzes the potential problems of their practical implementation, focusing on
sensitivity-based constraint exploration.

• Flexible rod meshes. Chapter 5 focuses on the computational design and
fabrication of flexible rod meshes and describes the computational model and
optimization methods that facilitate the solution of the inverse design problem.
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• Kirchhoff-Plateau surfaces. Chapter 6 explores the computational design
and fabrication of Kirchhoff-Plateau surfaces and proposes a user-guided but
computer-assisted tool that allows a user to interactively design such struc-
tures.

• Conclusions. Chapter 7 contains a discussion on the limitations of the meth-
ods presented in this thesis, analyzing their potential impact and suggesting
possible future work.



12 1.5. Outline



Chapter 2

Related work

The design and fabrication of flexible structures is an interdisciplinary subject inte-
grating knowledge across several related fields. This chapter reviews the main works
that have inspired and influenced the development of this thesis. We group this ex-
tensive literature in two general themes: mechanical simulation and computational
design.

• The first section 2.1 reviews works dealing with the creation of computational
methods for the simulation of mechanical systems. We focus on mechanical
modeling of elastic rods and thin shells, model coupling and numerical solving.

• The second section 2.2 groups many heterogeneous works related with compu-
tational design. We first categorize the literature according to several criteria
and briefly review a few topics that are tangentially related with this thesis:
surface design, animation control, material characterization and exploration
of constrained spaces. We then focus on fabrication-oriented design problems
with special emphasis on rod structures and physical surfaces.

2.1 Mechanical simulation

Classical physics has traditionally addressed the creation of analytical models to
explain the behavior of real-world phenomena. From an engineering perspective,
mechanical simulation comprises the development of computational models and nu-
merical methods that allow computers to predict the behavior of materials and
structures. In the last few decades, since the pioneering work by Terzopoulos et
al. [17], computer graphics has heavily contributed to the innovation in this area
due to its never-ending pursuit of more realistic virtual representations of the real
world.

13
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This pursuit is motivated by different purposes. Fabrication-oriented compu-
tational design, for example, often relies on mechanical simulation to accurately
predict how a given prototype will behave once fabricated. Our work deals with the
design and fabrication of deformable structures composed of elastic rods and fabric.
In the following, we will summarize the main computational models that have been
used for the simulation of elastic rods and thin shells and review the state of the
art. Then, we briefly go over algorithms currently used to solve numerical integra-
tion problems derived from the partial differential equations of mechanics. Finally,
we will introduce a few more works dealing with the combination of potentially
heterogeneous models for the simulation of complex structure assemblies.

2.1.1 Elastic rod simulation

Rods are curve-like elastic bodies that have one dimension (”length”) much larger
than the others (”section”). A great variety of rod simulation methods have been
presented in the literature. Many, including the earliest approaches, deal with the
efficient simulation of hair, highly demanded in the VFX and video games industries.
These solutions are mostly based on mass-spring systems which explicitly represent
the curve as a sequence of nodes joined together by elastic springs [36, 37, 38, 39].
While these methods are capable of modeling resistance to stretch and bending,
their formulations do not come from the discretization of a continuous rod elasticity
model. Plus, they are limited in their ability to model twist, anisotropy and curls.

Alternatively, framed representations describe the configuration of a rod by an
adapted framed curve. The assignment of a material frame to each point on the cen-
terline contains the requisite information for measuring the orientation of the rod
section and hence enables advanced features. The corresponding governing equations
–a set of partial differential equations together with boundary conditions– were first
developed by Kirchhoff and Clebsch [40] in their theory of thin elastic rods under
finite displacements. Some works following this idea solve the statics and dynamics
of Kirchhoff rods using an explicit centerline representation based on the discretiza-
tion of the Cosserat rod geometry model [41, 42, 20]. Other works however use an
implicit centerline representation and introduce reduced-coordinates models based
on a minimal parameterization needed to account for the exact kinematics for the
rods. Examples of these works are the solutions based on articulated rigid body
systems [43] or the super-helix model [44]. Relying on the Bishop frame, discrete
elastic rods (DER) and discrete viscous threads (DVT) by Bergou et al. [45, 46]
use a curve-angle parameterization to reduce the number of redundant parameters
and guarantee that the orientation frame naturally remains adapted to the center-
line. The latter approach constitutes the best starting point for our work, as it is
experimentally validated, and it lends itself well to numerical optimization, as we
demonstrate later in this thesis.



Chapter 2. Related work 15

Rod meshes are networks of elastic rods that are linked by joints. Not many works
before our own have addressed the simulation of this kind of structures. In general,
previous approaches are based on the use of numerical constraints during simulation
to ensure rods remain connected. Such is the solution by Bergou et al. [45], which
uses bodies rigidly attached to rods as joints. Elastic joints were considered in
Cosserat Nets by Spillman and Teschner [47], which extends the Cosserat model to
branched and looped topologies albeit at the expense of also using constraints. More
recent works have taken the position-based dynamics (PBD) approach introduced
in [48] and adapted it to the simulation of elastic rod networks [49]. However, the
lack of a formal connection between the positional constraints used in PBD and
elasticity theory restricts the use of this solution to applications where a predictive
representation is not needed. As it will be further explained in this thesis, the
work presented in chapter 5 extends the DER model introducing a physically-based
elastic energy at connections. This allows the accurate simulation of rod mesh
mechanics without the need of numerical constraints, which reduce the complexity
of our optimization problem. A similar formulation was suggested later in the work
by Zehnder et al. [50] by adding rotational DoFs at each joint.

2.1.2 Thin-shell simulation

Thin shells are thin flexible structures with a high ratio of width to thickness (e.g.
>100). Thin shells have been also extensively studied by the computer graphics
community, focusing mainly on the efficient and accurate modeling and simulation
of cloth mechanics. Cloth has exemplified advances in physics-based animation deal-
ing with a broad range of problems such as mechanical modeling, contact handling,
friction, plasticity, fracture and numerical integration, among others. In the follow-
ing, we will roughly review the most important works and mention a few current
hot topics. For a broad survey on cloth simulation we refer the reader to [18, 19].

Since the pioneering work on elastically deformable models by [51], the most
widely used simulation techniques were initially mass-spring systems [52] and more
general particle systems [53, 54]. The popularity of mass-spring systems is due to
the ease of implementation and low computational cost, but the accuracy offered by
this method is rather limited. As an alternative, continuum-based approaches lead
to a set of partial differential equations which have to be discretized in space, gen-
erally using the finite element method (FEM). Most of the existing FE-approaches
are based on the geometrically exact thin-shells formulation by Simo et al. [55].
With this basic continuum formulation, simple isotropic materials can be simulated
consistently with reduced dependency on the specific discretization. Further works
incorporated novelties allowing to model increasingly more complex behaviors that
are observable on real-world textile materials such as anisotropy [56, 57, 58] and
nonlinear deformations [59, 60, 58]. As happened to rod simulation, many current
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works are based on position-based approaches such as [61, 62] but are not accurate
enough for fabrication-oriented design applications. Our work relies in the widely
known discrete shells formulation [63] for the flexural energy and the classic or-
thotropic St. Venant-Kirchhoff constitutive model for the membrane energy (see
e.g. [64]).

Apart from the mechanical model, during the last few years, there have been
contributions in many other aspects of thin-shell simulation. To mention just a
few examples, some works have tried to overcome the limitations of spatial dis-
cretizations using remeshing methods [65], which have been successfully applied to
model complex phenomena such as folding [66] and fracture [67]. Other works have
addressed the problem of modeling and estimating cloth hysteresis as an effect of
the internal friction between yarns [68]. The augmentation of coarse cloth simula-
tions with realistic-looking wrinkles have also attracted considerable attention and
clustered a variety of solutions like subspace simulation using adaptive bases [69]
or procedural wrinkle creation based on the coarse strain tensor [70, 71]. Finally,
a promising research line related to both thin shells and rod mechanics proposes
the simulation of cloth at the yarn level [72, 73, 74, 75], which allows showing new
interesting effects and unprecedented levels of agreement to real-world materials.

2.1.3 Model coupling

This thesis deals with the computational design of structures composed by an assem-
bly of objects, possibly of a diverse nature. To accurately predict their deformation
behavior, it would be theoretically possible to use a single volumetric mechanical
model. However, to obtain precise enough results, that would require to employ-
ing a very fine spatial discretization to effectively capture sufficient geometry detail
at each individual object scale. The resulting computational problem would be
intractable in most of the cases. As an alternative solution, computer graphics
research has often considered the use of different mechanical models, conveniently
selected to take advantage of the specific kinematic and mechanical properties of
each individual object. For example, a rod mesh can be simulated as an assembly
of elastic rod models, as in chapter 5, or use a cloth model coupled to a rod mesh
model at specific locations to represent a tensile structure, as in chapter 6.

To guarantee that the structure remains consistent and the different objects
interact with each other adequately, several coupling approaches have been explored
over the years. The simplest solution is the collocation of DoFs: all objects attached
to a given coupling area share their corresponding discretization variables. This
ensures point forces are shared and the structure remains consistent in any case.
However, rotational torques are not transferred and so this approach does not offer
a complete solution for the interaction between parts. In the real world, structural
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joints are not just single points but volumetric components and, consequently, rigid
bodies are often placed at connections to mimic this fact. In some computer graphics
works, these joints have been explicitly represented with rotational DoFs [21, 50, 23],
while in others, the rotation of the joint is implicitly derived from the state of all the
attached elements [47, 22]. To ensure rotational torques are transferred, the attached
components must remain aligned with the rigid body at the connection point. The
straightforward solution is to employ soft or hard numerical constraints to enforce
this condition, as in e.g. [45, 47, 49]. In general, this approach has been extensively
used for modeling many phenomena in which any kind of continued attachment
between objects takes place, for instance, in frictional [76] and adhesive [77] contact.
An alternative to using constraints is the definition of physically-based energies,
whose derivation leads to elastic coupling forces [78, 22, 50, 23]. The resulting
joints are compliant, what, with an adequate material characterization, produces a
better agreement with the behavior of real-world structural joints, even under coarse
discretizations.

Nevertheless, model coupling is not only restricted to simple inertia transfer.
Many interesting effects have been achieved over the last few years by studying how
objects in a heterogeneous assembly interact with each other. For instance, a few
works have developed coupling methods between thin shells and deformable solids
that allow the simulation of skin sliding on top of the muscles [79], facilitate adding
high resolution wrinkles to coarse volumetric models [80], or model friction and air
effects between cloth and bodies [81]. In the context of model coupling, contact and
sliding have been an interesting convergence point for several works built around
the Eulerian-on-Lagrangian idea [82]. This method proposes the combination of
the two simulation methodologies in mechanics, i.e. Eulerian and Lagrangian. This
approach has been applied to formulate frictional contact models between rigid
bodies and strands [83] or cloth [84] that preserve contact contours independently
of the discretization level. A particularly interesting research line proposes the
simulation of cloth at the yarn level [74, 85, 75]. This approach assumes all yarns
share Lagrangian DoFs at their crossing points but are allowed to slide with respect
to each other using Eulerian coordinates. Consequently, there is no need to explicitly
handle contacts between yarns, and hence the simulation of large garments at the
yarn level is more tractable. In our case, the same methodology might be applied
in the future for the design of tensile structures with sliding components.

2.1.4 Numerical solving

Since the seminal work of Baraff et al [86], implicit methods have been the predom-
inant choice in computer graphics for rod and thin-shell dynamics simulation –and
in general for most physically-based animation problems. For a detailed overview
and comparison of existing integration schemes and their efficiency –applied to cloth
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simulation–, the reader is referred to [87]. In our work, we have adapted the vari-
ational form of implicit Euler integration in [88] to solve dynamics, as well as the
corresponding Lagrangian mechanics formulation of the static equilibrium problem.
Recent approaches however have shifted towards position-based methods inspired by
works like the previously mentioned PBD [48] and projective dynamics by Bouaziz
et al. [89]. Initial implementations used positional constraints with no connection
to classical elasticity theory, e.g. [61, 90, 91, 92]. However, more recent solutions
like the one by Liu et al. [93] have formalized the connection between projective
dynamics and quasic-Newton methods, allowing to leverage ideas from numerical
optimization and thus support real-time simulation of many hyperelastic materials.

2.2 Computational design

From a general perspective, computational design deals with the creation of software
that facilitate design tasks. It roughly comprises the development of a parameterized
computational model of the designed entity, which allows computers to predict how
this entity would perform considering aesthetics, functionality, efficiency and many
other criteria.

This thesis mainly focuses on the design of flexible structures, i.e., finding the
parameters of a mechanical model such that the resulting fabricated object behaves
and/or looks in a desired manner. However, computer graphics has explored many
other related design problems which have heavily influenced our own work. To give
the reader an overall view of the diversity in the literature, we will categorize these
works according to several criteria:

• The nature of the underlying mathematical formulation. Our own
work together with many others [7, 14, 8, 16, 22, 24, 23, 94, 95, 25] relies
on classical elasticity theory to predict the behavior of the fabricated objects.
However, over the years, many works have also addressed kinematic [96, 97,
98, 5, 99], geometric [100, 101, 102, 103, 104, 105, 106] or light-interaction [107,
108, 109, 110, 111] design problems.

• The definition of the design goal. Our work belongs to a family that
focuses on functionality and fabricability [14, 88, 97, 16, 22, 24, 23, 94] but
many other works address questions like appearance and aesthetics [108, 112,
113, 50, 114, 111, 32] or manufacturing and material cost-efficiency [31, 115,
116, 117].

• The solution approach. Some works on computational design consider
mostly forward solutions [14, 118, 30, 29, 119, 50]: the user iteratively modi-
fies the parameters of the model while the computer provides a prediction of
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the resulting performance. More recent solutions have also explored inverse
approaches [120, 1, 10, 2, 12, 22]: the user specifies the desired result and a
numerical optimization algorithm outputs a valid solution such that the cor-
responding behavior is as close as possible to the goal. Most current works
however propose a combination of the two [97, 8, 16, 5, 23, 25].

• Interactivity and user interaction. Methods can be classified into those
that do require user interaction [14, 8, 16, 97, 16, 5, 25, 23], and those that do
not [88, 1, 10, 2, 12, 22]. It is also important to highlight those methods that
provide output feedback at interactive rates [26, 121, 31, 122, 15, 23, 123, 124].

Recently, Bermano et al. [125] presented a very thorough review of fabrication-
aware design where works are also classified attending to several criteria such as
object representation (e.g., surface, volume), designed attributes (e.g., shape, mate-
rial) and goals (e.g., appearance, deformation, motion). We refer the reader to this
work for further details. In the following pages we will focus on the the extensive lit-
erature on computational design that is most relevant to the work developed in this
thesis. We will start going through some geometric problems focusing on surface
design. Then, we explain several works dealing with animation control, material
characterization and constrained space exploration, and how they are tangentially
related to our problem. Finally, we will focus on fabrication-oriented design, group-
ing the extensive body of work according to how it is related to ours.

2.2.1 Surface design

Our work on KPS presented in chapter 6 targets the design of a class of physical
surfaces whose shapes are governed by a particular set of equilibrium constraints.
Surface design has been in the focus of computer graphics ever since its beginnings.
Numerical problems associated with this works are similar to our formulation, al-
though not all of this problems originate from mechanical simulation and they do
not explicitly consider the fabricability of the designed surface.

For instance, developable surfaces have attracted a lot of attention from com-
puter graphics [101, 102, 126, 127, 128]. They arise naturally when creating 3D
surfaces from flat, inextensible material such as plastic, paper, or stiff fabric and so
are closely related to fabrication-oriented design. As an example, based on the prin-
ciple of auxetic materials, Konakovic et al. [129] were able to create doubly-curved
surfaces by structuring planar sheets of quasi-inextensible material. This problem is
also closely related with surface parameterization, which has many applications in
computer graphics, for instance, for texture mapping. A good survey on the topic
by Floater et al. can be found in [130]. While developable surfaces are character-
ized by having zero Gaussian curvature, requiring vanishing mean curvature leads
to minimal surfaces.
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Minimal surfaces have been intensively studied in mathematics [131, 100] and
also computer graphics [103, 104, 105]. In the context of architecture and engineer-
ing, minimal surfaces appear naturally when designing tensile membrane structures;
see, e.g., [132]. Beyond minimal surfaces and the related Plateau problem, there
has been an increasing interest in the generalized Plateau problem which, instead of
assuming a rigid boundary, considers the case of Euler elastica [133] and Kirchhoff
rods [134]. While these works focus primarily on questions of existence and unique-
ness, in our work [23], we investigate the problem of modeling such surfaces for the
purpose of fabrication.

Apart from digital surfaces made for virtual worlds, one important physical appli-
cation domain is architectural geometry [106]. Surfaces from this category are often
subject to constraints relating, e.g., to the planarity of polygonal faces [135, 136]
or to compression-only self-supporting structures [27, 137]. In addition to enforcing
such constraints numerically, exploring the resulting design spaces is a challenging
problem as well [26, 15]. One particular line of recent work [30, 29] has studied
the forward design of membrane structures coupled with bending-active elements.
However, to the best of our knowledge, the inverse problem of automatically de-
termining parameters such that the resulting equilibrium shape approximates given
design goals has not been investigated so far.

2.2.2 Animation control

Most current animation systems rely on physically-based methods for the realistic
depiction of real-world materials such as hair, cloth or fluids. Experts working on
video games and the VFX industry are responsible for tuning the corresponding
simulation parameters so that the final behavior responds to some artistic intention.
This might result in a very slow trial and error process. As a consequence, the
problem of optimizing external forces, material parameters and rest shapes to achieve
a certain mechanical behavior has also been explored in the context of animation.

As an example of early work, Kondo et al. [138] controlled the deformation of
elastic objects by keyframing rest shapes. Very similar methods have been used for
the same purpose focusing on other mechanical models. For cloth simulation, for in-
stance, Twigg and Kacic-Alesic [139] computed rest lengths for mass-spring systems
in order to achieve desired garment drapes under gravity. Mainly applied to hair
simulation, the same problem has been investigated for a number of different curve
and rod models, including 2D elastic curves [140], articulated rigid body chains [43]
and the super helices rod model [141]. In the context of character animation, Coros
et al. [142] show that it is possible to create autonomous characters modeled as elas-
tic objects by optimizing their rest shapes as a function of high-level motion goals.
More generally, the methods described by Martin et al. [88] and Schumacher et
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al. [143] are also related to the problem of modulating rest shapes in order to effect
the behavior of dynamic simulations, but solve the problem by adding a potential
energy term specified relative to a set of input example shapes. One particular
line of work has focused on the interactive editing of deformable simulations using
techniques such as space-time methods or rotation-strain reduced coordinates to ef-
ficiently handle the high computational load [121, 122]. Finally, as an alternative to
rest-shape design, different material optimization solutions have also been proposed
with the same purpose. These works employ a variety of techniques such as model
reduction [144] and optimization of principal stretches [145].

2.2.3 Material characterization

Correctly predicting object deformation requires i) a computational model that is
capable of representing the material behavior, and ii) an accurate estimation of
the parameters of the fabrication material. For the development of this thesis, we
had to estimate material parameters from data. Additionally, the mathematical
formulation associated with this task is equivalent to the one of a design problem.
Basically, we look for object attributes (in this case, material parameters) such that
the predicted deformation matches a target observed behavior.

Some works in computer graphics have addressed the data-driven estimation of
material parameters specially in the context of computational cloth. Early ones [53,
54] were based on fitting parameterized functions of the deformation to measured
data, extracted from comprehensive sets of experiments with their corresponding
machinery –e.g., the Kawabata evaluation system [146]. Later, a few works improved
previous results by measuring complex 3D deformations instead of just considering
one-dimensional force-displacement curves. For instance, in the work by Wang et
al. [147], a piecewise linear elastic cloth model is proposed and its parameters are
fitted to experimentally acquired data using a simple setup. On the contrary, Miguel
et al. [148] proposed a more powerful and sophisticated solution where nonlinear
stress-strain curves are numerically optimized considering also the loading forces
over boundary conditions.

In an alternative line of research, some works have proposed more inexpensive
acquisition processes, like extracting parameters from casually captured videos [149,
150, 151]. Their aim was to avoid the need for controlled conditions, but as a
consequence, it was not possible to separate internal (i.e., material-specific) from
external (e.g., friction, air drag) parameters. More recent works have precisely
focused on modeling such phenomena and trying to estimate their corresponding
parameters. A pair of examples are the work by Miguel et al. [68] on internal
friction and the one by Xu et al. [152] on damping.
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2.2.4 Exploration of constrained spaces

Many of the previous works feature interactive applications and require the user to
participate –at least– in part of the design process, e.g. [97, 8, 153, 154, 124, 123].
However, part of this literature that deals with highly constrained problems has
focused more on specifically providing methods for the exploration of such spaces.

Many works on constrained geometric modeling are based on using optimization
methods to minimize the distance from a constrained design to a target shape. This
is the case of the work by Bouaziz et al [155], where a shape proximity function and
projection operators are defined to perform constraint-preserving changes on arbi-
trary geometric data sets such as curves, polygons or volume elements. Another case
is [26], which explored such constrained manifolds through first- and second-order
approximations and applied this method for the design of planar quad meshes. In
addition to allowing manual specification of target shapes, authors often leverage
modal analysis to directly explore feasible solutions parametrically close to a given
design. Freeform architectural design has made good use of early constrained mesh
exploration approaches. For instance, Deng et al. [15] proposed a method where
the numerical optimization is split into a sequence of simple subproblems that can
be solved efficiently and accurately. Our own work on KPS (chapter 6) is greatly
inspired by all these contributions, as we also propose a two-step optimization pro-
cedure based on a first-order approximation to the constraint, and we also feature
modal analysis.

In general, all these methods assume that the user is responsible for the cre-
ation of the design topology and focus on the continuous optimization of low-level
local geometry. However, there are some applications for which high-level structural
features are also essential. Structure-aware shape processing addresses the prob-
lem by dealing with the global inter- and intra-semantic relations among the parts
of a shape rather than on their local geometry. For an extensive review on this
topic, we refer the reader to the work by Mitra et al. [156]. Structural relationships
have been also studied in the context of different design problems. For instance,
Guerrero et al. [119], propose a method to explore the variability of 2D geometric
patterns, using different interpretations of their regularity that correspond to dif-
ferent design variations. The work by Umetani et al. [118] proposes an interactive
solution for the guided exploration of physically valid shapes in furniture design.
While the user focuses on the aesthetics, the framework helps to achieve physical
realizability. This is done by generating multiple suggestions involving both discrete
and continuous changes to restore validity when one or more constraints are vio-
lated. Generation of plausible furniture variations was further explored by Zheng et
al. [157], where symmetric functional arrangements of substructures are identified,
allowing the combination of parts across different model families. More recently,
similar ideas have been applied to the creation of mechanical objects. In the work
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by [158], for instance, the authors present an interactive system that –using 3D
models and high-level functional rules (e.g., A fits in B)– is able to optimize the
shape geometry to produce a working design. In our works, the topology of the de-
signs is either automatically generated, chapter 5, or delegated to the user, chapter
6. However, the implementation of a variation of some of these methods has been
considered for future work.

2.2.5 Fabrication-oriented design

Designing fabricable objects whose properties can be intuitively specified and con-
trolled is an important research challenge that is quickly gaining interest in the
computer graphics community. As mentioned above, a great variety of performance
criteria have been considered.

In the following, we will focus only on functionality goals in the form of motion
and deformation behavior, as they are closer to our particular work. A variety of
methods that investigate these aspects of design for rigid objects have been proposed.
For example, there are computational design methods for creating objects that can
stand on their own [1], spin stably [2] or sound under contact in a specific man-
ner [3]. Thanks to recent works, it is also possible to create articulated 3D-printable
representations of virtual characters [96, 159], design mechanical characters capable
of interesting motions [97, 160, 4, 99] and produce 3D-printable robotic creatures [5]
or telescoping structures [6]. Our work is closer to methods that control the defor-
mation behavior of elastic objects –a problem that has received increased attention
from the research community over the last few years. As also happened with an-
imation control, some of these works dealt specifically with material design while
others have focused more on the shape of the object.

• Material design. Current fabrication methods allow the use of multiple ma-
terials within a single printed object. Many works have taken this technology
as the basis of their approach. For instance, Vidimče et al. [161] proposed a
framework for the fabrication of objects composed of multiple materials and
Bickel et al. [7] used a small set of template materials with different deforma-
tion behaviors to fabricate objects whose force-deformation response matches
measurements of real objects. Similarly, Skouras et al. [10] described an op-
timization method for computing an inhomogeneous distribution of material
parameters to control the way in which fabricated elastic objects deform under
the influence of external forces.

• Shape design. The rest configuration of elastic objects can also be com-
puted using automated methods. For instance, Skouras et al. [8, 16] showed
that the shape of inflatable balloons and more complex structures can be con-
trolled to match input targets by optimizing the rest state of membrane-based
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models. Similarly, the rest state of volumetric objects can be modified to
control the deformation behavior of skin for robotic faces [120], or to specify
the way in which elastic objects deform under gravity [9]. Many design prob-
lems based on single-material fabrication technologies require changing the
shape of the object at a small scale to control deformation properties. Such
is the case of the works developed in this thesis, where the stiffness of the rod
structure is controlled by modifying rod radii. Microstructures is a related
research line that has attracted increased attention over the last few years,
see, e.g., [12, 162, 163, 13]. These works propose methods for fabricating de-
formable objects with spatially varying elasticity using 3D printing and a single
relatively stiff material. They employ assemblies of small-scale structures with
varied geometries that have an effect on global material compliance.

In either case, both material design and shape design problems reduce to identical
mathematical formulations and can be treated in a generic manner. For instance,
Chen et al. [164] presented a unified framework to fabricate objects with controllable
deformation properties and Musialski et al. [165] proposed a series of numerical
improvements that can be applied independently of the optimized features.

In general, the deformed shape of these elastic structures is governed by equi-
librium conditions, thus requiring a balance between internal –elastic– forces and
external forces such as self-weight and applied loads. The problem of designing
deformable objects that assume desired equilibrium shapes under gravity has been
extensively studied in computer graphics, e.g. for hair [140] and cloth [139] ani-
mation. In the context of fabrication-oriented design, similar problems have been
addressed applied, for instance, to self-supporting surfaces [166] and custom-shaped
elastic solids [9]. Our work shares many aspects of these inverse problems. How-
ever, our KPS design, chapter 6, differs in the sense that the driving force is also
membrane stretch, which, unlike external loads, depends on the state of the system.

For completeness, let us briefly mention other performance criteria that have
been considered in the literature. Some of these works have focused on appearance
goals. For instance, Shuller et al. [114] proposed a unified framework to create
surfaces that depict certain 3D shapes from prescribed view points. Consideration
for aesthetics has also been seen in works dealing with the design of furniture [123]
or ornamented decorative pieces [50]. Appearance goals are usually also combined
with some high-level functionality. For instance, the work by Dumas et al [113] deals
with the synthesis of structurally sound patterns from sample data, while Martinez et
al. [112] use topology optimization to combine structural and appearance objectives
into the same shape design. A completely different research line focuses on digital
fabrication and deals instead with fabricability and material efficiency design goals.
Some example works are the cost-effective printing of 3D objects with skin-frame
structures by Wang et al. [31], or the more recent design of lightweight structures
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under force location uncertainty by Ulu et al. [117].

The following section finally reviews a few works dealing with two specific rep-
resentations of fabricable objects which are specially related to the work developed
in this thesis: physical surfaces and rod structures.

Physical Surface Design

Most works in computer graphics related with physical surface design have been re-
stricted to flat panels, with applications to plush [167, 154], garment design [14, 168],
rubber balloons [8], inflatable structures [16], thermo-formed models [114], surfaces
composed of interlocking elements [153] and tensile structures [30, 29], among oth-
ers. Most of them use a similar approach to the works developed in this thesis, with
slight differences depending on the specific application.

For instance, rather than automatically generating a rod network for an input
surface as we do in chapter 5, Skouras et al. [16] leave the topology problem to the
user and instead optimize performance such as to enable fast design iterations. Our
approach in chapter 6 follows the same spirit, but instead of optimizing for a fixed
target shape, our method allows the user to explore the space of feasible designs
using a set of editing tools that leverage simulation and optimization. This same
paradigm of computer-assisted but user-guided design is implemented by several
previous approaches, including the work by Umetani et al. [14], who use first-order
sensitivity analysis in order to quickly predict the impact of parameter changes
on the equilibrium shape of clothing. As one difference, our method extends this
forward design approach with inverse modeling tools that, for user-specified editing
objectives, automatically compute first-order optimal directions in parameter space.
Allowing the user to directly edit the 3D equilibrium state was also the driving
motivation for the work of Bartle et al. [168]. However, while their method uses
a heuristics-based, gradient-free approach specifically tailored to the problem of
pattern optimization for garment modeling, we capitalize on derivative information
in order to implement fast forward and inverse design tools. Finally, we want to
highlight the contemporary work by Guseinov et al. [94] on tension-actuated flat
plates, which shares many similarities on the functionality goal to our own KPS
design. While their solution allows to obtain doubly curved surfaces at the price of
a more complex fabrication method, our results can be easily 3D printed but are
restricted to piece-wise minimal surfaces.

Non planar surfaces mostly arise in architectural geometry, which is a very impor-
tant application domain of computational design, specially in the context of freeform
surface modelling. Although these approaches are not always directly applicable to
real-world scales, most of these works feature fabricated samples to demonstrate
the validity of their solutions. As a consequence, they share similar challenges to
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the ones described in this thesis. Generally, structures are mostly made of rigid
materials and their design consider a combination of performance criteria including
appearance, functionality and fabrication efficiency. For instance, the creation of
surfaces composed of an assembly of polygonal faces has been extensively studied
for their benefits in terms of material transport and storage [135, 136, 15]. Similarly,
many works have dealt with the design of masonry structures, in which case, the
low flexural strength of building mortar is countered using compression-only –self-
supporting– designs [27, 137, 169]. For a more complete survey on this topic, we
refer the reader to the review by Pottmann et al [106].

Rod Structure Design

Our rod meshes share some similarities with truss structures, which have been ad-
dressed in the context of digital fabrication. Wang et al. [31], for instance, proposed
a computational design method that optimizes a truss structure to minimize the
amount of printing material used in the fabrication of rigid objects. Constructions
based on the same principle are known in architectural geometry literature as space
structures and has also received attention from the computer graphics community,
e.g., [28]. Apart from truss structures, more specific fabrication-oriented design
problems have been considered over the last few years. For instance, Song et al. [33]
proposed an interactive design tool for creating stable networks of interleaved rods
(known as reciprocal frames), while Gauge et al. [170] addressed the design of phys-
ical characters using tensegrities –networks of rigid rods and elastic springs that are
in static equilibrium.

Objects created by connecting and bending wires are also very common in furni-
ture design, metal sculpting or wire jewelry, and have attracted increased attention
over the last few years. For instance, Liu et al. [32] proposed a method for the
image-based reconstruction of such structures, while Garg et al. [171] developed
techniques for designing wire meshes with prescribed shapes. Wire meshes can be
considered a special case of rod networks, but rather than physics-based optimiza-
tion, their particular structures motivate a geometric approach. The approach by
Miguel et al. [24] targets physical surface representations using bent wires that se-
curely interlock by virtue of deformation. Our approach on KPS design shares the
two-dimensional nature of their design space, but the underlying mechanics are very
different. Instead of designing 3D networks that balance applied loads, our method
computes a 2D layout optimized with respect to membrane forces.

While most of the above methods do not consider automatic topology generation,
Zimmer et al. [172] focus exactly on this discrete problem, albeit in a context that
does not involve equilibrium constraints. Similarly, the work by Zehnder et al. [50]
faced the same problem and presented a computational tool for designing ornamental
curve networks –structurally-sound surfaces with user-controlled aesthetics.
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Mechanical simulation

Our design tools build on physics-based animation in order to predict the deforma-
tion behavior of flexible structures in response to applied forces. In this chapter, we
overview the relevant foundations of mechanical simulation and describe in detail
the mechanical models and numerical solvers that we have developed in this the-
sis. Our main contribution here is the creation of a novel mechanical model for the
simulation of flexible rod meshes in 3.2.2.

• The first section 3.1 briefly reviews the foundations of mechanical simulation,
formalize the mathematical problem and establish a common framework for
the definition of mechanical models.

• The second section 3.2 explains in detail the model that we have devised for
the simulation of rod meshes, preceded by a description of the discrete elastic
rods model upon which it is based.

• The third section 3.3 describes the discrete shells model that we use for the
simulation of the tensile fabric, with special emphasis on the orthotropic con-
stitutive model employed for the elastic membrane.

• The fourth section 3.4 concludes by explaining in detail the numerical meth-
ods that have been used for the computation of static equilibria and analyze
potential problems of their practical implementation.

3.1 Foundations

Let us assume there exists a continuum mechanical model M(O) that determines
the elastic behavior of a deformable object O ⊂ R3 through a conservative energy

27
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potential V (O) ∈ R. Simulating the statics of this mechanical system implies solving
the nonlinear system of differential equations defined by net force equilibrium: f = 0
for any applied external forces and boundary conditions. Finding a computational
solution to these equations using simulation requires defining discrete expressions
for both the kinematics of the object and the potential energy function.

Discrete kinematics We consider a generic Lagrangian discretization in the form
of a vector q = {q1, . . . , qn} in some known generalized coordinates system. This
vector contains n independent variables that spatially approximate the state of the
object in different configurations:

• We denote the deformed configuration of the object as q and refer to the space
of all possible deformed configurations q ∈ Rn as deformed or world space, Q.

• We denote the undeformed or rest configuration as q̄ and refer to the space of
all undeformed configurations q̄ ∈ Rn as undeformed or material space, U

Discrete energy Given a spatial discretization, an approximation of the potential
energy must then be formulated, discretely parameterized by the deformed config-
uration q, V (q) : Rn → R. Note that we are omitting here other magnitudes that
might be also affecting the value of the energy potential (e.g. gravity constant, un-
deformed configuration material properties, etc.) but whose values do not change
during the simulation. The discrete energy formulation allows deriving the expres-
sion of the system forces as the negative gradient of the potential energy V w.r.t
the deformed configuration q, f(q) ∈ Rn:

f(q) = −∇qV
T = −

(
∂V

∂q1

, . . . ,
∂V

∂qn

)T
. (3.1)

Similarly, system forces Jacobian can be calculated as the matrix of negative
second partial derivatives of the potential energy V w.r.t the deformed configuration
q, J(q) ∈ Rn×n:

J(q) = −∇2
qV = −


∂2V
∂q11

· · · ∂2V
∂q1n

...
. . .

...
∂2V
∂qn1

· · · ∂2V
∂qnn

 . (3.2)

Note that, in our convention, we consider the partial derivatives of a scalar function
to be a row-vector. With a close expression for both the force and the Jacobian of
the mechanical model, the expression of the force can be linearly approximated at
any point q0 using Taylor’s expansion:
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f(q) ' f(q0) + J (q− q0) (3.3)

Mechanical model With these ingredients, standard numerical methods can be
used to solve the nonlinear systems of equations resulting from the static equilib-
rium. In the following sections, we will describe the different mechanical models we
have used in this thesis in terms of these two components. First, we will overview
the continuum mechanics formulation associated with the model. Then, a spatial
discretization approach will be introduced followed by a reformulation of the smooth
energies into discrete expressions.

3.2 Rod mesh model

Rods are curve-like elastic bodies that have one dimension (”length”) much larger
than the others (”section”). As mentioned in chapter 2, among the many existing
computational approaches for the simulation of rods, we choose the discrete elastic
rod (DER) model by Bergou et al. [45, 46], due to its compact curve-angle represen-
tation with explicit centerline. We note, however, that other approaches based on
reduced coordinates, e.g., [42], or full coordinates with constraints, e.g., [20], would
be possible as well.

In the following section 3.2.1, we briefly summarize the most relevant part of
the theory regarding Kirchhoff rods and discrete elastic rods. Since the model by
Bergou et al. does not account for coupling among rods, in section 3.2.2, we propose
a model for rod connections, formulate elastic energy terms, and describe how to
correctly transmit bending and twist forces across connections.

3.2.1 Discrete rod model

In this section, we briefly review classic Kirchhoff rods theory as well as the reduced
coordinate formulation of discrete Kirchhoff rods developed by Bergou et al. [21, 46].
We refer to the original works for a more thorough explanation.

Smooth Kirchhoff rods

Classic Kirchhoff rods are conveniently modeled as adapted framed curves with an
arc-length parameterized centerline c(s) ∈ R3 and an orthonormal material frame
m(s) = [t(s) b(s) n(s)] ∈ SO(3), where t is the tangent, b, is the binormal and
n is the normal. We assume that s is an arc-length material parameterization of
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the undeformed configuration of the adapted framed curve. Recall that we will
denote quantities associated to the undeformed configuration of the material with
an overline, e.g. c̄. The orthonormal material frame assigned to each point of the
centerline spans the plane normal to the centerline’s tangent called the cross-section,
and contains the requisite information for measuring twist. Since the material frame
is adapted to the centerline, the following condition must hold: t(s) = c′/|c′|, where
the prime indicates differentiation with respect to the s coordinate.

The Kirchhoff theory of elastic rods defines scalar functions that measure the
strain of any adapted framed curve –given by the change of the orthonormal frame
expressed in its own coordinates and the deformation gradient w.r.t. a naturally
unitary straight rod:

ε = ‖c′‖, ωb = κ · b, ωn = κ · n, m = b′ · n, (3.4)

where κ = t′ is the centerline’s normal curvature vector. Here, the first term, ε,
corresponds to the relative axial strain. The second and third terms, ωb and ωn,
represent the rod’s curvature vector expressed in material coordinates and measure
the bending of the material frame. And the last term, m, refers to the twist of the
material frame around the tangent. Accordingly, the total elastic energy contains
stretching, bending and twisting contributions, V = Vs + Vb + Vt.

• The stretch energy is defined as

Vs =
1

2

∫
ks(ε− ε̄)2ds, (3.5)

where ks is the stretch stiffness.

• The bending energy term is defined as

Vb =
1

2

∫
(ω − ω̄)T B (ω − ω̄)ds, (3.6)

where ω = (ωb, ωn) represents the centerline curvature vector and B is a sym-
metric positive definite 2 × 2 matrix representing the bending stiffness. This
formulation allows for an anisotropic bending response in the two main direc-
tions of the cross-section.

• Finally the twist energy term is defined as

Vt =
1

2

∫
β(m− m̄)2ds, (3.7)

where β is the twist stiffness.
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Note that this model generalizes to naturally non-unitary, curved or twisted rods
by subtracting away the undeformed centerline axial strain ε̄, curvatures ω̄ and twist
m̄. The particular case of an isotropic, naturally straight rod is obtained by taking
B = kb I2×2, ω̄ = 0 and m̄ = 0.

Curve-angle formulation

The main contribution of Bergou et al. [21, 173] is the development of a reduced
coordinate formulation of thin Kirchhoff rods, which is based on a previous analysis
introduced by Langer and Singer [174]. In the curve-angle representation, the ma-
terial frame is expressed through a rotation roll θ(s) from an adapted orthonormal
reference frame m(s) = [t(s) b(s) n(s)] ∈ SO(3) which will be further explained
below. More precisely, material frame can be explicitly computed as m = R(t, θ) m,
where R is the rotation around the vector t by an angle θ. When applied to an
orthonormal frame, this operation reduces to:

b = cos θ · b + sin θ · n, (3.8)

n = − sin θ · n + cos θ · b,

with t = t. Like other reduced coordinate models, this avoids the need for stiff
constraints that couple the material frame to the centerline, while at the same time,
the explicit centerline representation facilitates collision handling and rendering.

Discrete rod kinematics

In the discrete setting, the kinematic state of the rod results as follows: the centerline
of the rod is represented by the centerline as a piece-wise linear curve defined by a set
of n nodes c = {ci} and material frames are represented by a set of roll angles {θi}
w.r.t. the reference frames that pertain to the edges of the centerline ei = (ci+1−ci)
(Fig. 3.1).

Whenever there is a change in the kinematic state of the rod, the reference frame
m should be updated so that the material frame m remains adapted. In discrete
elastic rods, this operation is performed by parallel transport of a frame initialized
to the material frame in the rest state. Parallel transport is an important concept
in the discrete elastic rods model, which serves to transform a frame adapted to a
source edge into a destination edge. Given two unit vectors v1 and v2, the parallel
transport is defined as the minimum rotation that aligns v1 with v2:

P(v1,v2) = R(v1 × v2/‖v1 × v2‖,∠(v1,v2)), (3.9)

where R(v, ψ) is the rotation about the unit vector v by an angle ψ, and ∠(v1,v2)
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Figure 3.1: Discretization of the centerline as a piece-wise linear curve defined by a set of
nodes ci and edges ei. In the curve-angle representation, the material frame mi (red) is
defined as a rotation about the tangent of a reference frame mi (blue) by a roll angle θi.

is the angle between the vectors v1 and v2. Depending on whether reference frames
are parallel transported in space or in time, the resulting formulation offers different
computational advantages:

• Parallel transport in space Initially, Bergou et al. [21], suggested using the
geometrically most natural (and physically most relaxed) frame adapted to
a curve: the Bishop frame. For a given centerline, this is an adapted frame
with zero twist uniformly, and its evolution along the centerline corresponds
infinitesimally to a rotation about the curvature binormal. In the discrete
setting, this implies parallel transporting frames between adjacent edges mk =
P(etk−1, e

t
k) mk−1. During the simulation, the reference frame is subsequently

updated starting from the frame at the beginning of the rod m0. The state
of the k-th material frame of the rod is dependent on the kinematics of the
(k−1) previous centerline edges. Consequently, the force stencil is not local and
the resulting Jacobian is dense. Although this limits the applicability of this
method, authors claim that, under specific conditions –i.e. isotropic bending
response, straight undeformed configuration, quasistatic material frame and
explicit integration– there is no computationally more efficient solution.

• Parallel transport in time Posteriorly, Bergou et al. [46], suggested that the
reference frame would also evolve naturally in time, rotating by the minimum
amount needed to keep itself adapted; this corresponds to a frame having
zero tangential angular velocity. In the context of static equilibrium solving,
“time” will refer to the subsequent iterations of the quasistatic solver. In the
discrete setting, this is equivalent to parallel transporting the reference frame
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between two time-instances of the same edge mt+1
k = P(etk, e

t+1
k ) mt

k. During a
simulation, this evolution can be done incrementally –only the reference frame
at the current time step must be known to advance it to the next time step.
The resulting force stencil is local and the Jacobian is sparse, enabling the use
of implicit integration. Given the particular needs of our problem, we adopt
the second approach.

With this reduced-coordinates formulation, the twist of the rod depends only ex-
plicitly on the set of twist angle coordinates. However, parallel transport establishes
an implicit link between the kinematic state of the centerline and the twist angle,
which must be considered during force and Jacobian derivation.

Discrete elastic energies

With the discretization, the elastic energies introduced before result:

1. Stretch. For an edge between nodes c1 and c2, with rest-length l0, and stretch
stiffness k, the stretch energy depends only on centerline variables and can be
computed as follows:

Vs =
1

2
ks l0

(
1− ‖c2 − c1‖

l0

)2

. (3.10)

2. Bending. Recall that the elastic bending energy in the smooth case was
dependent on the curvature of the centerline. Since each edge is straight, it
follows that discrete curvature is associated with vertices. For two adjacent
edges with material frames m1 = [t1,b1,n1] and m2 = [t2,b2,n2], the discrete
curvature binormal at the shared vertex is a vector orthogonal to the osculating
plane passing through the edges and can be computed as:

(κb) =
2t1 × t2

1 + tT1 t2

. (3.11)

It can be shown that the magnitude of this vector is 2 tan(φi/2), with φi the
turning angle between two consecutive edges. Note that this quantity is well-
defined in the case of collinear edges even though the binormal is not. Given
this, the discrete material curvature at the shared vertex is defined as

κ =

(
(κb)T

n1 + n2

2
,−(κb)T

b1 + b2

2

)T
. (3.12)

With a rest-state curvature κ0 and anisotropic bending stiffness B (see material
parameterization below), the resulting discrete bending energy between the
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edges is

Vb =
1

2 l0
(κ− κ0)TB(κ− κ0). (3.13)

It should be noted that κ is defined per vertex as a function of the incident
edges and their material frames. Hence, κ depends on both, centerline posi-
tions and twist angles.

3. Twist. For the same two adjacent edges mentioned above, twist can be com-
puted as the difference in the material-reference roll angle between the two
frames, i.e., θ2 − θ1, plus a reference twist ψ introduced when parallel trans-
porting the reference frame over time. For two subsequent steps in time k− 1
and k and two adjacent reference frames m1, m2, this computation results in:

ψ = ∠
(
P(tk1, t

k
2) P(tk−1

1 , tk1) bk−1
1 ,bk2,

)
. (3.14)

With a twist stiffness β, the final twist energy between the edges results in

Vt =
1

2 l0
β(θ2 − θ1 + ψ)2. (3.15)

Note that twist forces acting on the centerline are non-zero, due to the influence
of the centerline on the reference twist ψ. Similarly, bending forces acting on roll
angles are non-zero, due to the influence of these angles on the orientation of material
normals and binormals.

Material parameterization

The elliptical cross-section of the rod is discretized at edges with normal and binor-
mal radii rn and rb. The area of the resulting cross-section is A = π rn rb. Knowing
the Young modulus E and shear modulus G of the material, the stretch, bending,
and twist stiffness can be computed, respectively, as [46]:

ks = E A, B =
E A

4

(
r2
n 0
0 r2

b

)
, β =

GA(r2
n + r2

b )

4
. (3.16)

The mass of the edges is lumped at nodes {ci}. For a material with mass
density ρ, the lumped mass on a node with incident edge volumes V1 and V2 is
m = ρ(V1 + V2)/2. Additionally, the model also considers the cross-sectional inertia
of each twist angle {θi}, which is I = ρV rnrb/2. Alternatively, {θi} variables might
be assigned with zero inertia to ensure the material frames stay always in quasistatic
equilibrium.
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Simulation scheme

Independently of the nature of the simulation problem –whether we are solving
dynamic deformation or static equilibrium–, generally each solver iteration provides
a new guess for {ci} and {θi}. Once the new centerline is computed, we recompute
the reference frame on every edge through parallel transport over time, and apply
the roll angles to compute the new material frames. As noted before, the reference
frame accumulates twist that must be updated after each iteration. For more details
on the dynamic simulation algorithm, we refer the readers to the original work [173].

3.2.2 Rod network model

We propose an extension to discrete elastic rods model [21, 173] to handle con-
nections between multiple rods. With the goal of avoiding the use of constraints,
we devise an elastic energy that captures each rod deformation w.r.t. a rigid-body
representation of the connection. Depending on how we keep track of connection
kinematics, this framework leads to two alternative formulations:

• A co-rotational approach, that we defined in [22], where the orientation
of each connection is estimated kinematically from incident rods. We formu-
late their implicit relation and show how the elastic coupling energy must be
derived to correctly transfer bending and twist forces between connected rods.

• An explicit approach, later used in [50, 23], where each connection keeps
track of its own orientation with 3 additional DoFs in the form of Euler angles.

In the following sections, we will first describe the co-rotational model, which benefits
from a reduced number of DoF. Then, we will briefly explain the changes that are
necessary to implement the explicit approach.

Coupling energy

For each rod incident in a given connection, we seek to define an energy that cap-
tures its deformation relative to all other incident rods. We follow a co-rotational
approach, measuring deformation potentials w.r.t. rigidly transformed connections.
Specifically, for each rod incident in a connection, we condense the effect of the
remaining rods into a single connection edge whose orientation is determined kine-
matically using best-fit rigid transformations. Another possibility would be to define
pairwise energies for the segments incident in a connection, as done in the Cosserat
nets framework [47], but we found it more difficult to weight pair energy contribu-
tions to ensure a correct integration volume.
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Let us consider a set of rod edges incident in a connection, with rest-shape
material frames {m̄i}. In the deformed setting, we estimate a rotation R of the
rest-shape connection that best matches the deformed connection. Then, for each
incident edge, we define a connection edge with material and reference frame mc,i =
R m̄i, i.e., the rigidly rotated rest-shape material frame (Fig. 3.2). Note that, as
material frames are already determined by the rotation of the connection, there is
not need for a curve-angle discretization –i.e. reference and material frames are
equal and hence roll angles at connection edges are trivially θc,i = 0. However,
the reference frame twist ψc,i between each incident rod edge and its corresponding
connection edge must be considered as for individual rods.

Figure 3.2: At any moment, the rigid state of the connection is determined by a rotation
matrix R which is computed using shape matching. For each incident edge reference frame
mi (blue) and corresponding material frame mi (red), the rotation defines a connection
edge with material frame mc,i = Rm̄i (green).

Given material and reference frames of incident edges and their connection edges,
we can compute bending and twist elastic energies at the connections based on the
deviations between incident edges and their corresponding connection edges. For
doing so, we use the very same formula in Eqs. (3.13)-(3.15) with a slight difference:
for each incident edge we use as integration domain half the rest length of the edge.
Consequently the total potential elastic energy of the connection results:

Vc =
1

2

k∑
i=0

Vb(mi,R m̄i) + Vt(mi,R m̄i), (3.17)

where k is the number of incident rods in the connection. Note that the total domain
of integration considered is half the sum of rest lengths of all edges incident in the
connection. The deformation of each incident rod in the connection is affected by its
own material properties and the anisotropic edge radii. This allows geometrically
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complex connections with heterogeneously thick incident rods to deform realistically
according to the material, even for coarse discretizations (see Fig. 3.3 and Fig. 3.4).

Rotation estimation

In practice, we estimate the rotation R of a connection by minimizing the defor-
mation of material frames of all incident edges. To consider the effect of both the
bending and twist deformation of incident rods on the connection rotation, we mea-
sure the deviation of the material tangent t and one of its orthonormal material axes
n. Similarly to the shape matching approach by Mueller et al. [175], we first estimate
the linear transformation that minimizes the least-squares deformation energy:

A = arg min
k∑
i=0

Tr(Bi)‖ti −A t̄i‖2 + βi‖ni −A n̄i‖2, (3.18)

and then extract the rotation through polar decomposition A = R S. Weighting
the deformations of tangents and their orthonormal axes with each edge’s bending
and twist stiffness respectively, we favor the alignment of thicker and stiffer edges.
Note that, for simplicity, both bending directions are considered together for the
alignment of the tangent, and hence weights are not affected by the anisotropy
of the rod and are just proportional to its thickness, Young modulus and shear
modulus. A more precise alternative might have been considered by taking into
account also the binormal of the incident edge albeit at the expense of a much more
complex derivation of coupling forces.

Figure 3.3: This example depicts force transfer at rod connections with our connection
model. The axis of a windmill is twisted, and upon release its twist transfers into bending
of the blades. A thinner axis (left) produces less momentum than a thicker one (right), as
one would expect. The centerline of the axis was kept fixed.
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Coupling Forces

To compute the bending and twist forces at connections, the respective energy terms
need to be differentiated w.r.t. the DoFs of all incident rod edges. The difficulty
stems from the fact that the material frames are not explicit DoFs, they are kine-
matically defined by the best-fit rigid transformation as explained above.

As material frames depend through the rotation of the connection on all DoFs of
incident edges, the bending and twist energies of an edge pair formed by an incident
edge and its connection edge need to be differentiated w.r.t. centerline coordinates
and roll angles of all the incident edges of a connection, producing non-zero bending
and twist forces between all pairs of incident edges. This is actually the expected
behavior, because bending of one incident edge may produce twist on other incident
edges and viceversa. Fig. 3.3 shows how our model succeeds to represent the coupling
between rods incident in a connection.

Even though the number of force terms and required derivative calculations grows
w.r.t. the regular discrete elastic rods method, these derivatives are mostly built
from the same basic blocks. The only exception is the need to compute partial
derivatives of rotated rest-shape material frames, mc = R m̄, w.r.t. centerline
coordinates and roll angles of all incident edges in the connection, as discussed
in the paragraph above. By the chain rule, the differentials of rotated rest-shape
material frames can be generally computed as:

d(R m̄) =
∂R

∂A

k∑
i=0

(
∂A

∂ti
dti +

∂A

∂ni
dni

)
m̄i. (3.19)

∂R
∂A

is the derivative of polar decomposition which can be found in the work by
Barbic and Zhao [78], and ∂A

∂ti
and ∂A

∂ni
are constant and easily computed from the

linear expression that defines A [175]. Derivatives dti and dni w.r.t. incident edges
centerline and roll angles can be easily derived from the discrete rod kinematics
formulation introduced in the previous section 3.2.1.

Finally, static equilibrium solving requires the computation of energy Hessians,
i.e., force Jacobians. Other than derivatives already present in the original discrete
elastic rod formulation, our rod networks require the computation of the second
derivatives of polar decomposition. Barbic and Zhao [78] also derived the scalar sec-
ond derivative of polar decomposition, but we require a matrix of second derivatives
with mixed terms and follow a very similar derivation.

We denote with sk(ω) the 3 × 3 skew-symmetric matrix of a vector ω ∈ R3,
i.e., sk(ω) x = ω × x,∀x ∈ R3. Similarly, we denote with sk−1(A) the unique
skew-vector ω ∈ R3, such that sk(ω) = 1

2
(A−AT ).

Given a polar decomposition A = R S, its first derivative is:
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∂R

∂u
= sk(ω(u)) R,

∂S

∂u
= RT

(
∂A

∂u
− ∂R

∂u
S

)
, (3.20)

with ω(u) = 2 G−1 sk−1

(
RT ∂A

∂u

)
,

and G = (Tr(S)I− S)RT .

The mixed second derivative of the rotation matrix is:

∂2R

∂u∂v
= sk

(
∂ω(u)

∂v

)
R + sk(ω(u)) sk(ω(v)) R, (3.21)

with
∂ω(u)

∂v
= 2 G−1 sk−1

(
RT

(
∂2A

∂u∂v
− sk(ω(v))

∂A

∂u

))
−G−1

(
Tr

(
∂S

∂v

)
I− ∂S

∂v

)
RTω(u) + sk(ω(v))ω(u).

Fig. 3.4 shows the application of our connection model to the dynamic simulation
of a sphere-shaped rod mesh. The sphere moves down straight during compression,
but then it twists up due to the mesh topology and the highly anisotropic bending
behavior which favors tangent plane deformations.

Figure 3.4: Dynamics of a sphere with complex interplay of compression and twist. The
mesh topology and the highly anisotropic bending behavior favor tangent plane over out-
of-plane deformations.
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Explicit formulation

A formulation extending our model was proposed by Zehnder et al [50]. In this
approach, instead of implicitly inferring connection states using best-fit transforma-
tions to incident rods, they explicitly modeled connections as mass-less rigid bodies
with rotational DoFs. More precisely, the material frame at connection edges is
computed as follows:

mc = Re(e1, e2, e3) Rc m̄. (3.22)

Here, e = (e1, e2, e3) are Euler angles which are used as rotational DoFs and Re

is the corresponding transformation. To avoid gimbal lock, after each step, the
rotation from the Euler angles is transferred into a cumulative rotation Rc which
is treated as a constant value. The total orientation is then the composition of the
Euler angles and the cumulative rotation.

Despite the need of additional DoFs, derivatives of rigid-body rotations are com-
putationally less expensive than calculating the expressions in Eqs. (3.19)-(3.21),
and also more robust to extremely deformed configurations. In general, this leads to
better conditioned optimization problems. We adopt this alternative formulation in
our own work in chapter 6, because the designed rod meshes are sparsely connected,
and so the computational overload due to the additional DoFs is negligible.

3.3 Thin-shell model

Thin shells are thin flexible structures with a high ratio of width to thickness (e.g.
>100). Thin-shell models are usually governed by membrane (stretch) and flex-
ural (bending) energies formulated based on nonlinear continuum mechanics and
discretized using FEM. In the following sections, we will explain in detail the two
mechanical formulations that we have used to model the membrane and flexural
components of the energy:

• Stretch (section 3.3.1). We use a constant-strain triangle FEM discretization
with a St. Venant-Kirchhoff (StVK) constitutive model. Although the ma-
terial that we employ for fabrication is almost isotropic, our implementation
considers also orthotropic effects [64] in order to accommodate other types of
fabrics, if desired.

• Bending (section 3.3.2). We adopt the discrete shells model by Grinspun et
al [63]. In our setting of cloth simulation, internal forces are strongly domi-
nated by membrane stress and flexural stress is almost negligible. However, to
avoid numerical problems when the fabric sags, we add weak bending forces.
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3.3.1 Orthotropic membrane

A material is considered orthotropic if there exist three planes –orthogonal to each
other– by reflections with respect to which material properties remain invariant [176].
The axes normal to these planes are called principal material directions. This is the
case for many fabric materials, as principal axes are usually in correspondence with
warp and weft directions in woven fabrics, and with course and wale directions in
knitted fabrics.

Smooth formulation

Elastic surfaces resist stretching (local change in area) and shearing (local change in
length but not area). In the classical thin plates and shells theory, see e.g. [177], the
orthotropic material behavior is described by the generalized Hooke’s law assuming
a linear relationship between the strain and the stress tensor.

We consider an elastic surface a 2-manifold embedded in the 3D space with
planar undeformed configuration. Extending the notation introduced in section 3.1,
the deformation of an object in the continuum is often characterized by a time
dependent deformation map φ : R2 → R3, from the material configuration x̄ ∈ R2

to the deformed configuration x ∈ R2.

Continuum elasticity is generally built upon the deformation gradient F = ∇x̄φ,
i.e. the derivative of the deformation map w.r.t. material coordinates. In the
case of the considered elastic surface, this is a 3 × 2 tensor. Based on the defor-
mation gradient, rotation invariant measures are generally calculated to quantify
the deformation, since pure rotation should not induce any stress in a deformable
body. The most popular choice is the Green deformation tensor, which is defined as
ε2×2 = (FTF−I). The material constitutive model then defines the relation between
such strain and the Cauchy stress σ2×2, which provides the elastic forces per length
in a unit material direction n as fn = σn. The St. Venant-Kirchhoff model states
that the strain and the stress are linearly related through a fourth order compliance
tensor C like ε = Cσ. This relation can be written in matrix form referred to the
principal material axes:

ε11

ε22

ε12

 =

 1
E1

−µ21
E2

0

−µ12
E1

1
E1

0

0 0 1
2G

σ11

σ22

σ12

 , (3.23)

where we have unrolled the 2 × 2 symmetric matrices into 3-vectors. Components
11, 22 are called normal components whereas component 12 is referred to as shear
component. As the resulting matrix is block diagonal, it is easily invertible and the
corresponding elasticity tensor (the so-called stiffness matrix) σ = Kε is:
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K = γ

 E1 E1µ21 0
E2µ12 E2 0

0 0 γ−12G

 (3.24)

with γ = (1 − µ12µ21)−1. Unlike isotropic materials, which are parameterized with
a single Young modulus E and a Poisson’s ratio µ per dimension, orthotropic mem-
branes require two Young modulus Ei, two Poisson’s ratios µij and one shear mod-
ulus G. Moreover, under isotropy assumptions, shear modulus can be derived from
Young modulus and Poisson’s ratio, but when considering orthotropic materials,
that condition does not hold. As not all parameter settings lead to stable simu-
lations, we suggest following the approach by Li and Barbic [64] to ease material
characterization. In this work, the authors take some assumptions and derive a new
parameterization which is reduced to two Young moduli and a single Poisson’s ratio.
More, precisely, the following conditions must hold:

E1 > 0, E2 > 0, µ12µ21 > 1,
µ12

E1

=
µ21

E2

. (3.25)

In general, these conditions derive from enforcing the symmetry and positive-definiteness
of the stiffness matrix. Under such conditions, parameters are transformed and the
final formulation of the strain-stress relation is:σ11

σ22

σ12

 = γ

 E1

√
E1E2µ 0√

E1E2µ E2 0
0 0 γ−12G

ε11

ε22

ε12

 , (3.26)

γ =
1

(1 + µ)(1− µ)
, G =

√
E1E2

2(1 + µ)
,

where the simplified parameters are µ ∈ (0, 0.5) and E1, E2 > 0. Given this strain-
stress relation, the corresponding membrane stretch energy density is computed as
Vs = 1

2
σ : ε, where the operator : represents the scalar product between the two

tensors (i.e., the coefficient sum of the coefficient-wise product):

Vs =
1

2

2∑
i=1

2∑
j=1

εijσij. (3.27)

Expanding this expression and grouping terms, the elastic potential is:

Vs =

(
1

2
γE1

)
ε211 +

(
1

2
γE2

)
ε222 +

(
γµ
√
E1E2

)
ε11ε22 + (2G) ε212.
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When considering E1 = E2, this equation reduces to the classic St.VK elastic energy.

Discrete formulation

We represent the membrane as a 2-manifold triangle meshM and discretize the con-
tinuum mechanics using a constant-strain triangle FEM. Information of the mem-
brane state is stored on a finite number of 3D points xi ∈ R3, with planar material
configuration x̄i ∈ R2. Finite elements specify a method for reconstructing a con-
tinuous deformation map φ̂ : R2 → R3 through interpolation from discrete values
xi = φ(x̄i). Let us consider a generic scheme in which nodal values of a given
variable, e.g., position x, are expressed throughout the element via polynomial in-
terpolation as:

x(x̄) =
nv∑
i=1

xiNi(x̄), (3.28)

where nv is the number of vertices in the element and each Ni(x̄) (called shape
function) is the interpolation weight associated with the i− th node. Note that we
explicitly show the dependence of the shape function on the material coordinate x̄
corresponding to the interpolated point x. In matrix form, this results in x(x̄) =
Dw N(x̄), where all spatial positions of the element vertices have been assembled
into a 3 × nv matrix Dw = [x1, . . . ,xnv ] and, similarly, shape function values have
been assembled in a nv × 1 vector N = [N1, . . . , Nnv ]T . In this context, a discrete
approximation of the deformation gradient can be computed as:

F =
∂x

∂x̄
= Dw

∂N(x̄)

∂x̄
= Dw B(x̄). (3.29)

Here, B is the nv× 2 matrix of partial derivatives of shape functions w.r.t. material
coordinates. Finite elements method highly depends on the particular choice of the
interpolation function. In the case of a triangular mesh, barycentric interpolation
would be the natural election to extend the nodal deformations to the entire interior
of the mesh. For this particular case, the matrix B does not depend on the material
coordinates of the point, and hence the deformation gradient has a closed form and
can be computed as follows:

F = Dw G (DmG)−1, G =

 1 0
0 1
−1 −1

 (3.30)

where all material positions of the element vertices have been assembled into a 2×nv
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matrix Dm = [x̄1, . . . , x̄nv ]. The value of the matrix G is derived from the material
derivative of shape functions corresponding to isoparametric elements [178]. We
found this formulation to be the most generic and extensible to other interpolation
schemes and discretization elements, but there are other equivalent derivations for
the deformation gradient. For instance, we suggest the reader the course by Sifakis
and Barbic [179] for further information.

With a discrete approximation of the deformation gradient, it is then straightfor-
ward to compute the elastic potential energy in (3.28) and derive the corresponding
force and Jacobian expressions needed for implicit integration.

3.3.2 Discrete shells bending

For completeness, we present here an overview of the thin shells bending model
that we use. Flexure models in shell mechanics are usually based on the difference
of the second fundamental forms between the deformed and undeformed configura-
tions. This tensorial expression measures deformation and is invariant to rigid-body
transformations of the coordinate frame. Same as with the membrane energy, these
treatment derives expressions over smooth manifolds and then discretizes to carry
out the numerics. But because of their degeneracy in one dimension, the develop-
ment of robust finite element methods for thin shell-equations is still challenging.

In contrast, the work we adopt, discrete shells by Grinspun et al. [63], directly
defines a constitutive model based on discrete geometric operators applied over
piecewise-linear surfaces. The resulting expressions are easy to implement and cap-
ture the deformation behavior of the cloth well enough to prevent wrinkling and
improve the numerical conditioning of the simulation problem.

The discrete shells bending energy is based on the difference between the shape
operator –which measures the local curvature at a point on a smooth surface– eval-
uated on the deformed and undeformed surfaces. Several discrete approximations to
this magnitude can be found, e.g., in [180]. In discrete shells, the authors propose to
discretize the shape operator at edges, measuring the dihedral angle in the deformed
θ and undeformed θ̂ configurations. For a given edge e, the dihedral angle is the an-
gle between the vectors normal to its neighboring faces. Considering this definition,
the discrete flexural energy is the summation over mesh edges of the expression:

Vb =
||ē||
h̄e

(θe − θ̄e)2, (3.31)

where h̄e is a third of the average of the heights of the two triangles incident to the
edge. Implementation-wise, this discrete energy is straightforward to implement,
but depending on the method used for the measurement of the dihedral angle, it
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might be necessary to include safeguards for numerical robustness.

3.4 Static equilibrium

This thesis deals with design problems for which the main performance criterion is
the deformation behavior, more precisely, we consider the equilibrium of fabricated
objects for any given boundary conditions and not how they dynamically behave.
Technically, the static equilibrium is defined by the shape with vanishing net forces,
that is f(q) = 0. As introduced in section 3.1, q ∈ Rn is the deformed configuration
of the object in some known generalized coordinates system. The resulting force f ∈
Rn is generally a nonlinear vector function that may include internal forces fi (e.g.,
elastic forces) and external forces fe (e.g., gravity force). In general, forces depend
on the deformed configuration q, as well as on some other magnitudes (e.g., material
parameters, gravity constant, etc.) that are kept constant during simulation.

Design methods rely on numerical simulation to predict the actual behavior of
fabricated designs. For some specific boundary conditions, we seek to compute the
corresponding deformed configuration q in the most accurate and efficient manner
possible. In the following sections, we will overview a two approaches for the im-
plementation of the static equilibrium solver that might be considered and discuss
their practical applicability.

3.4.1 Root-finding solver

Using classical Newtonian mechanics, computing the static equilibrium means solv-
ing a system of nonlinear equations or, equivalently, finding the roots of the vector-
valued function f . The general approach is to use the Newton-Raphson method to
calculate successively better approximations to the function roots. Roughly, given
an initial estimate x0, successive solutions are computed:

xk+1 = xk − J−1(xk) f(xk), (3.32)

where J = ∇xf(xk) is the Jacobian of the forces w.r.t. generalized coordinates. In
practical terms, that means iteratively solving linear systems of the kind Jk∆x =
−fk, where ∆x = (xk+1 − xk) and functions dependent on generalized positions at
the k − th iteration have been shortened to fk and Jk. In certain situations, the
Newton-Raphson method is an extremely powerful technique and has local quadratic
convergence.
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Practical problems

However, there are practical considerations –related mainly with the properties of
the Jacobian– that might lead to the failure of the Newton-Raphson method. In the
following, we review the main practical issues that must be considered when solving
static equilibria, specially with the root-finding algorithms:

• Unstable equilibria. An equilibrium is unstable if a small position perturba-
tion will likely produce a large change in the energy of the system. Mechanical
equilibria happen at the critical points of the potential energy functions gov-
erning the system. These can be either local minima, local maxima or saddle
points. Both maximum and saddle points are representative of unstable equi-
libria. These situations are rather usual, specially in the case of mechanical
models where highly anisotropic behaviors are present, and can easily pro-
duce buckling effects. For example, when a stiff elastic rod is subject to axial
compressive stress, buckling may occur and produce a sudden sideways de-
flection. Although these are valid equilibrium configurations, the static solver
should avoid moving towards them. This is justified because not only they are
physically unstable and do not represent a statistically probable state for a
fabricated object, but they are also numerically related with indefinite points.

• Indefinite points These correspond to points of the space for which the
Jacobian is indefinite. Indefinite matrices are characterized by having both
positive and negative eigenvalues. This limits the range of linear solvers that
can be used to solve the linear system in (3.32), as most used direct and it-
erative methods require a positive semi-definite matrix to properly function,
e.g., Cholesky and Conjugate Gradient. In addition, an indefinite point indi-
cates the presence of a saddle point in the potential energy function, and so
an unstable equilibrium.

• Stationary points. These are points of the generalized space at which the
Jacobian is singular, and consequently the linear system in (3.32) cannot be
solved, causing the algorithm to halt. Analytically, this implies that the null-
space of the Jacobian matrix is non-empty, i.e., there exist directions in the
space for which the value of the force function does not change. Therefore, the
problem has infinite solutions. In mechanical simulation, this usually means
that numerical constraints in the form additional boundary conditions must
be imposed to avoid the singularity. For instance, as we have explained in
the previous section 3.3.1, most elastic energy formulations are invariant to
rigid-body transformations and hence translation or rotation steps must be
prevented.

• Ill-conditioning. Even if the Jacobian matrix is strictly non-singular and
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positive definite, mechanical models can usually lead to ill-conditioned prob-
lems. If the Jacobian is nearly singular or has a large condition number –ratio
between the maximum and mimimum eigenvalue– at some iteration, the linear
system is not numerically well behaved for the computation of a solution. This
might lead to bad estimates that may overshoot the step and diverge from the
closest root. A recent work by Kannan et al. [181] has analyzed potential
causes and solutions for ill-conditioned problems in structural mechanics.

Practical solutions

Here we identify two solutions that may overcome the problems mentioned above:

• Regularization The challenges due to indefinite problems are usually ad-
dressed through linear system regularization. The simplest solution is solving
the linear system (J +λI)∆q = −f with increasingly higher values for λ, until
the resulting matrix is strictly positive definite. Nevertheless, there are other
regularization schemes that may also help with ill-conditioning. For instance,
the well-known Thikonov regularization formulates an ordinary least squares
problem to solve the linear system and adds a regularization term in order to
give preference to particular solutions with desirable properties. This leads to
a generic linear system formulation (JTJ+QTQ)∆q = −JT f , for some matrix
Q. Depending on the choice of Q, Thikonov regularization may improve the
conditioning of the problem, thus enabling a direct numerical solution. For a
more thorough study on regularization, we refer the reader to [182].

• Step selection Even with the previous safeguard, overshoot and divergence
from the roots might still happen due to the nonlinearity of the force function
and poor initial estimates. To mitigate this problem, a step length selection
procedure should be also used. A straightforward solution could be to con-
sider a simple backtracking line-search in the ∆q direction that ensures the
reduction of a merit function φ. Most literature on nonlinear equation system
solving suggests using the norm of the function, φ = ‖f‖. More sophisti-
cated line-search methods consider additional convergence conditions such as
the Armijo rule (i.e., sufficient decrease in the merit function) and the Wolfe
condition (i.e., sufficient decrease in the curvature) [183]. However, indepen-
dently on the particular line-search scheme used, Newton-Raphson algorithm
together with this merit function is equally attracted to local minima and
saddle points, what negatively affects the overall convergence towards good
solutions. In the next section, we will introduce a very similar formulation
that originates from Lagrangian mechanics and improves the robustness of the
solver.
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3.4.2 Optimization solver

As we have seen, the set of solutions to the static equilibrium problem correspond to
the critical points of the potential energy function V . Therefore, we can reformulate
the problem as the minimization

min
q

V (q), (3.33)

which finds solution at the points where the gradient vanishes ∇qV = −f = 0.
Minimization of the potential energy imposes a bias towards stable equilibrium
configurations that avoid the problematic saddle points mentioned in the previous
section. Formulating the problem as a nonlinear optimization offers the possibility
of using a much broader range of numerical methods. In practical terms, we solve
the problem in (3.33) using sequential quadratic programming (SQP), for which the
step computation is formally equivalent to the root-finding Newton-Raphson method
described above, –we refer to Nocedal and Wright [183] for formal proof. The only
difference between the two is in the merit function used for the step length selection
procedure, which in this case is φ = V , to guarantee that each step produces a valid
estimate closer to a stable static equilibrium configuration.
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Inverse elastic shape design

Our tools feature inverse design operators that automatically determine attributes
of the elastic structures such that their deformed shapes meet some user-specified
goals. The associated numerical optimization problem has been repeatedly formu-
lated throughout the extensive literature, having become a standard scenario. In
this chapter, we present a formal characterization of such problem, describe some
numerical solving methods, and analyze the challenges of their practical implemen-
tation. Our goal is to address some common issues across many design problems
that fit within this framework and discuss alternative solution approaches.

• The first section 4.1 formalizes the optimization problem to establish a com-
mon notation and characterize this problem based on its theoretical solution
space.

• The second section 4.2 analyzes the practical implications of solving this op-
timization, provides some guidelines on how to formulate design problems to
favor finding better solutions, and introduce two solution methodologies.

• The third section 4.3 focuses on computational solutions based on the explo-
ration of the constraint manifold, with an emphasis on the usefulness of sensi-
tivity analysis for that purpose, and discuss current issues with commonly-used
standard optimization methods.

4.1 Problem characterization

In this thesis, we study the following generic problem: given a parameterized flexible
object, find the design –i.e., parameter values– that optimize some metric dependent
on the static equilibrium deformation of the object, for some boundary conditions.

49
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In this section, we extend the generic notation introduced in the last chapter 3 in
the context of mechanical simulation and formally characterize the problem to serve
as a baseline for further analysis. We then study the theoretical solution space to
better understand the underlying mathematical problem.

4.1.1 Problem formulation

We consider a generic computational model M(O) that describes the mechanical
behavior of a deformable object O ⊂ R3 through a conservative energy potential
V (q,p) ∈ R. Here, q ∈ Rn concatenates all the independent variables that dis-
cretize the deformed shape of the object in some known generalized coordinates
system, and p ∈ Rm is an arbitrary set of parameters that determines the design
of the object for a particular problem. From here onward, we will refer as deformed
space to the space Q ≡ Rn spanned by q, design space to the space P ≡ Rm spanned
by p, and total space to the union of both R ≡ P ∪Q ≡ Ro spanned by r = (q,p),
with o = n + m. This parameter set might contain variables modeling discrete ge-
ometry (e.g., the rest-shape) or material properties (e.g., Young modulus), among
others. We are omitting here other quantities that might affect the value of the
energy potential (e.g., gravity constant), but whose value is not considered a design
parameter.

Altogether, we then define the generic shape optimization problem as follows:

min
qi,p

kp∑
i=1

h(qi)

s.t. fq,i(qi,p) = 0 (4.1)

pm ≤ p ≤ pM .

This formulation minimizes an objective function h dependent on a number of kp
deformed poses qi, subject to the static equilibrium constraint fq,i = 0 and box
constraints on design parameters pm ≤ p ≤ pM . While the deformed configura-
tion qi is generally unbounded, design parameters p are often restricted to valid
ranges. For instance, materials are characterized by Young’s modulus E ∈ (0,∞)
and Poisson’s ratio µ ∈ (0, 0.5). For this reason, lower pm and upper pM limits
are considered. Note that the equilibrium constraint corresponding to each pose
fq,i considers its own boundary conditions. This generic formulation allows, for in-
stance, to define the desired range of deformations of a fabricated object based on
its deformed configurations corresponding to multiple scenarios, as it will be demon-
strated in chapter 5. In the following sections, we will further explain both the static
equilibrium constraint and the objective function h.
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We note that the formulation of inverse elastic design problems might be more
general, containing also other types of constraints. However, for the purpose of our
analysis, it suffices to consider the problem (4.1) above.

The static equilibrium

We deal with design problems for which the main performance criterion is the defor-
mation behavior. More precisely, we consider the equilibrium of fabricated objects
for any given boundary conditions, i.e., the shape with vanishing net forces. The
defined energy potential yields the expression of the system forces as

fq(q,p) = −∂V
∂q
∈ Rn, (4.2)

fp(q,p) = −∂V
∂p
∈ Rm.

Note that fq are the net forces acting on the DoFs corresponding to the deformed
shape. The analogous magnitude at design parameters fp is not required at this
point, but it will be of use in later sections. The partial derivative of both force
expressions will be also needed and we will refer to them using the following notation:

J(q,p) =

[
Jqq Jqp

Jpq Jpp

]
=

[
∂fq
∂q

∂fq
∂p

∂fp
∂q

∂fp
∂p

]
. (4.3)

The expression of static equilibrium fq(qj,p) = 0 imposes numerical constraints
on the total space R in the form of an underdetermined system of n –generally
nonlinear– equations and o variables. The set of all possible configurations (q,p)
such that these conditions hold defines an m-manifold embedded in the total space
R, which we call equilibrium manifold, E . If the potential energy is conservative
and bounded from below for a specific parameter vector p, there is at least one
equilibrium configuration that we denote:

q̂ = {q | fq(q,p) = 0}, (4.4)

located at an extremal point of the potential energy function. Recall from section 3.4
that both maxima and saddle points correspond to unstable static equilibrium states
and are not desirable configurations. Additionally, the elastic potential is generally
invariant to rigid-body transformations. Therefore, from this point onward, we
assume that Q has an empty null-space, i.e., translation and rotation displacements
have been already constrained through boundary conditions. In any case, in section
3.4, we described a numerical solver that can be used to compute such configurations
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robustly, navigating only the deformed space Q.

The objective function

In this kind of problems, the quality of a given solution is usually measured in terms
of a number of ks shape descriptors Φi ∈ Rsi of an arbitrary dimensionality si. We
call the space spanned by the combination of all possible Φk vectors S ≡ S1 ∪ . . .∪Sk
the shape space.

The simplest setting would be the case where we seek design parameters such
that the deformed shape of the object q exactly matches a given target configuration
qt. Then the identity function is the unique shape descriptor Φ(q) = q, in which
case s = n and the shape space equals the deformed space S ≡ Q. However, more
often objectives focus on a subset of the deformation variables, Φ(q) = T q, with
Ts×n being a selection matrix. That is the case of the works that will be described
in chapters 5 and 6, for instance, where we are interested only in the positions of the
centerline nodes of a rod mesh, while the deformed shape is also determined by the
roll angles of the material frame. In general, any combination of k shape descriptors
could potentially be used in the objective function, including more sophisticated
metrics like area, volume, smoothness, stability or buoyancy, among others. For
each of these shape descriptors, one must provide a corresponding target value Φt,
the distance to which we aim to minimize. This defines a generic objective function
as the squared difference between shape descriptors and target values

h =
1

2

ks∑
j=1

wj ‖(Φj(qi)−Φt
ij)

T‖2, (4.5)

where wj are descriptor weights.

Basic problem formulation

For notation simplicity and without loss of generality, further analysis will consider
only one pose kp = 1 and one shape descriptor ks = 1, which will be the identity
Φ(q) = q. This way, n = s and the shape space is equivalent to the deformed space
S ≡ Q. With that in mind, we finally define the shape optimization problem as
follows:

min
q,p

1

2
‖q− qt‖2

s.t. fq(q,p) = 0 (4.6)

pm ≤ p ≤ pM .
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In the following section we will analyze the theoretical solution space of this
optimization problem and characterize inverse elastic design problems accordingly.

4.1.2 The solution space

In general, equation (4.6) defines a nonlinear least squares problem that can be
solved using a standard constrained nonlinear optimization method. In this thesis,
we focus on a solution scheme based on navigating the equilibrium constraint man-
ifold. In this section, we study the solution space of the problem in order to better
understand the geometry of such constraint manifold and how it is related to the
objective function.

Figure 4.1: This figure represents the three possible situations that might happen depend-
ing on the dimension of design P and shape S spaces. The set of perfect solutions (red) is
defined by the intersection between the target (green) and equilibrium (blue) manifolds.
Note that manifolds do not intersect in the c) case.

The objective function in the problem (4.6) trivially finds a minimum at q = qt.
This condition defines a m-manifold embedded in the total space R, where the
objective function vanishes, which we call target manifold, T . Note that, as the
objective function does not depend on the design parameters, this target manifold
is constant in the P subspace. The intersection between equilibrium E and target T
manifolds defines the set of perfect solutions with h = 0. In general, the maximum
dimension of the intersection between two manifoldsA, B embedded in a space R is a
non-negative value formulated as Dim(A∩B) = Dim(A)+Dim(B)−Dim(R), which
in the case of our problem results Dim(E ∩ T ) = max(m − n, 0). Considering this
fact, inverse design problems can be also characterized in terms of the dimensionality
of the design P and shape S spaces. Fig. 4.1 shows a geometric representation of
the three situations that might happen:

• Case Dim(P ) > Dim(S). There are potentially infinite perfect solutions.
One instance of this problem appears in some interactive computational tools
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that feature inverse design capabilities, see e.g. [14, 26, 15, 23]. In these cases,
the user sequentially applies geometric changes to the deformed configuration
q, e.g., pulling from a mesh vertex handler, to define a new target qt = q+∆qt.
The objective function is then formulated to match the incremental change
locally, resulting in a low-dimensional shape space. To select among the infinite
possible solutions, regularizing terms must be added to the objective function,
e.g., to favor the closest solution to the starting point.

• Case Dim(P ) = Dim(S). There is at most a finite number of perfect so-
lutions and, under some assumptions on the normal and curvature of the
equilibrium manifold, it can be shown that a solution exists. This situation
corresponds, for example, to design problems where the rest configuration
is optimized such that the deformed configuration matches a desired shape
p = q̄. In absence of external forces, this problem is trivial, i.e., p = q = qt,
With external forces, the problem is not trivial and it has been often studied,
e.g., [140, 139, 9].

• Case Dim(P ) < Dim(S). There is at most a finite number of perfect solu-
tions, but the set is generally empty. This is the most common example in the
design literature. In material characterization, for instance, only a few material
parameters are considered as defining the design space, but the shape descrip-
tor often considers the whole deformed configuration, e.g., [148, 68, 184]. In
more general fabrication-oriented design works, the complexity of solving (4.6)
rapidly grows with the size of the design space, and dense parameterizations
are more likely to produce noisy results. Hence, there is a general interest in
using low-dimensional design spaces.

We may assume that, in most cases, there will be no intersection between the
two manifolds. Note that, even when m >> n, the target configuration might not
be reachable because we are restricted to the feasible range of design parameters
[pm,pM ]. Even if the target configuration is realizable, the equilibrium manifold
E is generally nonlinear and we can only make a guess about the intersection set
based on local linear approximations. In practice, we will look for a point in the
equilibrium manifold that locally minimizes the distance function h. In section 4.2,
we will explore different alternatives for finding this solution.

4.2 Solution methodologies

The optimization problem defined in (4.6) can be solved using standard optimization
methods for general nonlinear least-squares problems. However, we have seen that
the equilibrium manifold that defines the solution space is often nonlinear and full
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of perils. Additionally, the target shape can be arbitrarily far from any static equi-
librium configuration. In general, this makes the design problem very difficult and
produces misleading results when computing the numerical approximations needed
to solve the problem.

During the development of this thesis, we have dealt with two main aspects that
largely affect the complexity of the design problem and identified simple approaches
that facilitate its solution: i) the selection of the design space, and ii) the definition
of the target shape. In the next two sections 4.2.1 and 4.2.2, we will describe each one
of them. Then, we will introduce the two main approaches that we have considered
for solving the optimization problem: constrained optimization, in section 4.2.3, and
constraint manifold exploration, in section 4.2.4.

4.2.1 Design space selection

There are some aspects of the optimization problem that benefit from an adequate
selection of the design parameters. In general, we aim for formulations that have
two complementary attributes:

1. Naturally smooth solutions. Fabrication-oriented design applications gen-
erally benefit from producing smooth shapes and designs, not only for aesthetic
reasons. The presence of high frequency noise in the shape or the material dis-
tribution of an object often reduces the accuracy of the discretizations used to
approximate the continuum, produces numerical instabilities in the computa-
tion of the gradient and the Hessian, makes the fabricated object more prone
to malfunction or fracture, and hinder the manufacturing process.

2. Compact parameter sets. In general, the complexity of an inverse elas-
tic design problem rapidly grows with the size of the design space and hence
there is an interest in using compact parameterizations. Although this ac-
tually involves shrinking the solution space and making it more difficult to
find equilibrium configurations close to the target shape, it is less prone to
overfitting, which is also associated with non-smooth solutions.

Consequently, we are interested in selecting a compact parameter set such that
the part of the solution space that is not accessible corresponds mainly to non-
smooth and overfitted solutions. One usual way of producing smooth solutions is to
add regularization terms to the objective function, but these terms are usually not
trivial to control and do not make the design space more compact. Instead of using
regularization, we propose defining the design space as a numerical interpolation
from a reduced set of parameter control points p = z(α), with α ∈ Ra and a << m.
The particular nature of the interpolation function z depends on the specific design



56 4.2. Solution methodologies

problem. For instance, in chapter 5, we employ cubic Hermite interpolation to
define the radii of a rod section along the centerline. Conversely, in chapter 6, we
use Laplacian meshing to determine the rest configuration of the membrane of a
tensile structure. In any case, it is convenient to choose interpolations where all
nonlinearities can be precomputed and the final relationship is linear p = Zm×aα.
Hence, for any magnitude w,

∂w

∂α
=
∂w

∂p
Z,

∂2w

∂α2
= ZT ∂

2w

∂p2
Z. (4.7)

This relationship allows us to reformulate the optimization problem, without any
loss of generality, in terms of the parameter interpolation control points α. To ease
the notation though, we will continue using the basic formulation in (4.6).

4.2.2 Target shape definition

As we introduced in section 4.1.2, the specified target shape is most likely infeasible,
independently of the parameterization of the problem. In fact, it might be arbitrarily
far from any possible equilibrium configuration. Under such conditions, numerical
optimization methods usually produce poor results. Introducing prior knowledge
about the design problem in the definition of the target shape is generally neces-
sary to obtain good solutions. We propose two approaches for this purpose: using
physically-based targets or equilibrium manifold approximations.

• Physically-based target Often, shape optimization approaches try to match
a target shape that has been defined by the user employing some geome-
try deformer. Alternatively, using physically-based deformers for this task
highly increases the chances of producing target shapes that can be success-
fully matched within the considered design space. Even if the underlying
mechanical model of the deformer does not accurately match the model that
determines the equilibrium constraint, similar principles often apply in terms
of volume conservation and deformation ratios. In chapter 5, we show how
thin-shell and FEM computational models can be used to define a target shape
that is successfully matched by a rod mesh model.

• Manifold approximations Direct freeform manipulation of the target is
always possible (e.g., defining artistic shapes with an aesthetic intention), but
it will most likely produce targets that are far from feasible. Instead, using
an incremental target exploration ensures that the targets that are defined
remain close to feasible. Starting from an initial feasible solution, one can
compute local approximations of the equilibrium manifold and successively
deform the target shape such that the approximate constraints hold. Once
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satisfied with the deformed shape, this can be used as the target configuration
of the full nonlinear optimization problem. Although the resulting objective
is probably still not feasible, the chances of the design optimization to find
a valid approximation are much higher. In chapter 6, we present a two-step
optimization that is based on this principle.

4.2.3 Constrained optimization solution

Many works in the literature solve the resulting constrained optimization problems
using standard optimization methods, e.g., [8, 10, 31, 28]. Our constrained non-
linear least squares problem can be generally solved using a sequential quadratic
programming (SQP) method. This common denomination includes a large variety
of optimization algorithms based on iteratively approximating the nonlinear prob-
lem (4.6) with a simpler quadratic programming (QP) that is easier to solve. Let us
assume for now that there are no box constraints, i.e., pm = −∞ and p = ∞. In
such case, each SQP iteration implies:

1. A quadratic approximation of the objective function

h̃(∆r; r0) = g(r0)T ∆r +
1

2
∆rT H(r0) ∆r, (4.8)

where g = ∇r h and H = ∇2
r h.

2. A linear approximation of the equilibrium constraint

f̃q(∆r; r0) = fo(r0) + Jq(r0)T ∆r = 0, (4.9)

where Jq = [Jqq,Jqp] = ∇r fq.

In each SQP iteration, the solver finds a guess step ∆r such that the linear con-
straint is approximately satisfied and the quadratic objective function is minimized.
Depending on how the formulation handles the interaction between objective func-
tion and the constraints, different submethods can be considered. Next, we will
briefly review the three most widely used approaches: Lagrange multipliers, penalty
methods and augmented Lagrangian. For a more thorough dissertation on the topic,
we refer the reader to the work by Nocedal and Wright [183].

Lagrange multipliers

The method of Lagrange multipliers is a standard strategy in mathematical opti-
mization for finding the local minima of a function subject to constraints. This
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method is based on considering a set of auxiliary variables λ ∈ Rm called Lagrange
multipliers and finding the critical points of the Lagrangian function:

L(∆r, λ; r0) = h̃(∆r; r0) + λT f̃q(∆r; r0). (4.10)

The critical points of the Lagrangian occur at saddle points. In the case of an
equality-constrained QP problem, finding the solution is equivalent to solving a
linear system whose matrix is generally indefinite of the kind[

H JTq

Jq 0

] [
∆r

λ

]
=

[
−g
−fq

]
(4.11)

where the matrix and the right-hand side are evaluated at r0.

Penalty method

The penalty method replaces the constrained QP iteration with an unconstrained
QP, adding an additional term to the objective function called penalty function.
This function consists of a penalty parameter µ multiplied by a measure of the
violation of constraints, commonly the squared norm. Consequently, each iteration
minimizes the following quadratic function:

g̃(∆r; r0) = h̃(∆r; r0) +
µ

2
‖f̃q(∆r; r0)‖2, (4.12)

which simply reduces to solving a linear system of the form

(H + µJTqJq) ∆r = −g − µJTq fq, (4.13)

with all magnitudes evaluated at r0. In each iteration of the SQP, the penalty coef-
ficient is successively incremented to guarantee the enforcement of the constraints.
Ideally, the solution of these series of unconstrained problems would converge to
the solution of the original constrained problem. However, finding the appropriate
update scheme for the penalty coefficient is not trivial, and it highly determines the
success of the algorithm. Additionally, taking µ → ∞ in late iterations may yield
ill-conditioned system matrices.

Augmented Lagrangian

Similar to the penalty method, the augmented Lagrangian method also replaces the
constrained SQP by a series of unconstrained QPs, by adding a penalty term to the
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objective function. However, to overcome the potential difficulties of the penalty
method, the augmented Lagrangian adds an extra penalty term designed to mimic
Lagrangian multipliers:

g̃(∆r; r0) = h̃(∆r; r0) +
µ

2
‖f̃q(∆r; r0)‖2 + λT f̃q(∆r; r0), (4.14)

which, once again, reduces to solving a linear system of the form

(H + µJTqJq) ∆r = −g − µJTq fq + λT Jq. (4.15)

Here λ is an estimation of the Lagrangian multipliers, which is updated after each
iteration as λ ← λ − µfq(r∗), for a given candidate QP solution r∗ = r0 + ∆r∗.
The resulting estimate improves at every step, progressively reducing the need for
the penalty term. Consequently, it is not necessary to take µ → ∞, and thus
ill-conditioned problems are avoided.

Practical considerations

There are some important aspects for the practical implementation of these methods:

1. Box constraints. Given the formulations presented above, it is easy to add
box constraints on the design parameters pm < p < pM to each quadratic
subproblem. One might simply project the resulting step within the bounds,
but that does not necessarily guarantee that the solution is optimal and hence
compromises the quadratic convergence of the SQP method. The literature
on box-constrained QP problems is extensive and lies out of the scope of this
text, but we suggest using the gradient projection method, see e.g., [183].

2. Linear system solving. Solving the linear systems associated to each of
these formulations is not free of perils. A positive definite Hessian H is pre-
ferred to guarantee the convergence of the SQP algorithm. The regularization
methods suggested in section 3.4 are also applicable in this context. However,
it is also possible to use approximations to the full Hessian such that positive
definiteness is satisfied. We will later describe these approaches in section 4.3.3
in the context of constraint exploration solutions.

3. Step length selection. Independently of the particular method used, each
iteration results in a new guess step ∆r and hence a candidate solution rk =
rk−1 +α∆r, which should be closer to a local minimum of the objective. Here,
α represents an adapted step length. This is necessary because the QP is
just an approximation of the more complex nonlinear problem, and its result-
ing step does not always lead to the improvement of the nonlinear objective
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function h. Independently of the particular step-length selection method, e.g.,
line-search, trust-region, etc., it is necessary to define a merit function Ψ(h, f)
that measures the quality of a given solution. For an unconstrained problem,
there is a straightforward solution, i.e., Ψ = h. However, in the constrained
case there is no unique way of formulating this metric. Recall that most de-
sign problems have no perfect solution; therefore, objective minimization h and
constraint fulfillment fq = 0 are opposing goals. A common choice is to use the
penalty method function, Ψ = h + γ ||f ||2, where γ is a weighting factor that
adaptively changes depending on the convergence properties of the problem.
γ should be small at the beginning of the optimization, and is progressively
increased to ensure that the final solution is in static equilibrium.

Box constraints and the regularization of the linear system are standard issues
in the resolution of QP subproblems. Therefore, from this point onward, we will
ignore these issues and refer the reader to this section whenever a box-constrained
QP problem is formulated.

Discussion

A few practical observation about the constrained SQP method:

1. At each iteration, the static equilibrium constraint may not hold for the candi-
date solution. This allows a broad exploration of the total space, which might
facilitate avoiding local minima.

2. Appropriately selecting a valid merit function, as well as adaptively finding a
compromise between the objective function h and constraint fulfillment fq = 0
is highly non-trivial.

3. When using Lagrange multipliers, the linear system (4.11) solved at each it-
eration might be relatively costly to solve. The system size is t × t, with
t = 2n + m. Additionally, the matrix A is usually indefinite; therefore, fast
linear solvers for symmetric positive semi-definite matrices cannot be used.

4. When using penalty and augmented Lagrangian methods, tuning the penalty
coefficient appropriately can be difficult and, as we have seen, leads to ill-
conditioned system matrices.

5. When considering at the same time several kp deformed poses with their own
boundary conditions, these methods do not scale well. All the poses share the
same parameter set and the formulation cannot be easily decoupled. For kp
poses, the size of the problems results 2kpn+m.
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Except for the first observation, the rest constitute serious disadvantages on
the applicability of the constrained SQP method in our particular scenario. In the
following section, we introduce how we alternatively approach the problem (4.6),
using sensitivity analysis to iteratively explore the equilibrium constraint looking
for better solutions.

4.2.4 Constraint exploration solution

Some works in the literature follow alternative approaches for the solution of the
constrained problem (4.6), based on the exploration of the constraint manifold,
e.g., [14, 22, 23, 148, 68, 165]. Given some initial guess r0, such that fq(r0) = 0,
these methods iteratively compute a tentative step ∆r, such that the candidate
solution r1 = r0 + ∆r reduces the objective function h and approximately satisfies
the constraint fq ' 0. This same idea can be implemented using several numerical
methods. Yang et al. [26], for instance, generate steps on the manifold considering
both first and second order approximants –i.e., tangent space and quadratically
parameterized osculant surface– that can be directly computed in the parameter
space. Alternatively, we approximate the constraint manifold using a sensitivity
analysis matrix computed by virtue of the implicit function theorem. In the next
section, we will explain in detail how to solve the optimization problem (4.6) using
sensitivity-based constraint exploration.

4.3 Sensitivity-based optimization

In this section, we explain in detail an alternative solution to the nonlinear con-
strained optimization, based on the exploration of the constraint manifold. Roughly,
this method finds an explicit expression of the equilibrium manifold through local
approximation, by virtue of sensitivity analysis. In the next section 4.3.1, we explain
how this is done using the implicit function theorem, and we study the resulting im-
plicit equilibrium function. Then, in section 4.3.2, we reformulate the problem (4.6)
using this function, and we outline a SQP method for solving it. Finally, we will fo-
cus on two specific aspects of the algorithm that strongly determine its performance:
the quadratic subproblem 4.3.3 and the projection to the equilibrium manifold 4.3.4.

4.3.1 Implicit equilibrium

We seek a mathematical expression of the the static equilibrium constraint manifold.
The implicit function theorem states that if an equation f(q1, . . . , qn, p1, . . . , pm) =
f(q,p) = 0 satisfies continuity and differentiability conditions, then there exists
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an implicit function q̂ : Rm → Rn such that q̂(p) locally approximates the locus
defined by f(q,p) = 0. That is, q̂ is an implicit function parameterized by p of the
static equilibrium configuration as defined in (4.4). Although there might not exist
a closed analytic expression of q̂, we can easily compute a linear approximation as
follows. Assuming that the constraint fq is a continuously differentiable function
and there exists a point (q0,p0) for which its value satisfies f(q0,p0) = 0, we can
apply the Taylor expansion series on the function fq, assuming that the implicit
function q̂(p) does exist:

fq(q̂(p),p)⇒ fq ' fq(p0) +
dfq
dp

∆p = 0. (4.16)

We know fq(p0) = 0; therefore, applying the chain rule we have:

dfq
dp

∆p = 0⇒ Jqq
∂q̂

∂p
∆p + Jqp ∆p = 0. (4.17)

An finally, factoring ∆p out and reordering terms:

Jqq
∂q̂

∂p
+ Jqp = 0⇒ Jqq

∂q̂

∂p
= −Jqp. (4.18)

The matrix resulting from solving the linear system,

S =
∂q̂

∂p
, (4.19)

is called sensitivity matrix, and the corresponding linear approximation of the im-
plicit function, q̂ ' q0 + S∆p, defines a linear manifold that is locally tangent to
the equilibrium manifold. This can be easily proved by substituting ∆q = S∆p in
the equation that defines the null-space of the equilibrium constrain:

[
Jqq Jqp

] [∆q

∆p

]
=

[
0

0

]
, (4.20)

which holds true independently of the value of ∆p.

Sensitivity matrix

The sensitivity matrix spans the plane tangent to the equilibrium constraint at
the evaluation point r0. We will refer to the resulting linear manifold Ẽ as the
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Figure 4.2: This picture shows linear approximations to the equilibrium manifold, for the
different situations that were described in section 4.1.2. The top row depicts some good
approximation examples. However, depending on the nonlinearities of the equilibrium
manifold, the linear manifold might produce poor estimates (bottom left) or degenerate
cases with infinite (bottom center) or singular (bottom right) functions.

linear equilibrium manifold. Fig. 4.2 shows the linear equilibrium approximations
corresponding to the three design situations introduced in section 4.1.2. In practical
terms, the sensitivity matrix allows us to compute, for a given parameter change
∆p, the displacement in the deformed configuration ∆q such that the linearized
static equilibrium constraint f̃q = 0 holds. Some other useful conclusions can be
drawn from the numerical properties of the matrix:

• Linear equilibrium: In general, the sensitivity matrix S has dimension n×m
and [ST , I], for Im×m, is a basis whose rows span the linear equilibrium m-
manifold. The intersection of this linear manifold and the target manifold, if
it exists, approximates the set of perfect solutions to the problem introduced
in section 4.1.2 (Fig. 4.2, top row).

• Infinite sensitivity: If Jqq is rank-deficient, the linear system in (4.18) can-
not be solved. This corresponds to situations for which the linear equilibrium
approximation runs parallel to the shape space Q –see Fig. 4.2 picture e. In
practical terms, this means that the deformed configuration is infinitely sensi-
tive w.r.t. some of the design parameters, and the matrix is not valid.
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• Singular sensitivity: If Jqp is rank-deficient, the linear system in (4.18)
can be solved, but the resulting sensitivity matrix is also rank-deficient. This
corresponds to points where there exists at least a direction in the design space
P for which the deformed configuration does not change. Here, the sensitivity
matrix is still valid but it may produce difficult situations when solving the
optimization. In the worst case scenario, the linear equilibrium approximation
runs parallel to the design space P –see Fig. 4.2, picture f . In such case,
traversing the linear equilibrium does not change the objective function.

• Ill-conditioning: Sometimes, Jqq and Jqp matrices are ill-conditioned or
numerically close to being rank-deficient. This might cause that S is not
well-behaved in two ways. On one hand, the condition number –i.e., the
difference between minimum and maximum singular values– may be high, what
means that the deformed configuration is much more sensitive to some design
parameters than others. On the other hand, the linear equilibrium manifold
may be almost parallel to the target manifold, what means its navigation have
very little effect on reducing the objective function.

In general, the sensitivity matrix provides us with a formal framework to rewrite
the optimization problem (4.6) in terms of the implicit function q̂, as we will see in
the next section.

4.3.2 Sensitivity-based SQP

The implicit equilibrium q̂(p) defines the equilibrium configuration corresponding
to a given parameter vector p. Using this function, we can remove the static equilib-
rium constraint in (4.6), and reformulate the objective function h to evaluate shape
descriptors only on equilibrium configurations:

ĥ =
1

2
‖ q̂(p)− qt‖2. (4.21)

This way, the final equilibrium shape optimization problem is:

min
p
ĥ (4.22)

s.t. pm ≤ p ≤ pM .

Note that the force equilibrium constraint is no longer needed as we implicitly con-
sider only deformed configurations in static equilibrium q̂. Generally, there is no
explicit analytic expression for this magnitude, which can be highly nonlinear, and
one can only rely on locally tangent approximations q̃ –e.g., the one defined in the
previous section based on the sensitivity matrix. This problem finds minima at:
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ĝ =
∂ĥ

∂p
= 0⇒ (q− qt)T

∂q̂

∂p
= 0. (4.23)

Algorithm 1: Sensitivity-based SQP

Data: Target shape value: qt

Data: Initial guess: {(q0,p0) | fq(q0,p0) = 0}
Data: Gradient and constraints tolerance: tg, tf
Result: Optimal solution:

{(q∗,p∗) | ‖fq(q∗,p∗)‖ ≤ tf and ‖ĝ(q∗,p∗,qt)‖ ≤ tg}
1. Assign initial solution (qk,pk)← (q0,p0) ;

while ‖ ĝ(qk,pk,q
t) ‖ > tg do

2. Quadratically approximate objective h̃(p; rk) ' ĥ(q̂) ;

3. Solve QP subproblem: p̃k+1 ← SOLVE(h̃,pm,pM) ;
4. Compute the implicit deformation q̃k+1 = q̃(p̃k+1) ;
5. Compute candidate steps: ∆q̃ = q̃k+1 − qk and ∆p̃ = p̃k+1 − pk ;
do

6. Compute candidate solutions: q̃k+1 ← qk + ∆q̃, p̃k+1 ← pk + ∆p̃ ;
7. Recompute equilibrium (qk+1,pk+1)← PROJECT(q̃k+1, p̃k+1, tf ) ;
8. Reduce candidate steps length: ∆q̃← α∆q̃ and ∆p̃← α∆p̃ ;

while (h(qk+1,pk+1)) < h(qk,pk));

end

The resulting optimization is a nonlinear least squares problem. The algorithm 1
outlines the basic steps for the resolution of the optimization problem (4.22) using
a standard unconstrained SQP method with a simple line-search procedure for step
length selection. There are three key parts of the algorithm that will define its
performance:

1. Quadratic subproblem solution (Steps 2–3). In each iteration of the algo-
rithm, the nonlinear objective function (4.21) is approximated with a quadratic
function, which turns the minimization into a standard box-constrained QP
problem. The subroutine SOLVE encapsulates the computation of a solution
for such problem. Depending on the type of approximation to the objective
function that is used, the overall SQP convergence properties vary. As we will
see, this is also related with how the implicit equilibrium function is estimated
q̃(p; rk) ' q̂. In section 4.3.3, we go deeper into the relation between QP
methods and equilibrium manifold estimation.

2. Static equilibrium computation (Step 7). The implicit equilibrium func-
tion estimation q̃(p; rk) is only locally tangent to the static equilibrium con-
straint. Solving the quadratic subproblem will produce a candidate step
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(∆q̃,∆p̃) that lies in the manifold defined by the implicit equilibrium approx-
imation but for which the static equilibrium constraint does not necessarily
hold. The longer the step, the larger the deviation from the equilibrium man-
ifold ‖ fq(qk + ∆q̃,pk + ∆p̃) ‖ > 0. The objective function is defined only in
terms of a deformed configuration in static equilibrium. For that reason, after
each quadratic step, the solution must be projected back to the equilibrium
manifold using the subroutine PROJECT. We have already explained how to
compute the static equilibrium deformation for a given constant parameter
vector in section 3.4. In section 4.3.4, we introduce an alternative solution
scheme that is advantageous in some situations.

3. Step length selection (Steps 6–8). Minimizing the quadratic approxima-
tion of the objective function h̃(p; rk) reduces the nonlinear objective h for
a sufficiently small step. In this algorithm outline, we consider the most ba-
sic line-search procedure: the length of the step is iteratively bisected until
the objective function h is reduced. Adequately selecting the step length is
critical for our problem, as each time a new candidate solution is evaluated,
it is necessary to compute the corresponding static equilibrium, what might
be costly. The study of alternative step selection schemes, e.g., Armijo line-
search or trust-region methods, goes beyond the scope of this thesis. For more
information, we refer the reader to [183].

4.3.3 Quadratic subproblem

The standard quadratic approximation of the objective function (4.21) is:

ĥ ' h̃ =
1

2
∆pT H ∆p + ∆tT g + c, (4.24)

where the vector g = ∇pĥ is the gradient of the objective function, the matrix

H = ∇2
ppĥ is the Hessian, ∆p = pk+1 − pk, ∆t = qt − qk, and c is a scalar

constant that does not affect the result of the minimization. Computing the critical
point w.r.t. ∆p of this quadratic function reduces to solving the linear system
H ∆p = −g. As long as the system matrix is positive definite, the resulting step
lies on a descent direction of the objective function ĥ, and the step α∆p improves
the nonlinear solution for a sufficiently small value of α.

Quadratic subproblems are completely characterized by the approximation to the
Hessian and gradient. Depending on the particular approximation of the Hessian,
the overall SQP convergence properties vary. As we will see, this is also related with
how the implicit equilibrium function q̃(p; rk) ' q̂ is estimated. In the following
section, we review the most common approximations that have been used in the
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literature, and we illustrate their geometrical interpretation.

Linear approximation (Gauss-Newton step)

The simplest estimation of the implicit equilibrium function q̂ is the linear approx-
imation, which uses the sensitivity matrix previously introduced in section 4.3.1:

q̂ ' q̃(p; rk) = qk + S ∆p. (4.25)

Using this estimation, the quadratic objective function becomes:

ĥ ' h̃ =
1

2
||q0 + S ∆p− qt||2, (4.26)

which in the standard form defined in equation (4.24) is

ĥ ' h̃ =
1

2
∆pT STS ∆p + ∆tT S ∆p + ∆tT∆t, (4.27)

and the corresponding gradient and Hessian are

g = ST ∆t, H = STS. (4.28)

This formulation is equivalent to the so-called Gauss-Newton step and the resulting
Hessian H is symmetric and semi-positive definite by definition. The geometric
interpretation of this solution follows straightforwardly from figure Fig. 4.2, where
linear approximations to the equilibrium constraint manifold are depicted. The
target T and equilibrium E manifolds become linear functions. The problem reduces
to the computation of the shortest distance between two linear manifolds, and it can
be analyzed in terms of the dimensionality of these manifolds:

• Dim(P) > Dim(S). This is analogous to the intersection of two planes in
affine 3D space, which has infinite solutions as shown in Fig. 4.2, picture a. In
this situation, S has dimension n ×m with m >> n; therefore, H = STS is
generally singular. The step can be computed by solving

min
∆p

1

2
∆pT∆p s.t H∆p = −g,

what selects the solution with the smallest norm.

• Dim(P) = Dim(S). This is analogous to the intersection of two lines in affine
2D space, which has a single solution as shown in Fig. 4.2, picture b. In this
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situation, S has dimension n× n; therefore, H = STS is generally invertible.

• Dim(P) < Dim(S). This is analogous to the intersection of two lines in
affine 3D space, which has generally no solution as shown in Fig. 4.2, picture
c. In this situation, S has dimension n ×m with m < n; therefore H = STS
is generally invertible. The problem is equivalent to the one of finding the
shortest distance between two lines.

Figure 4.3: This picture shows two iterations of Gauss-Newton steps for a 2D example
problem. Left) in the first iteration, the method provides a good approximation. Right)
in the second iteration, the method clearly overshoots the solution, and the candidate step
requires a bisection to guarantee convergence.

In section 4.3.1, we introduced potential problems connected with the properties
of the sensitivity matrix S. An interesting geometric observation is that if S is
almost singular, ill-conditioned, or has relatively small norm, the linear equilibrium
and target manifolds might be close to parallel in some direction of the design space
P . If the estimation point rk is still far from the optimum, then the calculation of
the closest point between the linear equilibrium and target manifolds would result
in large steps, as depicted in Fig. 4.3 (right). These steps often overshoot the disc
for which the quadratic function h̃ is a good estimator of the nonlinear function ĥ
and, consequently, they yield poor performance due to the costly line-search. In
such cases, it might be advisable to use SQP schemes with a more conservative step
length selection procedure, e.g., the Levenberb-Marquardt trust-region algorithm.

Quadratic approximation (Newton-Raphson step)

To reduce the problem of overshooting the step, a higher-order expression could be
used to estimate the implicit equilibrium q̂. Its quadratic approximation yields:
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q̂ ' q̃(p; rk) = qk + S ∆p +
1

2
∆pT C ∆p, (4.29)

where C is the third-order tensor of second derivatives C = ∇2
pq, which indicates

the curvature of the implicit function q̂. Using this estimation, the corresponding
objective function is:

ĥ ' h̃ =
1

2
‖qk + S ∆p +

1

2
∆pT C∆p− qt‖2, (4.30)

which in the standard form defined in equation (4.24) is

ĥ ' h̃ =
1

2
∆pT (STS + ∆tTC) ∆p + ∆tT S ∆p + ∆tT∆t. (4.31)

Here, third and fourth order terms have been removed to consider only a quadratic
approximation. The corresponding gradient and Hessian of the QP problem are:

g = ST ∆t, H = STS + ∆tTC. (4.32)

This formulation is equivalent to the so-called Newton-Raphson step, resulting from
the direct application of the quadratic Taylor expansion to the nonlinear objective
function ĥ. Fig. 4.4 shows a depiction of Newton step in the same scenario presented
above. Note that although the expression (4.30) uses a quadratic approximation q̃ of
the implicit equilibrium function q̂, the QP step is computed minimizing a distance
where the third and fourth order terms have been removed. Consequently, the
QP problem does not exactly minimize the distance from the target manifold to a
quadratic expression of the implicit equilibrium, but an approximation.

Also note that the Gauss-Newton problem formulated in (4.27) differs from the
Newton-Raphson problem formulated in (4.31) only in the expression for the Hes-
sian. Gauss-Newton misses the term with second derivatives of the implicit equilib-
rium manifold C. However, as with Gauss-Newton, there are also reasons for not
using the standard Hessian in Newton’s method:

• Analytically computing the second derivatives of the implicit equilibrium man-
ifold C is generally very costly. It is possible to compute a numerical estima-
tion of this term using finite differences, but that requires solving m static
equilibria plus m sensitivity computations, one per differential change in p.

• The term C in (4.31) is scaled by ∆t, which is the current difference vector
to the solution qt. Consequently, the influence of this term on the Hessian is
progressively smaller as the solution converges to the optimum. In practical
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Figure 4.4: This picture shows the example depicted in Fig. 4.3 using Newton-Raphson
steps. In both cases, the higher-order estimation of the equilibrium manifold leads to
better candidate solutions and improved convergence.

terms, for a problem where the equilibrium and target manifolds are not far
apart, the term depending on the first-order approximation S will suffice for
a good convergence.

• There is no guarantee that the complete Hessian H = STS + ∆tTC is definite
positive. Indefinite matrices can produce non-descendent steps when solving
the linear system associated to the QP problem. In general, indefinite Hes-
sians arise when there are saddle points in the objective function ĥ, which is
relatively common considering that the equilibrium manifold is often highly
nonlinear.

To avoid some of the limitations mentioned above, many classic works on opti-
mization have proposed alternative approximations to the Hessian, mainly based on
rank-one iterative updates. Next, we will discuss two of them.

Quasi-Newton steps

Quasi-Newton methods are a class of optimization algorithms characterized by ap-
proximating the Hessian with a matrix that fulfills certain properties. Quasi-Newton
methods are often used when the full Hessian is unavailable, too expensive, or ill-
behaved. In general, the approximation is iteratively computed as Bk = Bk−1 + B
such that the secant equation is satisfied. Considering the gradient g and the param-
eters p in the current and previous steps, the secant equation is stated as yk = B sk,
for yk = g(pk)− g(pk−1), and sk = pk −pk−1. If the dimensionality of the problem
m > 1, the secant equation is underdetermined. The various quasi-Newton methods
are formulated on the basis of the choice of constraints imposed to the resolution
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of the secant equation, which in turn lead to different one-rank updates. We follow
the well-known subclass called BFGS (Broyden-Fletcher-Goldfarb-Shanno), which
guarantees that the resulting matrix is symmetric and positive definite. Given that
yTk sk > tb holds, for some tolerance tb, two alternative updates can be used:

1. Basic BFGS version. Starting from B0 = I, the following formula computes
an update B to the approximation of the full Hessian, Bk = Bk−1 + B ' Hk,
such that it remains symmetric and positive definite:

B =
yky

T
k

yTk sk
− Bksks

T
kBk

sTkBksk
. (4.33)

2. Gauss-Newton version. Starting from B0 = ST0 S0 and D0 = 0, the fol-
lowing formula computes an update D only to the approximation of the third
order term ∆tTC introduced in (4.30), with

D =
zky

T
k + ykz

T
k

yTk sk
− zTk sk

(yTk sk)2
yky

T
k , (4.34)

where zk = (y#−Dksk) and y#
k = STk∆tk−STk−1∆tk. Then, the approximation

to the full Hessian is iteratively updated as Bk = STkSk + Dk ' Hk, with
Dk = Dk−1 + D.

Note that the latter option is specially attractive as it takes advantage of the
already computed sensitivity matrix S and only refines the third order term iter-
atively, while keeping the Hessian well-behaved. In both cases, as an additional
feature, BFGS offers the possibility of estimating either the Hessian H, or directly
its inverse H−1 using the Sherman-Morrison formula. For further details on the
numerical properties of quasi-Newton methods, we refer the reader to Nocedal and
Wright [183]. Note that, from a geometric perspective, the quasi-Newton step origi-
nates from the distance to a quadratic approximation of the implicit equilibrium in
(4.30), in which the third and fourth order terms have been neglected. Consequently,
the same limitation mentioned above for the Newton-Raphson step applies.

Additional note about performance

The computation of the sensitivity matrix S requires solving m linear systems, what
might exceed the time-budget of an interactive design tool, like the one we present in
chapter 6. For the purpose of analysis, throughout this chapter, we have formulated
the sensitivity matrix explicitly. However, solving the QP subproblem requires only
evaluating the gradient g and Hessian H of the objective function, and hence we
could apply the adjoint method instead, and avoid computing S explicitly.
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4.3.4 Equilibrium projection

Steps resulting from the solution of the QP subproblem satisfy the equilibrium con-
straint only approximately. That is, new candidate solutions satisfy f̃q(q̃k+1, p̃k+1) =
0, only for some approximation f̃q ' fq, i.e., in the cases that we have considered,
linear or quadratic. It is necessary to project each candidate solution back to the
equilibrium manifold for two reasons:

1. The evaluation of the objective function is defined only for deformed config-
urations in static equilibrium. Therefore, to assess whether or not there has
been an improvement in the nonlinear minimization for a given QP candidate
solution, it is necessary to recompute the static equilibrium.

2. The implicit function theorem used for the estimation of q̂ in the next step
assumes the hypothesis fq = 0. Therefore, it is mandatory to perform manifold
projection at the beginning of each step.

In this part of the thesis we analyze possible implementations of such projection
subroutine. First, let us formalize some concepts that will be revisited in the follow-
ing sections. Fig. 4.5 shows a simplified representation of the total space, where all
variables corresponding to the deformed Q and design P subspaces are respectively
represented in the q and p axes. We have thoroughly studied the constraint fq = 0,
which represents the m-manifold of static equilibrium configurations. However, as
introduced at the beginning of this chapter, fp = 0 defines another n-manifold at
which the partial derivatives of the elastic potential w.r.t. design parameters vanish.
Recall from section 3.4 that the minimization of potential energy leads to equilib-
rium constraint satisfaction. In this context, we might formulate the projection
subroutine in three possible ways:

1. Potential energy minimization in R (Fig. 4.5, left): minr V (r).

2. Potential energy minimization in Q (Fig. 4.5, center): minq V (r).

3. Root-finding in R (Fig. 4.5, right): find(r) such that fq(r) = 0

In the following section, we will consider each of this options and analyze their
advantages in terms of flexibility, robustness and performance, for the particular
case of inverse elastic design problems solved through constraint exploration.

Potential energy minimization in R

Even though this approach is not practical, as we will discuss next, it deserves some
attention and analysis. Intersections between the two constraints fq = 0 and fp = 0
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Figure 4.5: This picture shows a compact representation of the projection problem in the
total space R, where all the DoFs corresponding to deformed Q and design P spaces have
been condensed in the q and p axes. Three possible projection schemes are shown, for
two different starting points r̃1 and r̃2: a) potential energy minimization in total space
R finds the critical point of the potential energy function V w.r.t. q and p; b) potential
energy minimization in deformed space Q finds the critical point of V w.r.t. q; and c)
root-finding in total space R solves the nonlinear system of equations fq(q,p) = 0.

define critical points of the elastic potential function w.r.t. all the variables of the
total space R. It would be possible to implement the projection by computing the
minimization minp,q V (r) s.t. pm ≤ p ≤ pM . However, this idea might not be
advisable for two reasons:

• First, we are only interested on satisfying static equilibrium constraints on
deformation variables, other considerations might deviate projection from the
original goal and produce worse performance results.

• Second, the behavior of the potential energy function in the total space R
is usually full of perils that lead to numerically difficult situations such as
indefinite and stationary points. For instance, deformed and material config-
urations often produce opposite effects on elastic strains, what can easily lead
to R having a non-empty null-space and hence an infinite number of solutions.
Similarly, material parameters often lead to trivial solutions if they are not
bounded –e.g., lower elastic stiffness produce always smaller potentials. Some-
thing similar happens with the gravitational potential energy, which vanishes
if the undeformed configuration of the object collapses.

In practical terms, there is no straightforward application, in the inverse elastic
design scenario, for finding the design space configuration with minimum internal
energy. In addition, there might be too difficult or even impossible for the mini-
mization to converge using standard procedures, making this option not worthy.
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Potential energy minimization in Q

Intersections between the equilibrium manifold E and a fixed-parameter subspace
p = pc, define critical points of the elastic potential function w.r.t. the variables of
the deformed space Q. The problem is reduced to solving the minimization problem
minq V (r). Note that, even though the potential energy is affected by both deformed
configuration q and design parameters p, this optimization minimizes only the elastic
potential w.r.t the deformed configuration. If we restrict to the deformed space Q,
the potential energy is often relatively well-behaved. A robust SQP algorithm for
the solution of this optimization problem has already been defined in section 3.4,
together with various techniques to improve the convergence and robustness of the
method against indefinite and stationary points.

Fig. 4.5 (center) shows the geometric interpretation of this particular projection
subroutine. In general, the method produces good projected solutions (point r1).
However, it is possible to find scenarios for which the equilibrium point is relatively
far from the initial point in deformed space Q, compared to the corresponding
distance in the total space R (point r2). This might have two main disadvantages:

1. Convergence to the equilibrium point may require more iterations of the op-
timization. As it has been mentioned before, a slow projection subroutine
has a big impact on the performance of constraint exploration optimization
methods, as it is sometimes necessary to evaluate the objective function –i.e.,
recompute projection– several times during step length selection.

2. In the specific case of sensitivity-based optimization methods, the candidate
solution to project will be potentially close to a target configuration qt. Long
projection distances would lead to deformed configurations far from the tar-
get, and hence slow down the overall convergence of the design optimization
problem.

Motivated by these facts, in the next section we discuss an additional formulation,
based on using a root-finding algorithm to solve a nonlinear system of equations,
that might outperform the usual solution in some scenarios.

Root-finding in total space R

Fig. 4.5 (right) shows that, given a candidate solution in total space r̃k, there is
actually an infinite number of possible projection points if we consider traversing
the total space R instead of just the deformed space Q. Many of these options pro-
duce projected solutions that i) are closer to the initial candidate solution and/or
ii) are closer to the target deformed configuration. We seek an algorithm to tra-
verse the total space R and robustly converge to any of the solutions defined by the
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constraint fq = 0, subject to some performance criterion we might need depending
on the particular application. In this section, we propose an approach based on the
under-determined Newton algorithm. We can define the problem at hand analo-
gously to the formulation of the static equilibrium introduced in section 3.4 based
on Newtonian mechanics. We consider the following root finding problem:

find(r) s.t. pm ≤ p ≤ pM such that fq(r) = 0, (4.35)

where fq : Ro → Rn is a continuously differentiable function with o > n. In this
situation, Newton’s method begins assuming an initial guess r0 and then generates
a sequence of iterates via

rk+1 = rk − J−1
q fq(rk). (4.36)

In practice, this involves solving the linear system:

Jq ∆r =
[
Jqq Jqp

] [∆q

∆p

]
= −fq(rk). (4.37)

The main difference with the root-finding algorithm defined in (3.32) is that, in this
case, the linear system (4.37) is under-determined, i.e., it may have an infinite num-
ber of solutions. In order to develop a well-defined algorithm, additional constraints
must be imposed so that a unique step ∆rk can be defined. The most basic solu-
tion is the so-called normal flow method, which chooses the solution with minimum
Euclidean norm. This can be easily computed by solving the QP problem:

min
∆r

1

2
∆rT∆r

s.t. Jq ∆r = −fq(rk) (4.38)

pm ≤ p ≤ pM .

In this explanation, we ignore box constraints and refer the reader to the practical
considerations in section 4.2.3. The step resulting from solving (4.38) is ∆r = −J+

q fq,

where J+
q = JTq (JqJ

T
q )−1 is the well-known Moore-Penrose pseudo-inverse. This step

is generally referred to as the Moore-Penrose step. This solution of the linear system
is a natural choice for a Newton step because it is the shortest step from the current
iterate to a root of the linear problem and, therefore, the linear model is likely to be
a better representation of the nonlinear function at that step than at other solutions.
Under certain assumptions –i.e., fq and Jq continuous and differentiable and Jq full
rank– this algorithm has proven local convergence. Fig. 4.6 (left) shows a depiction
of the subsequent steps corresponding to (4.38).
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Figure 4.6: This figure shows two convergence examples for the root-finding method in
total space R. The left picture corresponds to an extension of the normal flow method:
the steps are necessarily aligned with the normal to the constraint defined by the linear
system in equation (4.37). The right picture corresponds to a projection scheme for which
the shortest step objective ∆rT∆r used in equation (4.38) has been modified to account
also for the design target.

While local convergence is guaranteed, our problems are rarely quadratic. Con-
sequently, globalized inexact versions of the method are required. Many global
extensions to the normal flow method have been proposed in the literature, imple-
menting some kind of step length selection.

• Line-search. These are based on the use of a merit function, which is usually
chosen to be Ψ = ‖fq‖. A line-search stage is added after the resolution of the
QP subproblem in (4.38) to select α such that ‖fq(r + α∆r)‖ < ‖fq(r)‖.

• Trust-region. These are based on solving the QP subproblem subject to the
constraint ∆r < δ, for some trust-region area δ. Characteristic algorithms of
this class are Dogleg methods, which build a piecewise linear curve approxi-
mating the solution using a combination of the Moore-Penrose step and the
point minimizing the problem (4.38) in the steepest descent direction.

For additional information on basic extensions to this algorithm, we refer the reader
to [185]. Alternatively, this problem has also been studied as the minimization of
a nonlinear least squares error function f = 1/2 ‖fq‖2, using both line-search and
trust-region Gauss-Newton-like formulations, for instance, the Levenberg-Marquardt
solutions proposed in [186, 187].

Nevertheless, the normal flow method is not free of limitations:

• Performance. Most of the global extensions use the norm of the forces in
the deformed configuration ‖fq‖ as the measure of progress. However, we have
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seen in section 3.4 that critical points of this function could be saddle points of
the potential energy V , and hence correspond to unstable equilibria. Further-
more, as introduced before, the equilibrium manifold is highly nonlinear and
traversing the total space is usually full of perils. Consequently, more robust
methods are required to guarantee the fast convergence of these algorithms.

• Flexibility. Taking always steps in the direction of the constraint normal (i.e.,
the Moore-Penrose direction) does not offer much improvement in terms of
flexibility with respect to the potential energy minimization in deformed space
Q. Ideally, we would like to control as much as possible how the algorithms
converge to the nonlinear manifold, for instance, considering the distance to
the design target configuration ∆t within the QP subproblem formulation in
(4.38) resulting:

min
∆r

1

2
∆rT∆r + τ∆tT∆t

s.t. Jq ∆r = −fq(rk) (4.39)

pm ≤ p ≤ pM ,

for some weight τ controlling the deviation from the normal flow method. An
algorithm of this kind might effectively project an approximate solution back to
the equilibrium manifold, while simultaneously improving the convergence of
the overall inverse design problem, Fig. 4.6 (right). However, to our knowledge,
there are no theoretical studies that analyze how steps moving away from the
Moore-Penrose direction might affect convergence, and further work is needed
in this area.

4.3.5 Discussion

In this section, we have analyzed in detail the sensitivity-based SQP algorithm for
the solution of inverse elastic design problems. We have discussed two aspects of the
algorithm that critically define its performance: i) the formulation of the quadratic
subproblem and ii) the projection to the constraint manifold. The optimal choice
highly depends on the particular problem. During the development of this thesis, we
have found that the following approaches perform significantly better than others,
for the kind of design problems that we have dealt with:

• Quadratic subproblem. Gauss-Newton BFGS method generally outper-
forms other options. The BFGS update is only valid when the condition
yTk sk > tb holds; in other cases, the update yields Hessians with very large
norms, and makes necessary to restart the iterative approximation, Bk = I.
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We have observed that update failures happen commonly, when the full Hes-
sian becomes indefinite or ill-conditioned, being necessary to switch to steep-
est descent. Gauss-Newton BFGS provides a safeguard for such situations
because it switches to Gauss-Newton instead, Bk = STkSk, which has bet-
ter convergence properties. Moreover, Gauss-Newton BFGS provides better
overall approximations to the Hessian. Nevertheless, we have seen that Gauss-
Newton steps are prone to overshoot the solution, and hence a conservative
step-length selection procedure is advisable. In our work, we have opted for
a simple line-search and for adaptively controlling the maximum allowed step
length depending on success. However, it would be interesting to consider a
more complex trust-region algorithm.

• Projection scheme. Minimization in deformed space Q currently outper-
forms other options. If we restrict to the deformed space Q, the potential en-
ergy is sufficiently well-behaved, and the various safeguard techniques defined
in section 3.4 guarantee the convergence and the robustness of the method.
Our early attempts to employ the root-finding algorithm in total space S sug-
gest that, in some cases, this approach does provide faster convergence rates of
the inverse elastic design problem. However, projection times are often slower
due to the lack of robustness.

Future work in this area arises from the limitations of our current methods. First,
different higher-order approximations to the equilibrium constraint manifold could
be considered. In particular, the work by Yang et al. [26] also employs second-order
approximants, using quadratically parameterized osculant surfaces. It would be in-
teresting to further study the relationship between that solution and the approaches
analyzed in this chapter, seeking more accurate manifold approximations.

Additionally, the projection scheme based on the root-finding algorithm in total
space R, to our knowledge, has not been explored yet in the context of inverse elastic
design problem. This might open the possibility of formulating projection schemes
that consider the design objective, hence improving the overall convergence. For
that to be possible, we would need to formally characterize the problem, and devise
techniques to overcome the numerical perils of the root-finding algorithm.
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Flexible rod meshes

Flexible rod meshes are lightweight structures for which heterogeneous global de-
formation behavior can be achieved using a single material, by locally varying the
cross-section of the rods. In this chapter, we study the computational design and
digital fabrication of flexible rod meshes as an implementation of deformable sur-
faces. Built upon the mechanical model for the simulation of rod meshes that was
introduced in chapter 3, section 3.2.2, and the inverse elastic shape design framework
that was studied in chapter 4, we propose an optimization-based design tool that
automatically designs printable rod structures that deform with desired behavior.

• The first section 5.1 introduces the problem, motivate the use of flexible rod
meshes as an option for the prototyping of deformable objects, and summarize
the contributions of this work.

• The second section 5.2 describes how we have used the tools introduced in
previous chapters to create a computational model of the design space and
deformation behavior.

• The third section 5.3 explains how we solved the associated optimization prob-
lem using the sensitivity-based SQP algorithm described in chapter 4.

• The fourth section 5.4 presents the results and fabricated physical prototypes
that validate our method and discusses limitations and potential future work.

5.1 Introduction

In this work, we explore the use of flexible rod meshes as an implementation of de-
formable surfaces. They are lightweight, relatively low-cost structures, that can also
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form the support structure of solid objects if filled or dressed. But most importantly,
the global deformation properties of a rod mesh can be adjusted simply by locally
varying the cross-sectional parameters of the rods. As a result, a heterogeneous
deformable object can be fabricated in one piece and from a single base material
using a variety of rapid prototyping technologies.

We propose a computational tool for the example-based design and fabrication
of flexible rod meshes. Our method takes as input several poses of a deformable
surface with known position and/or force constraints, and automatically computes
a printable representation of a rod mesh that best approximates the desired shapes
(Fig. 5.1). As we will see, the use of multiple deformed poses with different boundary
conditions allow us to approximately define in a compact and easy manner the
desired range of movements of a fabricated object. Starting from several deformation
instances with different elasticity properties, we seek a unique design that generalizes
all the behaviors. This facilitates reproducing complex deformation features like
anisotropy, heterogeneity, or model merging (see section 5.4).

Figure 5.1: Comparison between hat simulations and printed results. The two left columns
show the hat with the default rod mesh, which does not deform as desired (shown in
transparent gray). The two right columns show that, by optimizing the radii and rest-
shape of the rod mesh, we can fabricate in one piece a hat that deforms as desired.

One of the main features of our method is the choice of design space. We use rod
meshes dominated by hexagonal faces, because hexagons can stretch, shear and bend
by deforming their edges. Given such a mesh, the design space consists of its rest
shape and two orthogonal radii describing the ellipsoidal cross section of the rods. By
adjusting two orthogonal radii, we manage to control in-plane deformations (stretch
and shear) and out-of-plane deformations (bending) of the surface independently.

In order to estimate the design parameters, we propose a simulation-based opti-
mization approach. To this end, we extended the discrete elastic rod model [45, 46]
to handle connections between multiple rods. The resulting rod mesh mechanical
model has been describe in chapter 3, section 3.2.2. Built upon this simulation
model, we propose an optimization framework that determines design parameters
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by minimizing the approximation error with respect to the input poses while satis-
fying static equilibrium constraints. In order to handle these constraints efficiently,
we compute gradients of the objective function that satisfy the constraints implicitly
using sensitivity analysis, also already introduced in the last chapter 4, section 4.3.1.

We have applied our design and fabrication method to a variety of examples.
In particular, we have explored the potential of the method for toy and apparel
design. In order to validate the behavior of our designs in practice, we additionally
fabricated three physical prototypes.

The rest of the chapter is structured as follows. First, in section 5.2 we describe
the computational model upon which this design tool is built. We briefly recall the
fundamentals of the discretization used in our mechanical model and describe in
depth how it is related with the definition of the design space. Then, we explain
the formulation of our optimization problem and the specifics of the scheme we have
used for solving it. To conclude, in section 5.4, we show some fabricated results
along with a discussion on the limitations and future work.

5.2 Computational model

In this section, we describe the computational model used for representing the defor-
mation behavior and design space of a rod mesh, following the framework introduced
in chapters 3 and 4. Then, we formulate the optimization problem solved for auto-
matically finding the design.

5.2.1 Mechanical model

As introduced in section 3.2.2, we have extended the discrete elastic rod model [45,
46] to handle connections between multiple rods. We have followed a co-rotational
approach to estimate the orientations of connections kinematically from incident
rods, we have defined a coupling energy and we have showed how to transmit bending
and twist forces between connected rods. Our model derives completely from the
classic theory of Kirchhoff rods and features elastic behavior at the connections,
modeling realistic large deformation ever for relatively coarse discretizations. This
fact together with the absence of numerical constraints allows us to formulate and
solve efficiently a complex optimization problem.

Recall from chapter 3, section 3.2.1, that our mechanical model discretize con-
tinuous adapted-frame rod kinematics in two sets of variables: centerline nodes
ci ∈ R3, which explicitly describe the configuration of the curve, and edge roll an-
gles θi ∈ R, which represent the material frame as the rotation along the tangent
of an adapted reference frame. Centerline nodes corresponding to rod ends incident
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in the same connection are shared resulting in a total of nn nodes and ne edges. In
this work, we adopt the implicit approach for handling the rotation of connections
described in section 3.2.2 and hence no additional DoF are needed. The resulting
deformed configuration is q = {c, θ} ∈ R3nn+ne with c ∈ Rnn and θ ∈ Rne . We
denote magnitudes corresponding to the undeformed configuration as c̄ and θ̄.

To ease the fabrication of the flexible rod meshes, we assume that the whole rod
mesh is built with a single material, and the mass and deformation properties of
the mesh can be controlled by tuning the cross-section geometry of rods. To this
end, the anisotropic bending model of Bergou et al. [21] provides the appropriate
flexibility. The continuous rod mesh cross-section shape is discretized at edges with
a set of variables ri = {rbi , rni }, with rb the radius in the binormal direction and rn

the radius in the normal direction. Hence, for a given undeformed configuration and
fabrication material properties, the deformation behavior is completely determined
by r ∈ R2ne .

5.2.2 Design space

One of the main features of our approach is the choice of design space, which aims
at minimizing fabrication complexity while maximizing design flexibility. There are
two major design decisions in our approach that make this possible: i) we define a
hexagonal topology and keep it constant throughout the design process and ii) we
select a compact parameter set that produces a smooth design through interpolation.

Figure 5.2: Comparison of the structural stiffness of a triangle, a quad and a hexagon
made of rods. We fixed the bottom-most edge of the structure, enforced the indicated
vertex to be at each position in the field, and computed the static equilibrium. The plot
shows the resulting deformation energy. Notice that the area of low deformation energy
under stretch is clearly bigger for the hexagonal mesh.
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Hexagonal topology

We seek for a mesh topology that minimizes structural stiffness, thus enabling a
larger range of feasible designs under the same magnitude of external forces. Rods
are radically more compliant in bending than stretch, hence the topology of the mesh
should be one that enables deformations in all directions simply by bending rods as
seen in Fig. 5.2. We have opted for a mesh topology dominated by hexagonal faces,
as hexagons can deform in all directions by bending their edges. Fig. 5.3 compares
the structural stiffness of a triangle-mesh, a quad-mesh, and a hexagon-mesh of rods
for a particular deformation scenario. The hexagon-mesh can stretch and shear in
all directions, the quad-mesh resists stretch in directions aligned with quad edges,
and the triangle-mesh is almost inextensible.

Figure 5.3: With the same material and mesh density, a hexagonal mesh is more compliant
to stretch and shear deformations than a triangle or quad mesh, thereby increasing the
flexibility of our optimization method. In this example, we show meshes with approxi-
mately the same number of cells, in their rest configuration (top), and after hanging from
them the same weight (bottom).

To construct a mostly hexagonal mesh, we have explored two options in our
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examples. One is building the dual mesh of an input triangle mesh. The other
one is to initialize a number of samples on a surface and then compute a centroidal
Voronoi tessellation [188]. With hexagon meshes, we have observed that our opti-
mization method is largely insensitive to the specific mesh topology. Fig. 5.4 shows
an optimization result that is matched using three different meshes.

Figure 5.4: A hat mesh is optimized to reach the target deformation (shown in light gray)
with three different meshings. All meshes were obtained through Voronoi tessellations;
the first two with 64 cells and different initializations, and the third one with 128 cells.

Compact parameterization

Our design space consists of the rest shape of the rod mesh c̄ ∈ R3nn and the two
radii of the elliptical cross-section at each point of rod mesh r = R2ne . By adjusting
the radii, we manage to control the overall stiffness of the mesh. Tuning also the
rest configuration allow us to obtain even more accurate results when considering
multiple target poses.

Both parameter sets change the geometry of the mesh and hence the appear-
ance of the printed object. Wiggly designs affect the aesthetics of the mesh but
also compromise the capability of the discretization to approximate the continuum
deformation behavior. Furthermore, in this multi-objective scenario, there is high
chance of overfitting. This problem not only reduces the generalization properties we
seek, but also produces noisy results if the optimization method locally overfits for
one particular target. With these observations in mind, we follow the heuristic for
the definition of a compact design space with naturally smooth shapes introduced
section 4.2.1.

Both for radii and rest positions, we set as design parameters control points along
the rods cc and rc. We place four control points per rod, two at the end connections
and two evenly spaced, and smooth their values using cubic Hermite interpolation.
Overall this choice results in a parameter vector p = (rc, c̄c), with (r, c̄) = Z p, for a
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precomputed matrix Z of cubic Hermite coefficients. To further improve the visual
appearance and deformation behavior of the resulting rod meshes, we also enforce
continuity and alignment of cross-sections at connections in two ways:

1. Connection sharing. Analogously to the coupling technique used for me-
chanical simulation, we share control points among all rods incident in a con-
nection, such that radii magnitude smoothly vary throughout the rod mesh.

2. Normal alignment. We keep material and reference frames at connections
aligned in the rest configuration. Whenever the rest shape changes, we fit a
plane to the incident edges of each connection. We use the normal of this
plane as the normal axis of rest-shape frames of incident edges. This choice
typically defines the first and the last rest frames of each rod in the mesh;
the alignment of the other frames of the rod is linearly interpolated from the
extremal values. We span the orthogonal cross-section radii at each point in
the rod mesh using material frames. Thus, as an additional effect of frame
alignment, we gain more flexibility during optimization because adjusting the
two orthogonal radii is guaranteed to control tangent plane and out-of-plane
deformations.

5.3 Optimization problem

Our optimization framework takes as input a few deformed poses of a rod mesh
under known boundary conditions. Then, it automatically computes the rest shape
and cross-section of the rods such that the mesh best matches the input poses under
the same boundary conditions. The resulting rod mesh geometry is finally used as
input for an automatic fabrication process.

In this section, we first describe the general optimization framework. We use
a Newton optimization method subject to boundary conditions, design constraints,
and static equilibrium constraints, which are enforced implicitly. Then, we describe
an optimization scheme to optimize both the material (i.e., radii) and rest shape of
the rod mesh.

5.3.1 Numerical optimization

Following the notation described in chapter 4, our optimization framework receives
as input a set of kp target poses {qtk} in static equilibrium, and for each pose a subset
of DoFs bk = Bk q̄k specified as fixed boundary conditions. Here Bk is a per-pose
selection matrix. The method also supports using forces as boundary conditions.
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We denote as p a generic set of m design parameters, which could be shape
parameters (i.e., rest-shape coordinates of rod nodes) and/or material parameters
(i.e., radii of rod cross-sections). We then formulate the objective as the squared
error between rod node positions and the input poses:

h(p, {qtk}, {bk}) =
1

2

kp∑
k=1

wk‖Φ(qk)−Φ(qtk)‖2, (5.1)

where Φ is a shape descriptor that selects only the nodes of the deformed and
target configuration. Then, we pose a constrained optimization that minimizes this
objective function, subject to static equilibrium, box constraints on design parame-
ters, and the input boundary conditions:

(q,p) = arg minh(p, {qtk}, {bk}), (5.2)

s.t. fq,k(qk,p,bk) = 0,∀k.
pm ≤ p ≤ pM

fq,k denotes a vector that concatenates the forces on all rod nodes for the kth pose,
wk is a scalar to weight target poses, and pm, pM are minimum and maximum
constraints on design parameters. To solve this constrained optimization problem,
we follow the sensitivity-based SQP approach defined in section 4.3.2: we enforce the
equilibrium constraints implicitly and iterate QP updates of the design parameters
with box-constraint projection.

In practice, for the calculation of the sensitivity matrix Sk defined in section
4.3.1, we compute Jqq,k analytically, but we evaluate Jqp,k using finite differences to
facilitate the exploration of arbitrary design parameters. By handling the static equi-
librium constraints implicitly, the minimization in (5.2) turns into a box-constrained
nonlinear least-squares problem. To handle box constraints on the radii, we simply
project the gradient for those parameters that have reached a limit. Depending on
the approximation of the Hessian of (5.2) and the equilibrium projection scheme,
the convergence properties of the algorithm vary.

• Quadratic subproblem. Computing the full Hessian of (5.2) is prohibitive,
so we have tested approximate methods instead, specifically Gauss-Newton
with line-search and Levenberg-Marquardt. Both methods approximate the
Hessian using the sensitivity matrix, and we found them to behave similarly
in our examples. We have also observed that the full Hessian occasionally
becomes indefinite and its approximations ill-posed. This induces close to non-
descendent search directions, being necessary to switch to steepest descent. As
a compromise solution, BFGS with line-search provides enough robustness as
Hessian updates are often invalid in such situations, thus switching to steepest
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descent. Plus, controlling the step length is key to the performance of our
method; therefore, we enforce a maximum length which is adaptively refined
depending on success.

• Equilibrium projection. After every QP update of the parameter vector
p, we solve a static equilibrium problem on all poses. To do this, we use the
energy minimization solver introduced in section 3.4.

Finally, to apply position boundary conditions {bk}, we found that fixing sim-
ulation nodes increases excessively the error on free nodes. Instead, we enforce
boundary conditions using a penalty force, and we progressively adjust the penalty
stiffness such that the error at constrained nodes is similar to elsewhere in the mesh.

5.3.2 Optimization scheme

As already mentioned, the vector of design parameters p may be formed by material
parameters (i.e., rod cross-section radii) and/or shape parameters (i.e., rest-shape
coordinates of rod nodes). We have observed that adjusting cross-section radii has
the largest effect on the bulk fitting error, while adjusting rest-shape coordinates
increases fitting quality for designs that are close to the optimum and have to deal
with objectives. For this reason, we propose the following optimization scheme.

We start with a multiresolution optimization of the material of the rod mesh.
We first optimize only the radii control points at connections, linearly interpolated
along rods; then we add radii control points in the middle of rods, with quadratic
interpolation; and we finally optimize for all radii control points with cubic interpo-
lation. Once the material optimization alone has converged, we start iterating steps
of material and shape optimization directly on all control points. Please see Fig. 5.5
for examples of convergence with our optimization scheme

5.4 Experimental results

In all our examples we follow a similar design pipeline, with small variations. We
start with a surface description of the deformable object to be fabricated, typically a
high-res triangle mesh H. At this point, we define the connectivity of the rod mesh
R to be optimized. If the user does not provide a specific topology, we automatically
compute one such that it is close to an hexagonal mesh. We project the resulting
connections onto H, and construct rods connecting them by following geodesics. For
each vertex of R, we store a mapping to its projection triangle in H.

To create the target poses, we apply some deformer to H. In our examples,
we have explored different deformers, mainly direct artist manipulation and embed-
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ding in another physical model. Given a target deformation defined on H, we can
determine the target configuration of the rod mesh by its stored mapping.

Table 5.1 summarizes the rod mesh size, complexity, continuum material pa-
rameters and radii constraints for all our benchmarks. We have printed some of
the obtained results to serve as a validation of both the simulation model and the
optimization procedure. In all the cases, we have used laser sintering technology
with the material TPU 92A (elastic modulus E = 32MPa, Poisson ration µ = 0.48
and density ρ = 1200Kg/m3).

Model Sheet Hat Dino Smiley
Nodes 693 1727 3219 2663
Edges 710 1790 3330 2892
Rods 71 179 333 723
Connections 54 116 222 494
Material Params. 392 948 1776 2664
Rest-Shape Params. 588 1422 2664 3663
Young mod. (MPa) 32 32 32 10.0
Poisson ratio 0.48 0.48 0.48 0.48
Density (Kg/m3) 1200.0 1200.0 1200.0 1000.0
Size (m) 0.2 0.23 0.20 0.25
Max. Radius (mm) 5 3 3 4
Min. Radius (mm) 1 1 1 1
RMS Error (mm) 1.03 1.13 0.56 0.41
Computation Time 35min 1h45min 2h20min 3h10min

Table 5.1: Statistics of the benchmarks: model discretization, optimization complexity,
mechanical parameters, design constraints, resulting RMS error, and computation time.

5.4.1 Performance

Our rod structure model introduces additional computational complexity to the
discrete elastic rods approach. Computing the energy gradient and Hessian at con-
nections is costly and involves a reduction in performance. However, we are aiming
for sparse rod structures therefore we can expect the overall complexity to grow
linearly on the number of rods.

Our optimization scheme considers implicit constraints for each target pose,
which are independent from each other. The step is broken into a set of individual
problems which can be solved separately, and the complexity grows linearly in the
number of target poses. As a counterpart, two operations are specially costly: i)
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Figure 5.5: Convergence of the optimization for the three printed results, showing the
evolution of RMS error (in log scale). White dots indicate the iteration from which the
optimization alternates radii and rest-shape optimization.

performing the sensibility analysis and ii) computing the static equilibrium.

The cost of the sensitivity analysis is partially alleviated by incrementally adding
resolution to the parameterization. As shown in Fig. 5.5, error is greatly reduced
in the first steps of the optimization, when only one control point per connection
is used. However, improvement gained by subsequentially refining the parameter-
ization and iterating radii and rest pose optimization steps is significant. At this
stage of the optimization, steps are more time-consuming so a trade-off must be
considered between computation time and the quality of the solution.

The cost of computing the static equilibrium is highly dependent on the step
length, as the static solve is computed from the previous equilibrium configuration.
If the new static equilibrium is too far from the previous one, it is more convenient to
compute equilibrium from the rest configuration. Moreover, convergence problems
may activate line-search bisections, leading to additional static solves. Adaptively
controlling the maximum allowed step length, along with using the quasi-Newton
update helps to reduce failed steps and has an important positive impact on per-
formance. Table 5.1 shows an approximation of the time needed to converge to the
optimal solution for each benchmark.
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5.4.2 Printed examples

Sheet

Our first example consists of a simple sheet (Fig. 5.6), showing the capability of
hexagonal rod meshes of exhibiting varied behaviors. The rod mesh is 0.20m side
and consists of 71 rods and 54 connections forming a regular hexagonal pattern,
with a total of 693 nodes.

Four target poses are defined by computing the static equilibrium of the rod mesh
for different radii configurations and boundary conditions (fixed points and weights).
These targets are designed to be opposing: the first pair (first and second row)
imposes bending anisotropy; the second pair (third and forth row) imposes stretching
capabilities. The optimized rod mesh effectively captures all required behaviors.
Simulated results has been validated by testing physical printed realizations, which
closely match the behavior predicted by the simulation. Although low frequency
deformations are perfectly replicated, small differences appear which may be cause
by inaccuracy in the validation process.

The images in Fig. 5.6 show in semi-transparent gray the target configuration of
the rod mesh. The default behavior at the beginning of the optimization is shown
in red against the deformations obtained with our optimization framework in green.
Cross-sectional radii optimization is capable of reducing the RMS error to 1.4756mm
per node. We achieve an overall fitting of 1.0322mm upon convergence of rest-shape
optimization.

Hat

Our second example is a hat of approximately 0.23m long, shown in Fig. 5.7 and
Fig. 5.1. The connectivity of the rod mesh is automatically computed using a
centroidal Voronoi tesselation on a high-res triangle mesh. This yiedls to a close-to-
hexagonal mesh consisting of 179 rods, 116 connections and a total of 1727 nodes.

Five target poses (rows in Fig. 5.7) are defined using a thin-shell deformer on
the triangle mesh. We have designed several heterogeneous models and used them
to create target poses. Target poses 1, 2 and 3, use a model where the front side of
the hat is much softer than the back side. Target pose 4 uses a homogeneous model
and is intended to make the hat maintain its rest shape under gravity. Target pose 5
uses a model where the left side of the hat is clearly softer than the right side. We fix
some points and pull from handles using forces to achieve interesting deformations.
The deformed position of the handle is considered a boundary condition for our
simulated rod mesh.
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Figure 5.6: Resulting deformations for each of the four target poses of the sheet demo
(shown in light grey). Default deformations (in red) are compared against the optimized
results obtained using our framework (in green). The last column shows the physical
printed sheet matching the behavior predicted by the simulation model. Target configu-
rations of the rod mesh are shown in light transparent gray.
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Figure 5.7: Resulting deformations for four of the target poses of the hat demo (shown
in blue). Default deformations (in red) are compared against the results obtained using
optimization (in green). An overlay in transparent gray is added to help understand how
far the solution is from the original target deformation.

As shown in Fig. 5.7, our optimization framework is capable of combining all
behaviors into a single hat. The first column shows in blue the target deformation
of the rod mesh, according to the thin-shell model. The second column shows in red
the deformation of the rod mesh with default parameters. The third column shows
in green the final optimized mesh given by our method. We achieve an overall fitting
RMS error of 1.3482mm per node, solely by optimizing cross-section radii. In this
case, considering rest-shape does not improve the solution dramatically, reducing it
down to 1.1128mm.

The images in Fig. 5.1 provide a visual validation of the results, for two of
the target poses considered. Both default and optimized configurations of the rod
mesh have been printed and fixed to a supporting structure. We tie wires to the
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boundary points in our simulated rod mesh and pull from them until approximately
reaching their deformed position. The resulting deformation is visually appealing
and resembles our model prediction for both default and optimal configurations.

Dinosaur

This example consists of a dinosaur toy of approximately 0.21m long, shown in
Fig. 5.8. The connectivity of the rod mesh is semi-automatically computed from a
high-res triangle mesh. We apply mesh decimation to obtain a low-res version L, in
the order of hundreds of triangles, and construct its dual mesh. That is, we place
a rod connection at the centroid of each triangle in L and project it into H. Then,
we set a rod between two connections if their corresponding triangles in L share an
edge. This yields to a mesh consisting of 333 rods, 222 connections, and 3219 nodes.

Five target poses are defined using an FEM deformer on H. We have designed
a heterogeneous FEM model, where the tail and the joints between the legs and
the body are notably softer. The head is heavier and it should tip the dinosaur
under gravity. To set boundary conditions during posing, we select a handle on the
mesh and pull using forces. Using forces instead of translating the handle keeps the
deformations plausible and easier to reproduce with real-world materials.

The images in Fig. 5.8 show both simulated and real results. Semi-transparent
grey represents the target pose, as defined by the high-res mesh H deformed using
FEM. The first column shows in red the behavior of the rod mesh for the default
parameters. The second column shows in green the performance of our method.
The third column in Fig. 5.8 shows the resulting deformation of the real printed
dinosaur. For this demo, we follow the same validation methodology described above
for the hat, obtaining similar results. Cross-section radii optimization achieves an
already low fitting RMS error of 0.8622mm. Alternating rest-pose and full resolution
material optimization is capable of further improving the solution to 0.5564mm.

Smiley

Our last result (Fig. 5.9) is intended to demonstrate the performance of our method
for an arbitrary user-defined target pose. For this demo, we apply a centroidal
Voronoi tessellation to a high-res triangle mesh of a sheet of 0.25m. We use a
serious smiley texture as a biasing weight for face areas. This creates a hexagonal
mesh where cell distribution is determined by the color of the texture. In particular,
the density is incrementally higher at the face, mouth and eyes of the figure. The
resulting rod mesh is formed by 723 rods, 494 connections and a total of 2663 nodes.

The single target is manually defined by an artist, geometrically deforming the
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Figure 5.8: Resulting deformations for each of the five target poses of the dinosaur demo.
Default deformations (in red) are compared against optimized results (in green). An
overlay in transparent gray represents the target surface generated by the FEM deformer.
Right column shows our visual validation of obtained results done by wire pulling from
position boundary conditions.

original texture. We map each point in the rod mesh with a texture coordinate and
apply the same displacement to create the target mesh pose. Our intention is to
make the character smile when stretched in one direction; this simple setup entails
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Figure 5.9: This example shows a planar rod mesh that, when stretched, produces a smiley.
In this example we combine the use of a mesh with an aesthetic design (i.e., higher rod
density in the mouth and eyes) and an artist-painted target (i.e., the smiley drawn behind
the meshes). On the left, we show the default mesh. When stretched, its deformation
is nearly uniform. On the right, we show the optimized rod mesh. When stretched, it
produces a smiley. Our optimization method automatically places thick rods under the
mouth and thin rods over it.

two main difficulties. First, for a homogeneous radii throughout the mesh, variable
rod densities tend to create heterogeneous deformations that might not match the
target texture. Second, artist deformations are not based on any physical model
and hence the target pose might not be reachable at all by a mesh deformed using
simple stretch forces.

The images in Fig. 5.9 compare default and optimized deformations to the
warped texture. An overlay with the typical smiley colors is added to help under-
stand how the texture has been deformed in each case. Our optimization framework
is capable of closely matching the smile with almost no rest-shape deformation close
to the mouth. Moreover, it approximates the overall shape of the deformed texture
much better compared to the default configuration. We achieve an overall fitting
RMS error of 0.4854mm.
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5.4.3 Discussion and future work

We have described a computational design method that allows fabricating flexible
objects with a desired deformation behavior. We opt to represent such flexible
objects with meshes of deformable rods. Using a mechanical simulation algorithm,
we have designed an optimization scheme that allows us to estimate the material
and rest-shape of rods such that the object approximates a set of input poses.

Future work includes extending the computational design and optimization of
rod meshes to the general problem of finding the correct representation for a de-
sired deformable object. In this work, we have seen the importance of selecting
an adequate topology for the structure, one which does not impose such a strong
constraint on in-plane stretch. In that sense, the design method could be further
extended as well. The quality of the results could be improved by incorporating
topology optimization, but this may require a new definition of the objective func-
tion to appropriately evaluate surface deviation under arbitrary rod sampling.

A possible limitation of this particular representation is the possibility of find-
ing local minima. Our optimization scheme may suffer from this problem as we
alternatively optimize for material and rest-shape, and convergence is not always
guaranteed. We try to address this problem through multi-scale optimization, i.e.
we start from a coarser representation and progressively subdivide rods when needed.
Yet, there might be some other way to avoid this problem.

Finally, an important goal is to provide the final user with the necessary tools to
interactively design this kind of representations. Both simulation and optimization
would be needed to convey a design space of physically plausible solutions which a
designer could further refine. We will explore this possibility in the next chapter 6,
in the context of Kirchhoff-Plateau surfaces.



Chapter 6

Kirchhoff-Plateau surfaces

Kirchhoff-Plateau surfaces (KPS) are planar rod meshes embedded in tense fabric
that deploy into complex 3D shapes. In this chapter, we study the computational
design and automatic fabrication of these structures. We create a mechanical model
for the simulation of tensile structures coupling the thin-shells and rod mesh models
described in chapter 3 using collocation. Built upon this mechanical model, we
propose a user-guided but computer-assisted tool that allows to interactively design
such structures, also considering the inverse problem studied in chapter 4.

• The first section 6.1 introduces the concept of Kirchhoff-Plateau surfaces, mo-
tivate the use of these structures, and provide an overview of the contributions
of this work.

• The second section 6.2 analyzes in detail the kinematics and deformation prop-
erties of KPS, and justify the need for an interactive computer-assisted solu-
tion.

• The third section 6.3 explains how we used the computational tools described
in previous chapters to build models of the design space and deformation
behavior of KPS.

• The fourth section 6.4 describes in detail the different editing operations that
have been implemented to facilitate the design of KPS, focusing on the solution
of the inverse design problem.

• The fifth section 6.5 presents the results and fabricated physical prototypes
that validate our method, and discuss limitations and potential future work.

97
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6.1 Introduction

Minimal surfaces have intrigued scientists and engineers for more than 250 years.
Their origins trace back to a problem originally raised by Lagrange that later be-
came known as the Plateau problem: finding a surface of minimum area that spans a
given rigid boundary curve as shown in Fig. 6.1. From an application point of view,
minimal surfaces are appreciated not only for their smooth aesthetic appearance,
but also for their inherent material efficiency and structural stability. For these rea-
sons, minimal surfaces are widely used for light-weight and cost-efficient structures,
ranging from large-scale roofs, canopies, and shade systems, to acoustic deflectors,
light diffusers, and decorative elements for interior design.

One common way of bringing designs of minimal surfaces to practice is by using
fiberglass or metal rods embedded in stretched fabric, with the added benefit that
all components are planar and easy to manufacture. However, the advantages in
terms of weight, cost, and fabrication come at the price of a much more difficult
design problem—the Generalized Plateau problem of finding a minimal surface whose
tensile forces are in equilibrium with the bend and twist forces of a given elastic
rod [133, 189].

Figure 6.1: Traditional works on architectural tensile structures studied the so-called
Plateau problem experimentally by considering the surface spanned by soap film embedded
in rigid wires. Photograph credits to the famous architect Frei Otto.

In this work, we explore the design and fabrication of Kirchhoff-Plateau surfaces,
i.e., networks of thin elastic rods embedded in pre-stretched membranes. We focus
on surfaces that can be manufactured by 3D-printing planar rods onto stretched
fabric—a process that was beautifully demonstrated in recent work by [35]. Design-
ing in this space gives rise to two main challenges.

• First, the path to stable surfaces is fraught with perils such as nonlineari-
ties, unstable equilibrium points, and bifurcations that lead to multiple stable
configurations.
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• Second, the space of possible designs is restricted by the fact that (i) KPS
consist of minimal surface patches that, inherently, can only assume shapes
with vanishing mean curvature, and (ii) the boundaries of the minimal surface
patches can only assume shapes corresponding to equilibrium states of planar
rods coupled to a stretched membrane.

In light of these challenges, we cannot expect that there exists a KPS that closely
approximates a given target shape in the general case. But even when precise shape
approximation is not possible, the space of KPS nevertheless provides ample room for
shape abstraction and interpretation. We therefore turn away from fully-automated
solutions in favor of a user-guided but computer-assisted design paradigm.

We propose a fabrication-oriented design tool for KPS –planar rod networks em-
bedded in pre-stretched fabric that deploy into complex, three-dimensional shapes.
Similar in spirit to mesh-based modeling tools, the user is responsible for creating
the topology of the rod network and for transforming it into the desired shape.
During this process, the user can draw from a set of modeling tools that implement
simple editing operations directly on the equilibrium state of the surface. Visual-
ization tools that indicate possible changes conforming to the editing goals further
assist the user in making informed decisions. Once finished, the design can be easily
manufactured using any consumer-level FDM 3D printing device, (Fig. 6.2).

Figure 6.2: Our simple fabrication method allows to rapidly manufacture KPS struc-
tures by directly printing the designed rod mesh on top of pre-stretched fabric using any
consumer-level FDM 3D printer.

This seemingly simple design approach is enabled by simulation and optimization
algorithms that translate editing operations into corresponding parameter updates,
and analyze the current structure in order to provide feedback on the space of feasi-
ble edits. Our simulation and optimization algorithms involve several novel features.
We introduce tools for the exploration of the design space through eigenanalysis of
the sensitivity matrix subject to design goals. Owing to the complex and con-
strained space of KPS, we furthermore cast inverse design operations as a two-step
optimization process: first, in order to interactively explore first-order feasible target
shapes, we combine efficient constraint projection with sensitivity-based lineariza-
tion of equilibrium constraints; second, given a first-order feasible target shape, we
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perform nonlinear constrained optimization to compute fully-feasible designs. We
demonstrate our method by designing a diverse set of complex-shaped KPS, each
validated by physically-fabricated prototypes.

(i) (ii)

(iii) (iv)

Figure 6.3: The design space of KPS is highly nonlinear and the effects of parameter
changes are often difficult to predict. The images show a simple square frame (120 ×
120 mm) with different fabric pre-stretch factors s, normal rod radius rn (governing out-
of-plane resistance), and binormal rod radius rb (governing in-plane resistance). From left
to right: (i) (s = 1.3, rn = 0.2 mm, rb = 0.4 mm) base shape; (ii) (s = 1.6, rn = 0.2 mm,
rb = 0.4 mm) higher stretch increases curvature; (iii) (s = 1.3, rn = 0.2 mm, rb = 0.2 mm)
lower in-plane resistance leads to sagging and wrinkling; (iv) (s = 1.3, rn = 0.4 mm, rb =
0.4 mm) higher out-of-plane resistance leads to a completely different stable configuration.

6.2 KPS shape space

Kirchhoff-Plateau Surfaces are flexible structures made from networks of elastic
rods embedded in pre-stretched textile membranes. Although fabricated in a planar
state, KPS can deploy into complex three-dimensional shapes that are governed
by the balance between membrane and rod forces. These equilibrium shapes are
influenced by a number of factors pertaining to the rod network and the membrane.
In addition to the material of the rods, their resistance to bending and twisting is
determined by their cross-sectional geometry. By varying this geometry, it is possible
to control the ratio between in-plane and out-of-plane bending stiffness, as we have
seen in the previous chapter 5. Membrane stretch, on the other hand, induces
compressions in the rods, leading to unstable, planar equilibrium configurations
that resolve into bending and twisting upon slight perturbations. As shown in
Fig. 6.3, the ratio between membrane stretch and out-of-plane bending resistance is,
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effectively, a means of controlling the amount of curvature in the equilibrium shape.
However, a sufficient amount of membrane stretch is also required to ensure that
the surface remains tense and free of sagging or wrinkling; see Fig. 6.3-iii.

(i) (ii)

(iii) (iv)

Figure 6.4: Disks of the same size and pre-stretch produce diverse shapes depending on
their internal topology. From left to right: (i) empty interior; (ii) split rod on the boundary;
(iii) two crossing rods in the interior; (iv) an inner disk connected to the outer boundary.

From a designer’s perspective, the mechanics of KPS alone provide no direct
insight into the space of shapes that can be achieved. However, even though fab-
ric membranes are not strictly area minimizing, the intuition about KPS can be
strengthened by considering them as piece-wise minimal surfaces : the rod network
induces a decomposition of the surface into membrane patches, each bounded by a
closed loop of rods. As a minimal surface, the area gradient vanishes everywhere in-
side each patch, which is equivalent to vanishing mean curvature. Since planar KPS
configurations are generally unstable, principal curvatures have the same nonzero
magnitude but opposite sign, leading to strictly negative Gaussian curvature ev-
erywhere inside a patch. Although the constraint on strict equality of principal
curvatures is somewhat mitigated by real-world textile membranes, the sign con-
straint still applies: membrane patches can only assume so called anticlastic shapes
with negative Gaussian curvature in every point. Moreover, the fabrication con-
straint that KPS must have a planar rest state implies that the 3D rod network
must be embeddable in 2D without compressions, further restricting the space of
possible surfaces. Nevertheless, while a single KPS patch is necessarily anticlastic,
rods introduce discontinuities in the surface normals of adjacent membrane patches.
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Thanks to this property, it is possible to approximate surfaces with overall positive
Gaussian curvature by connecting anticlastic patches. Fig. 6.4 shows examples of
diverse shapes that can be obtained by varying the internal mesh topology of a disk.

In summary, the space of KPS offers interesting and complex 3D shapes that
can be created using a simple and cost-efficient 2D manufacturing process. How-
ever, the restrictions on shape and the complex mapping between parameters and
shape make navigating this space a challenging task without assistance. In seek-
ing a computational tool to help with the design process, a central question is
the balance between control and automation. At one extreme of the spectrum, a
fully-automated solution where the user provides a target shape and the KPS is
determined through simulation and optimization requires the least amount of user
intervention. However, the restricted shape of KPS will often require compromising
between pure approximation quality and aesthetic considerations, which are difficult
to quantify and automate. At the other end of the spectrum, manual exploration
of the parameter space affords a maximum degree of artistic freedom. However, the
nonlinear and unintuitive relation between parameters and shape can make manual
design a tedious and frustrating process. In seeking a middle ground between those
extremes, we opt for a primarily user-guided, but computer-assisted approach to
shape exploration. In particular, the user is in charge of creating the structure and
shape of the KPS, but can draw from a number of editing and visualization tools
that simplify the design task. While this forward design approach is seemingly sim-
ple, it relies heavily on simulation and optimization to implement inverse modeling
and visualization tools. The computational basis for our approach is described next.

6.3 Computational model

In order to enable computer-assisted design of KPS with desired shapes, we require
a computational model for predicting (i) the equilibrium configuration for given
parameter values, and (ii) the effect that parameter changes have on equilibrium
shape. In this section, we describe how we define such computational model following
the framework introduced in chapters 3 and 4.

6.3.1 Mechanical model

We model tensile structures as the coupling between a discrete rod mesh and thin-
shell models, as they have been described in chapter 3. Next, we provide a brief
review of their formulation:

• Discrete rod mesh. In this case, we adopt the version of the rod mesh
model that explicitly considers rotational DoFs to track the orientation of
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the junctions, which was introduced in 3.2.2. Recall that the deformation
of the rod mesh is characterized by three sets of DoFs: the positions of rod
centerline c = (c1, . . . , cNr)

T , ci ∈ R3, defined at Nr rod nodes; roll angles
θ = (θ1, . . . , θNe)

T , θj ∈ R, between reference and material frames defined at

Ne rod edges; and rotations of Nj junctions e =
(
e1, . . . , eNj

)T
represented

using Euler angles ek ∈ R3 [50]. Once again, the deformation properties of
the rods are completely characterized by the set of radius r = {r1, . . . , rNr},
ri = (rbi , r

n
i ) ∈ R2 defined at rod nodes.

• Discrete thin shells. We model the membrane from nonlinear continuum
mechanics discretized using linear triangle finite elements. In particular, we
use a St. Venant-Kirchhoff (StVK) material model to compute the internal
forces of the deformed fabric. We found this simple nonlinear model sufficiently
accurate for our purposes since, for the kind of material and stretch factors we
aim for (≈ 50%), the stress-strain relation is barely nonlinear (see, e.g., Miguel
et al. [148]). It should be noted that in StVK, stress is a linear function of
deformation, but deformations are nonlinear w.r.t. geometry (Green strain).
Although the material that we have used is almost isotropic, our implemen-
tation uses an orthotropic StVK model [64] in order to accommodate other
types of fabrics, if desired. Since the pre-stretch of the fabric is significant,
internal forces are strongly dominated by membrane forces, and bending forces
are negligible. However, to avoid numerical problems when fabric sags, we add
weak bending forces to our membrane model based on discrete shells [63]. In
practical terms, the deformed configuration of the fabric is characterized by
the position of the Nm membrane nodes x = (x1, . . . ,xNm)T , xi ∈ R3.

We additionally have to account for coupling between the membrane and the
rods embedded in it. Our approach is conceptually similar to the ones described in
[14] and [16], but our specific problem and choice of discretization lead to several
differences that we describe below. For the sake of computational efficiency and in
order to achieve good shape approximation even for coarse meshes, we opt for an
implicit coupling approach through collocation, i.e., by sharing DoFs between rod
and membrane vertices. To this end, we ask that the triangle mesh representing the
membrane be conforming to the embedded rods such that, for each rod vertex, there
is a collocated membrane vertex. Consequently, rod mesh nodes are contained in the
set of membrane nodes Nr ⊂ Nm and the complete vector of generalized coordinates
representing the deformation space is q = (x, θ, e) ∈ Rn.

6.3.2 Design space

As it is defined in section 4.1.1, the state of the design is characterized by three sets of
variables: design parameters p, undeformed configuration q̄, and the deformed con-
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figuration q. The design parameters uniquely define the undeformed configuration,
from which the deformed configuration results through force-equilibrium constraints.
Note that due to our planar fabrication process, we parameterize the rest state of
both the membrane and the centerlines of embedded rods in two-dimensional space,
respectively x̄ ∈ R2Nm and c̄ ∈ R2Nr .

The definition of the design space is directly related with the characteristics of
our fabrication method. It allows us to control four properties: i) the global stretch
of the membrane, ii) the topology of the rod mesh, iii) the geometry of the rod mesh,
and iv) the width and thickness of the individual rods. Formally, we parameterize
each of these four properties as follows:

• We define rod mesh topology by a set of rods R and a set of junctions J .

• For ease of fabrication, we assume uniform isotropic membrane stretch s ∈ R.

• We define rod geometry by the positions c̄c,i ∈ R2 of a set of C rod control
points, which determine the positions of rod junctions as well as the shapes of
individual rods.

• Rod cross-sections are characterized by radii values rc,i ∈ R2 at the same rod
control points, with rc,i = {rbi,c, rni,c} corresponding to in-plane and out-of-plane
directions, respectively.

Similarly to the design problem described in chapter 5, we seek for a compact
and naturally smooth parameterization of the design space. With that in mind, we
define the radii of the rod mesh, and the undeformed configuration of the rod mesh
and the membrane by interpolating the control points defined above.

Rod mesh interpolation

For convenience in editing and optimization, we represent rods in the undeformed
state as Catmull-Rom splines that interpolate the rod control points c̄c. We evaluate
each rod spline at a number of equidistant locations in spline parameter space,
yielding the set of Nr rod vertices that define the piece-wise linear curves for the
discrete rod model. For a given set of rod control points, the coefficients used for
interpolation are precomputed; therefore the rest positions of rod vertices are linear
functions of the positions of rod control points, i.e., c̄ = Z c̄c, with Z a constant
matrix of Hermite basis function evaluations. Similarly, the same interpolation is
used for the definition of smooth cross-section radii at rod vertices, resulting in
r = Z rc.



Chapter 6. Kirchhoff-Plateau surfaces 105

Membrane interpolation

Considering that the rod mesh and thin-shell mechanical models are coupled through
collocation, during design operations, the change of rod vertex undeformed positions
must effectively induce a change in the rest configuration of the membrane mesh.
To ensure sufficient mesh quality for simulation, we define the rest positions for the
membrane vertices implicitly as a function of the rest positions of the rod vertices.
To this end, we define the vector of rest positions of the Nm membrane vertices as
x̄ = 1

s
(b̄, c̄), where b̄ are the Nm − Nr membrane vertices that are not coincident

with rod vertices, and c̄ are the Nr rod vertices. Note that the factor s is added to
account for the pre-stretch of the membrane in design space. Given an initial mem-
brane mesh and a set of rod vertices that define its boundary, we compute smoothly
distributed rest positions b̄ using harmonic interpolation. The interpolation weights
are computed by requiring vanishing Laplacian coordinates [190], which yields a lin-
ear system Lb b̄+Lc c̄ = 0⇒ b̄ = −L−1

b Lc c̄, with (Lb,Lc) the Laplacian matrix. In
practice, we compute cotangent weights for the Laplacian once at initialization, leav-
ing them constant until remeshing is necessary. These constant Laplacian weights
also translate into constant harmonic interpolation weights. Whenever the quality
of any membrane triangle falls below a given threshold, we remesh using CGAL’s
Delaunay triangulation algorithm.

Final parameterization

The final parameter set p = (rc, c̄c, s) ∈ Rm allows us to smoothly modify the design
of the KPS and determine its deformation behavior in a coherent manner, just by
changing rod mesh control points and the pre-stretch coefficient. More precisely,
it is worth mentioning that, thanks to our choice of discretization, membrane rest-
state positions x̄, rod mesh rest-state positions c̄, and rod mesh radii r, all linearly
depend on the design parameters p:

r = Z r̄c c̄ = Z c̄c x̄ =
1

s
(c̄,−L−1

b Lr r̄) (6.1)

In section 6.4, we describe several tools for exploring the design space of KPS
as defined by the above parameterization, based on the sensitivity analysis of the
equilibrium configuration.

6.4 Computational design

Building on the computational model described in the previous section, we introduce
several design tools that allow users to explore the expressive space of KPS, and to
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edit their shape and structure according to aesthetic considerations. In particular,
we describe forward design tools for topology and base shape editing, a sensitivity
analysis tool for design space exploration, and an inverse design tool for direct shape
editing. These design tools make use of three major mathematical elements:

1. Fast evaluation of equilibrium KPS shapes resulting from parametric edits.

2. Sensitivity analysis for fast mapping from parametric edits to shape changes.

3. A two-step optimization algorithm that interactively solves inverse design.

These mathematical elements heavily rely on the sensitivity analysis of the equi-
librium configuration that we described in detail in section 4.3.1. Roughly, the shape
of a KPS is governed by equilibrium constraints fq(q,p) = −∇qV = 0, where V
is the summation of all the potential energies acting on the system. Given values
for the design parameters p = (rc, c̄c, s), we compute the corresponding equilibrium
state of the KPS by solving this equation using a standard Newton’s method with
line search and adaptive regularization for increased robustness, as shown in section
3.4. For our parameterization, the expression corresponding to equation (4.18) for
the computation of the sensitivity matrix S becomes

S =
∂q

∂p
= −∂fq

∂q

−1 (∂fq
∂r

∂r

∂p
+
∂fq
∂c̄

∂c̄

∂p
+
∂fq
∂x̄

∂x̄

∂p

)
. (6.2)

In order for the above expression to be valid, the force Jacobian ∇qfq has to be
invertible. We eliminate null-spaces due to rigid transformations in both ∇qfq, ∇c̄fq
and ∇x̄fq by constraining a small set of (user-selected) vertices in the deformed and
rest configurations, respectively. If the system remains singular or indefinite, we
add a diagonal regularizer and iteratively increase its weight until the linear solver
succeeds. Due to the linear relationship defined in (6.1), it is straightforward to
compute the derivatives with respect to design parameters in (6.2).

6.4.1 Forward design

During forward design, the user directly modifies the parameters listed in section
6.3, and the resulting KPS is computed automatically using the equilibrium solver
discussed in section 3.4. This design approach proves most useful during the initial
stage of the design, when the user defines the overall desired shape, or when topology
or fabric pre-stretch need to be modified to counteract structural limitations of
an intermediate design. While forward design poses virtually no restrictions on
the shapes that can be achieved, it provides only limited assistance to the user.
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Nevertheless, we propose several guidelines based on geometric information as well
as other heuristics that have proven successful in our design experience (section 6.5).

(i) (ii) (iii)

Figure 6.5: The degree of patch anisotropy affects how well a rectangular piece of fabric
produces a cylindrical shape. (i) With no subdivisions, the patch curves most along the
short side and the cylindrical patch appears laterally compressed. (ii) With subdivision
into square patches, curvatures do not align with rods and the shape twists. (iii) With
multiple subdivisions along the curved direction, the desired shape is achieved, the short
rods curve as desired, and the long rods resist compression.

• Alignment of rods with directions of principal curvature. Since the
mean curvature of the membrane vanishes everywhere, rods are the only ele-
ments whose curvature can be directly controlled to approximate the desired
shape. Consequently, we generally place rods in such a way that they follow
lines of principal curvatures or align with specific features.

• Anisotropy of patches aligned with principal curvatures. Isotropic
patches with equal width in two orthogonal directions complicate the design
as they favor membrane curvatures that are not aligned with rods (see Fig-
ure 6.5-ii). Anisotropic patches, on the other hand, favor curvature in the
rod directions, and their shorter sides should be aligned with the direction of
major curvature. Figure 6.5-iii shows a cylindrical patch subdivided along the
curved direction.

• Anisotropy of rod cross-sections. Anisotropic rods with smaller normal
width wn than binormal width wb favor out-of-plane over in-plane deforma-
tions; compare Figure 6.3-i and Figure 6.3-iv. Consequently, they favor the
alignment of principal curvatures with rods.

• Rod removal to relax compression. The developability of a target de-
sign is largely determined by the rod mesh, and lack of developability can be
detected by monitoring compression in the rods. When highly compressed
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(i) (ii) (iii)

Figure 6.6: Rods are colored according to their strain with blue/red denoting highest
compression/stretching. (i) Initially, radial rods are highly compressed and prevent the
design from further deforming. (ii) Removal of a boundary rod relaxes compression in
incident radial rods and increases the ability to bend. (iii) Removal of the complete
boundary leads to non-hyperbolic shapes with high curvatures.

(i) (ii) (iii)

Figure 6.7: Split rods enable high-curvature. (i) Boundary rods at the top corners exhibit
high compression and prevent further bending of the mask. (ii), (iii) Splitting rods at the
top corners and the nose leads to overall increased curvature and enables sharp features.

rods are incident to the boundary of the design, removal of adjacent boundary
rods relaxes compression and enables the exploration of more—or differently—
curved shapes as shown in Figure 6.6. We implement the removal of bound-
ary rods by transforming them into ghost rods, thus avoiding actual topology
changes. Ghost rods are not simulated, but they are necessary for defining the
control points that determine the rest positions of the membrane.

• Rod splitting at high-curvature features. When a rod is already bent
but does not reach the desired curvature, the curvature of the membrane can
be increased by splitting the rod in two. The membrane forces will produce a
kink at the location of the cut, which can also be used for aesthetic purposes
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as shown in Figure 6.7.

• Stretch increase to avoid sagging. If the pre-stretch factor is not suffi-
ciently high, the equilibrium state of the membrane can exhibit sagging and
wrinkling as shown in Figure 6.3-iii. We therefore monitor and visualize the
principal stretches throughout the fabric and trigger an increase in pre-stretch
whenever the minimum value of any triangle element falls below a given thresh-
old. In order to minimize deviations from the previous equilibrium shape, an
increase in pre-stretch must be compensated by a corresponding increase in
rod widths to withstand the larger membrane forces.

6.4.2 Sensitivity exploration

Due to the complexity of the space of KPS, design goals often fall outside the
feasible space. In order to enable shape exploration while remaining within the
feasible space, we visualize the design space around a given equilibrium shape. The
motivating insight for this approach is that a singular value decomposition (SVD)
of the sensitivity matrix reveals valuable information about the local structure of
the design space. In particular, the shape changes corresponding to the dominant,
i.e., largest, singular values convey in a concise way the major changes that a given
equilibrium shape can undergo, thus offering inspiration for design changes; see
Figure 6.8 for an example. In practice, analyzing the sensitivity matrix S alone is
not sufficient, as position constraints will significantly impact the resulting modes.
We therefore extend the analysis as follows.

Hard constraints

During the design process, it is often convenient to prevent parts of the model from
moving or deforming. We use hard constraints to implement design goals such as
fixing parts of the surface to a support structure, or for attaching disconnected parts
of the surface (see Figure 6.8). Let C(q) = 0 denote the set of all such position
constraints. If the current configuration already fulfills the constraints, we require

K∆p = 0 , with K =
∂C

∂q

∂q

∂p
. (6.3)

To enforce hard constraints to first order during editing operations, it suffices to
post-multiply the sensitivity matrix S by a projection matrix P, computed as in

P = I−KT
(
K KT

)−1
K , (6.4)
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Figure 6.8: A butterfly model is deformed using the two dominant modes of the sensitivity
matrix (middle and right columns). In the bottom row, hard constraints are imposed on
the body of the butterfly (simulation vertices, not control points), leading to different
dominant modes.

to map arbitrary parameter increments ∆p to deformed state increments ∆q in the
null-space of the constraints as ∆q = S P ∆p. This constraint projection scheme
assumes that KKT is invertible, which is the case if S is full rank and if there are
no redundant constraints. It should be pointed out that this approach to enforcing
hard constraints cannot remove drift, and constraint stabilization is necessary (see
section 6.4.3).

Sensitivity decomposition

We incorporate the effect of hard constraints into sensitivity exploration by comput-
ing the SVD of S P. While we always perform the full decomposition, we generally
only visualize the dominant modes corresponding to the largest singular values. For
each of them, we take the corresponding right singular vector and multiply it by the
sensitivity to obtain the corresponding change in shape, which is then displayed to
the user (see Figure 6.8).

Using the regular sensitivity S in the decomposition may be misleading since the
parameter vector p combines control point positions and cross-sectional widths, i.e.,
parameters with very different scales. To avoid bias, we first compute the average
column norm of the sensitivity matrix for both control point and width parameters.
We then normalize the columns in order to exhibit identical average norms before
applying the SVD.
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6.4.3 Inverse design

In addition to forward exploration of the design space, it is often convenient to
directly specify desired changes to the equilibrium shape. A standard approach
to implementing such inverse design operations is to have the user define an edit
relative to a given equilibrium configuration, and to perform nonlinear optimization
in order to find a feasible shape that best approximates the user-provided target.

In our setting, however, this approach is impractical: due to the restricted space
of KPS, there is no guarantee that the target shape specified by the user will be
close to a feasible configuration—and computing the closest feasible shape requires
time-consuming nonlinear optimization. The resulting delay would interrupt the
design process, and the computed shape might not meet user expectations.

(i) (ii)

(iii) (iv)

Figure 6.9: This picture shows the two-step optimization approach for user-guided inverse
design. Given a base shape (i), the user defines an edit (ii) by translating a subset of the
rod vertices. We interactively optimize for a target shape (iii) subject to linearized equi-
librium constraints. Once the target is accepted by the user, we compute a full nonlinear
optimization to obtain the final shape (iv).
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Two-Step optimization

Due to the complex nature of the design problem, nonlinear optimization cannot
be entirely avoided. In order to still accelerate the design process, we propose a
two-step optimization approach whose goal is to increase the likelihood of the user-
specified target shape to be close to feasible. In the first step, the user specifies an
edited shape q̃ starting from a given equilibrium configuration q0. We subsequently
compute a target shape q∗ by minimizing the distance to the user-provided edit,
subject to linearized equilibrium and position constraints. While the resulting target
shape will generally not satisfy the user input exactly, this optimization step is
very fast, allowing for interactive and progressive exploration. Once a satisfying
target q∗ shape is found, the second step performs a fully nonlinear optimization
to compute the equilibrium shape q that best matches the target. In this way, the
time-consuming nonlinear optimization is executed only for target designs that are
likely feasible.

Target optimization

In order to specify desired changes to the equilibrium shape, the user can select sets
of vertices in the deformed configuration and apply rotations, translations, or scal-
ing transformations to them (Figure 6.9-ii). We also provide a soft selection tool,
allowing the user to specify per-vertex weights w ∈ [0, 1] that determine to what
extent a given vertex is influenced by the edited shape during optimization. The
edited shape q̃ defined in this way is generally infeasible, i.e., there is no choice of
admissible parameter values such that the corresponding equilibrium configuration
coincides exactly with the user-specified target. However, performing a nonlinear op-
timization to compute the closest feasible target shape would be too time-consuming
for interactive exploration. We therefore use sensitivity analysis in order to compute
an approximately feasible target shape that satisfies force and position constraints
to first order.

Given a desired change in equilibrium shape ∆q̃ = q̃ − q0, we seek to com-
pute a change in parameters ∆p = p − p0 that minimizes the distance measure
‖W (∆q̃− SP∆p) ‖2, where W is a diagonal matrix of soft selection weights whose
entries indicate whether –or to what extent– the position of a given vertex is de-
fined by the editing transformation. Directly minimizing this distance measure with
respect to the unknown ∆p is problematic since the projected sensitivity matrix
SP is rank-deficient. We therefore add a regularizer ‖K∆p‖2 that only penalizes
parameter updates in directions that affect the position constraints.

It should be noted that, while the change in shape SP∆p satisfies both equilib-
rium and position constraints to first order, we also have to satisfy fabrication-related
constraints on the design parameters, e.g., maximum and minimum rod radii. One
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option to enforce the corresponding bound constraints is by constrained quadratic
programming, but we found that even commercial solvers were too slow for the
interactive rates required by our application. Instead of enforcing them explicitly,
we therefore choose to eliminate bound constraints through parameter transforma-
tion. In essence, we introduce mapped parameters p̂ = φ(p) that are asymptotically
clamped to their bounds via a trigonometric transfer function; see [165] for details.
Consequently, the sensitivity matrix is transformed to the new parameter space as
Ŝ = S∇pφ, which also affects the dependent matrices K̂ and P̂ in (6.4). Combining
the above components, the target optimization problem is finally formulated as

min
∆p̂

1

2

(
‖W

(
∆q̃− Ŝ P̂ ∆p̂

)
‖2 + ‖K̂∆p̂‖2

)
, (6.5)

where ∆p̂ = (p̂−p̂0). By minimizing (6.5), we obtain the optimal parameter change
∆p̂∗ for a user-specified edit, subject to linearized equilibrium and position con-
straints, and we compute the first-order feasible target shape as x∗ = x0 + Ŝ P̂∆p̂∗.
Moreover, since Ŝ and Ĵ are kept constant, (6.5) is a quadratic minimization prob-
lem that can be solved fast enough for the user to interactively explore first-order
feasible edits: the user can modify the equilibrium shape until the target shape is
satisfactory or the norm of the nonlinear forces exceeds a given threshold, indicating
that the linear approximation is becoming invalid. In either case, the full nonlinear
problem is solved with the current parameter values, and the matrices Ŝ, K̂, and P̂
are recomputed.

The problem (6.5) uses a linear approximation to the equilibrium manifold as
described in section 4.3.3. We have seen that this approach might be prone to
overshooting the step computation if the specified edit is too far away. However, it
should be noted that user edits only affect a small subset of the deformation variables
with high weights, and are defined incrementally from previous steps. The former
implies that target optimization is most likely underdetermined, while the latter
means the second-order Hessian term in (4.32) can be neglected. Consequently, in
most of the cases, this linear approximation will suffice to produce good results.

Result optimization

When the first-order feasible target q∗ is satisfactory or the residual forces are ex-
cessive, we solve the full nonlinear constrained optimization problem. The objective
function is the quadratic distance from the equilibrium configuration to the target.
To eliminate drift due to constraint projection, we augment the objective function
with a quadratic term that penalizes the violation of the hard constraints C(q). We
set a larger weight k for the hard constraints than for the target positions, but in
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practice, the two terms hardly interfere since the target is already first-order feasible.
In addition to these objective terms, we add nonlinear force equilibrium constraints
as well as bound constraints, leading to the following optimization problem:

p = arg min
1

2
‖ (q∗ − q) ‖2 +

1

2
k ‖C(q)‖2 (6.6)

s.t. fq(q,p) = 0 and pm ≤ p ≤ pM .

We solve this nonlinear optimization problem using a variant of the sensitivity-based
SQP algorithm defined in section 4.3.2. To this end, we initialize the problem with
the equilibrium shape q0 and corresponding parameter vector p0, then alternate
between optimization steps and static equilibrium solves. In each SQP iteration, we
solve the corresponding box-constrained QP using the QuickQP algorithm from the
ALGLIB library. In order to efficiently compute the objective Hessian, we combine
an exact Gauss-Newton-type expression for the first-order part with a BFGS-like
approximation for the second-order part as described in section 4.3.3. Given a
parameter update returned by the QP solver, we compute the corresponding updated
shape by solving for static equilibrium.

Figure 6.9 shows an example of target and result optimization during inverse
design. Our two-step optimization approach is key for achieving an interactive
user experience while, at the same time, providing the accuracy demanded by the
nonlinearity of the underlying design problem.

6.5 Experimental results

We have used our method to design and fabricate a set of Kirchhoff Plateau surfaces
that, taken together, provide an indication of the diversity of shapes that can be
achieved.

6.5.1 Printed examples

In a typical design session, the user starts with a minimum structure and then
progressively modifies the topology and geometry of the rod mesh through various
editing operations. Whenever needed, the user can visualize the design space using
our sensitivity exploration tool and make target edits using inverse design operations.
In the latter case, the user can perform standard geometric transformations on a
selection of points in deformed space.

Design and simulation complexity for all the examples are summarized in Ta-
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ble 6.1. All designs were computed on a desktop machine with a 3.10GHz Intel i7
3770S processor with 16GB RAM. Note that target optimization was interactive
for all examples. The static equilibrium solver required under one second for all
examples, whereas the final result optimization took a few seconds on average.

Model Control Rod Membr. Statics Target Result
points nodes nodes (ms) (ms) (s)

Car 81 3292 4803 746 140 7.28
Mask 72 2417 3223 602 146 8.10
Flower 52 1127 2172 418 46 4.32
Butterfly 50 2351 2505 226 42 6.22
Helmet 38 1280 3522 575 33 4.13
Shoulder 37 1373 3672 333 14 5.32
Arm 28 1266 3087 311 5 3.52
Shin 46 1540 3219 510 22 3.31
Chest 88 2147 3789 545 92 6.21

Table 6.1: Summary of design complexity (number of control points), simulation com-
plexity (number of rod and membrane nodes), and solver performance (equilibrium solver,
target optimization, and result optimization) for all examples.

Figure 6.10: Simulated design (left) and physical prototype (right) of the butterfly ex-
ample. In this example, interactive deformation feedback was key for the topology and
geometry design of the overall shape. All our modeling tools were used for creating the
final result.

Butterfly (Figure 6.10) The overall shape of this example was designed through
forward editing of the rod topology and geometry, but the aesthetic aspects required
a combination of advanced forward and inverse design tools. In particular, singular
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value decomposition of the sensitivity matrix revealed interesting wing deformations
that were used as a basis for the final design. Inverse design operations were used
for adjusting the shape and curvature of the wings.

Figure 6.11: Simulated design (bottom) and physical prototype (top) of the car concept
example. One of the most challenging examples due to the unintuitive and relatively
dense topology and highly convex shape. Rod removal and inverse design operations were
extensively used.

Car concept (Figure 6.11) As one of the most challenging examples, this design
brings together complex geometric shapes, fine detail, and unintuitive topology.
Most importantly, the overall shape of the target object is convex and, consequently,
many of the rods were highly compressed initially. Some of the boundary rods were
removed to release compression and to allow the planar rod mesh to deploy into
an approximately convex shape. Inverse design operations were used to flesh out
important features such as the windshield, and to adjust the size and volume of the
car once the overall shape was defined. Rod splitting was also used to add detail to
the front of the car, indicating the headlights.

Mask (Figure 6.12) This example combines complex internal topology with the
need for large curvature in order to approximate the shape of a face. These two
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Figure 6.12: Simulated design (left) and physical prototype (right) of the mask example.
In this example, facial features lead to high structural stiffness, preventing the surface
from reaching the desired curvature; see also Figure 6.7-i. Rod splitting and inverse
design proved essential to achieve both overall shape and details.

Figure 6.13: Simulated designs (left) and physical prototypes (right) of the warrior ex-
ample. For this example, sensitivity exploration and inverse design were used heavily in
order to adjust the size and curvature of the individual parts such as to conform to the
scale of the body.
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targets compete, and the complexity in topology leads to high structural stiffness
which, in turn, prevents the surfaces from achieving the desired curvature. Splitting
of rods at multiple points allowed the mask to curve as desired and to emphasize
salient facial features such as nose and mouth. Both the overall shape and the details
were edited using inverse design.

Figure 6.14: Flower. This design is one example of the very good agreement that we
observe between the equilibrium shapes predicted by simulation (left) and the actual
fabricated prototypes (right).
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Warrior’s armor (Figure 6.13) This composite example showcases several small
parts that are geometrically and topologically simple, but the high curvature needed
within small areas led to challenging fabrication constraints. Some parts such as the
arms or the helmet benefited strongly from singular value decomposition of the
sensitivity matrix in order to control their curvature. In addition, inverse design
was used heavily to adjust the size of the different pieces to a common scale.

Flower (Figure 6.14) Another composite example, made of three parts, that illus-
trates the possibility to create diverse and appealing designs through a combination
of forward and inverse design operations. As can be seen from the side-by-side view
in Figure 6.14, this example also indicates very good correspondence between our
simulation and the physically fabricated prototypes.

6.5.2 Fabrication process

Inspired by the work of Guberan and Clopath [35], we use filament-based 3D printers
in order to structure stretched fabric with embedded elastic rods. Although we
are primarily interested in understanding and navigating the corresponding design
space, this particular manufacturing process is also a very promising way of fast and
inexpensive digital fabrication. With a similar motivation, several previous works
have investigated the combination of filament-based printing with other media [191],
or by printing onto existing objects [192]. The fabrication process that we pursue in
this work can also benefit from intelligent software for print path generation [193]
and planning [30], in order to alleviate limitations of current FDM printers.

In practical terms, we used an off-the-shelf Ultimaker 2 FDM printer. The
printed material is a standard PLA filament, and we used the material parameters
provided by the manufacturer, i.e, Young’s modulus E = 3.31 × 103KPa, Poisson
ratio ν = 0.36, density ρ = 1240Kg/m3. The membrane fabric that we used is
a highly elastic, finely knitted, elastane-cotton blend. In order to obtain the ma-
terial parameters for this fabric, we performed an experimental estimation of the
stretch elastic moduli in both course and wale directions. We first performed sev-
eral static deformation tests on a square piece of fabric, then optimized for the
material parameters of a simulated counterpart. The fabric parameters obtained in
this way are Young’s modulus E = 4.72×10−2KPa, Poisson ratio ν = 0.30, density
ρ = 122Kg/m3.

Before printing, the membrane is manually stretched over a wooden frame, then
clamped and inserted into the printing tray. We draw a calibration square on top
of the membrane as a guideline to ensure that the resulting stretch is as uniformly
distributed and isotropic as possible. For each design, the amount of pre-stretch
must be chosen such as to balance fabrication constraints (e.g., minimum radii) and
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aesthetic considerations (e.g., absence of wrinkles). We started with a moderately
low value of 40% for all examples and let the user manually increase pre-stretch if
necessary.

Considering the tray size of the printer, we are restricted to small rod radii.
Below some threshold, rods do not bond well to the fabric. To avoid this problem,
we set a lower bound of 0.5mm for the cross-section. Regarding the printer settings,
we set head and bed temperatures to 210◦C and 60◦C respectively. Finally, we used
100% flow rate and 30mm/s printing speed for PLA filament with 1.8mm diameter.

6.5.3 Discussion and future work

We have presented a method for user-guided but computer-assisted design of KPS.
To circumvent the modeling challenges of KPS, we have designed simulation and
optimization methods that provide the user with powerful, interactive tools that
allow for intuitive exploration of the design space.

Our work is not free of limitations. First, the materials and fabrication process
set important limitations on the range of results that can be achieved. As one
particular example, we are currently limited by the tray size of the printer. In order
to create larger models we can, in principle, combine several KPS. This, however,
raises the question of how to best decompose a desired shape into pieces that can
be well-approximated with KPS. The segmentation of arbitrary input models into
sets of minimal surface patches is an interesting direction for future work. Other
limitations are related to the modeling accuracy, both in terms of the rod and
membrane models, as well as the material properties. Higher modeling accuracy
would likely produce higher accuracy in the results. Finally, our method could be
complemented with automatic topology optimization in order to increase the range
of edits that can be achieved with inverse design operations.
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Conclusions

In this thesis we have presented several contributions to the field of computational
design. We have proposed a novel mechanical model for the simulation of rod meshes,
studied innovative optimization strategies for the solution of the elastic inverse de-
sign problem, and created computational models for the design of two different
instances of rod structures: flexible rod meshes and Kirchhoff-Plateau surfaces. In
this chapter, we offer general concluding remarks on each of these parts, and open
a discussion about the limitations, potential impact and possible future work.

7.1 General conclusions

In this thesis, we have studied the computational design of flexible structures, a
problem that poses great challenges for the development of computer-aided design
tools. First, the mathematical formulation that drives the deformation behavior of
the structures is often highly nonlinear, therefore efficient and accurate simulation
methods are required to assess the quality of a given design. Second, the interrelation
between the elements of the structure assembly hinders the creation of computational
models of the design space that naturally produce good designs. And third, both
previous facts lead to a highly constrained solution space whose navigation is full of
perils: nonlinearities, bistable configurations, numerical ill-conditioning, etc.

We have presented innovations that contribute to the four major functionalities
offered by modern computational design tools: navigating both design and solution
spaces, and seamlessly moving between them through forward and inverse design
tools. We have validated our contributions with the design and fabrication of two
different rod structure examples that offer great application potential: flexible rod
meshes and Kirchhoff-Plateau surfaces. In general, our technical solutions aim to
maximize the expressive power of each specific design space while minimizing its
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overall complexity. The general goal is to facilitate the control of CAD tools and
bring them closer to the non-expert users that will shape the future of creative
design in the upcoming years.

With this purpose, we highlight the importance of creating models of the design
space that are compact, tractable, expressive and capable of naturally producing
coherent designs. In this sense, we have demonstrated that geometric interpolation
techniques together with an adequate discretization that favors DoF collocation are
simple yet powerful approaches that greatly facilitate design problems. Similarly,
we also highlight the value of design guidance, adopting high-level descriptors of
the deformation properties, like the example-based approach suggested in chapter
5, or providing tools to navigate the solution space like the interactive exploration
method presented in chapter 6. In the following sections, we provide additional
conclusions corresponding to each of the main chapters of the thesis.

7.1.1 Flexible rod meshes

In chapter 5, we have studied the computational design and fabrication of flexible rod
meshes, lightweight structures whose global deformation properties can be adjusted
by locally varying the radii of the cross-section of the rods. Therefore, heterogeneous
deformable objects can be fabricated in one piece and from a single base material.
We have proposed a simple example-based approach to exploit the expressive power
of this design space. Our computational tool takes as input several poses of a
deformable surface with known boundary conditions and automatically computes
a single rod mesh that approximates the behavior of all the desired shapes. Our
fabricated physical prototypes show that even non-expert users can easily design
objects with complex deformation features –e.g., anisotropy, heterogeneity or model
merging–, that can be fabricated with single-material printing machines.

7.1.2 Kirchhoff-Plateau surfaces

In chapter 6, we have studied the computational design and fabrication of Kirchhoff-
Plateau surfaces, planar rod meshes embedded in pre-stretched fabric that deploy
into complex three-dimensional shapes. These structures can take a rather limited
range of shapes, yet they provide ample room for shape abstraction, interpretation
and creativity. We have demonstrated that it is possible to navigate such a solution
space by means of a user-guided but computer assisted design tool, even though it is
highly non-linear, extremely constrained and full of numerical perils. The proposed
catalogue of editing operations puts special attention on design guidance, featur-
ing modal exploration of the solution space, meaningful visualization of mechanical
properties, and interactive inverse design functionalities. We have validated the use-
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fulness of these tools by designing a diverse set of complex shapes and producing
physical prototypes, using a simple yet effective fabrication method that requires
only a consumer level printer.

7.1.3 Mechanical simulation

In chapter 3, we have reviewed the foundations of mechanical simulation and de-
scribed in detail the mechanical models and numerical solvers that we have developed
in this thesis. Our main contribution in this part has been the creation of a me-
chanical model for the simulation of flexible rod meshes that extends the well-known
reduced-model of discrete elastic rods.

Our solution considers an elastic energy that measures rod deformation w.r.t.
its rigidly rotated counterpart and implicitly keeps track of connection rotations
depending on the kinematic state of incident rods. Therefore it is possible to suc-
cessfully transfer point forces and rotational torques between incident rods without
using any additional DoF or numerical constraints. The deformation of each incident
rod in the connection is affected by its own material properties and the anisotropic
edge radii. This allows geometrically complex connections with heterogeneously
thick incident rods to deform realistically according to the material, even for coarse
discretizations.

We have defined the mechanical models used throughout this thesis to be ef-
ficient, accurate, and to lend well to numerical optimization. Therefore, we have
adopted collocation of DoFs as our main approach for coupling structural compo-
nents and avoid the use of numerical constraints that might obstruct the solution
of the inverse elastic design problem. Our results in chapters 5 and 6 demonstrate
that, with our mechanical models, it is is possible to compute the static equilib-
rium of sufficiently complex structures within the time budget that is available in
an interactive CAD solution, and still obtain a good agreement with the behavior
of physical prototypes.

7.1.4 Inverse elastic design

In chapter 4, we have presented a formal characterization of the inverse elastic
design problem, we have described different numerical solving methods, and we
have analyzed the challenges of their practical implementation.

In our solution, we turn away from generic constrained optimization algorithms
and base our method on the iterative exploration of the equilibrium constraint man-
ifold using sensitivity analysis. We have shown that this approach offers computa-
tional advantages related with the scalability of the solution when multiple target
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poses are considered. Moreover, each step of this iterative method is a fabricable
solution, and therefore it is well aligned with our valued concept of guided design.
Built upon this idea, we propose optimization strategies that have proved their use-
fulness for the problems presented in chapters 5 and 6. In the context of flexible rod
meshes, we fight local minima by partitioning the parameter space depending on
the sensitivity of the objective function to the variables; then, we propose a multi-
resolution optimization scheme that adaptively increments the detail of the design
space using interpolation. In the context of Kirchhoff-Plateau surfaces, we deal with
the extremely constrained problem using a two-step optimization algorithm. First,
the user interactively explores the linearized constraint manifold in order to define
an approximately feasible goal. Then, the nonlinear optimization problem is solved
considering this goal as the target configuration.

The performance of the sensitivity-based SQP algorithm heavily depends on two
factors: i) the formulation of the quadratic subproblem and ii) the projection of
approximate solutions back to the constraint manifold. We have seen that combin-
ing quasi-Newton approaches (e.g., Gauss-Newton BFGS) with a conservative step
length selection (e.g., length cap, trust-region, etc.) provides satisfactory results for
the kind of inverse elastic problems considered in this thesis. Built on top of this ba-
sis, we have suggested additional improvements to the QP subproblem formulation
that allow us to efficiently handle parameter bounds and linear design constraints.
Results in chapter 6 show that, using these techniques, it is actually possible to
interactively explore the solution space even for relatively complex structures.

7.2 Discussion and future work

In this section, we open a discussion about applications, current limitations, and po-
tential future work, related with specific topics that have been addressed throughout
the thesis.

7.2.1 Rod structures applications

Assemblies of rigid or elastic rods are extensively used in structural engineering
and architectural geometry due to their exceptional stiffness-to-mass ratio and low
cost in terms of transport, storage, and assembly time. The computer graphics
community has been recently attracted to this topic with interesting ideas for the
design of tensegrities [34], reciprocal frames [33] or wire art [32] but, to this day, we
believe these structures are still very underused.

Conceptually, flexible rod structures can be considered complex passive com-
pliant mechanisms whose deformation behavior can be easily controlled by locally
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varying the connectivity and cross-sectional attributes of the rods. In chapter 6,
we have explored one possible actuation system in the form of pre-stretched fabric,
but the room is open for other alternatives like active materials, e.g., shape-memory
polymers [194] or liquid crystal elastomers [195], that might lead to other interesting
applications. Very recently, Megaro et al. [25] presented a CAD tool for replacing
rigid articulations with compliant mechanisms in arbitrary mechanical systems. This
idea has also received attention from the soft-robotics community where a variety
of soft actuation systems are combined with –often rod-like– passive components
that ultimately determine the deformation behavior, e.g., reinforced wires [196] or
quadrangular rod meshes [11].

In absence of any internal actuator, designing aesthetic structures that are adapt-
able to an arbitrary user could be useful for many other applications like garment
and furniture design. The production of personalized orthosis, i.e., wearable devices
used to modify the functional characteristics of the musculoskeletal system, would
benefit in particular from flexible rod meshes. A lightweight, breathable rod mesh
whose deformation behavior can be easily calibrated to constrain movements in cer-
tain directions could be of great use, e.g., for the treatment of injured athletes that
require a joint or body segment to be controlled, guided or immobilized.

The foremost limitation of rod structures is the current computational fabrication
technology, which does not scale well with the size of the fabricated object, in terms
of production costs and accessibility to the public. Nevertheless, in the realm of the
small, compliant mechanisms and soft actuation technologies have also attracted
the attention of the research community for the creation of microrobots [197] with
applications, e.g., in biomedicine. In any of these cases, the same principles still
apply and the methods developed in this thesis could be used to facilitate the design
of flexible structures.

7.2.2 Inverse elastic design problem

We have shown that the sensitivity-based SQP formulation studied in chapter 4
provides satisfactory results for the inverse elastic design problems presented in
this thesis. There is, however, much room for improvement in terms of perfor-
mance and robustness to the numerical perils of the equilibrium constraint man-
ifold. The quadratic subproblem often suffers from the extreme nonlinearity and
ill-conditioning of the solution space and produces candidate steps that clearly over-
shoot the region of valid approximation. This leads to unnecessary evaluations
of the objective function and costly static equilibrium computations. Considering
more conservative step length selection procedures may relieve this problem but also
comes with progressively moving away from quadratic convergence rates.

A possible solution might be changing the design space so that the resulting prob-
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lem is better conditioned. Variable scaling is a standard approach to partially alle-
viate this particular problem [182], but it only affects the numerical ill-conditioning
of linear system matrices, while the problem remains essentially the same. In a
different direction, Musialski et al. [165] recently suggested solving the QP subprob-
lem in a subspace of the design space in which the optimized shape properties are
decorrelated. Although they obtained great improvements w.r.t. standard methods,
this approach is only applicable to cases where the definition of the objective func-
tion leads to a highly underdetermined problem. In future work, we would like to
explore this possibility further. One option would be to use spectral analysis on the
sensitivity matrix in order to reduce the dimensionality of the problem and solve the
optimization in the subspace of most sensitive directions. To our knowledge, this
has not been applied yet in the context of inverse elastic design and could benefit
the convergence of the problem –at least at the initial steps when the bulk fitting
error has not been eliminated.

Alternatively, higher order approximations to the equilibrium constraint mani-
fold might be also useful to reduce the deviation of candidate solutions from the
nonlinear manifold. This approach would allow longer steps and alleviate the need
for step length bisections. In this thesis, we have explored some approximations
to the second-order Taylor expansion of the equilibrium manifold in the form of
standard Newton-Raphson and quasi-Newton QP formulations, but it may be pos-
sible to find specific approaches that perform better for this particular problem.
The interesting work by Yang et al. [26] also employs second-order approximants
in the context of constrained mesh exploration, using quadratically parameterized
osculant surfaces. However, this solution involves a costly computation of the Hes-
sian of quadratic coefficients and the formulation does not explicitly consider the
clear partition of the total space into deformation and design variables. The rela-
tionship between this geometrical interpretation and the numerical approximations
considered in this thesis is intriguing and constitutes a possible line of future work.

Finally, in chapter 4, we suggested an alternative scheme for the projection of
approximated steps to the constraint manifold based on the solution of the root-
finding problem f(r) = 0 in total space. To our knowledge, this idea has not
been explored yet in the context of inverse elastic design problems. Conceptually,
this might open the possibility of formulating ad-hoc projection schemes that also
partially minimize the design objective, hence improving the overall convergence of
the problem. Our early attempts to implement this idea suggest that the approach
does provide faster convergence rates in some cases, at the risk of getting slower
projection times. In that sense, another possible line of future work would be to
formally characterize this problem in order to overcome the numerical perils of the
root-finding algorithm.
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7.2.3 Design guidance and topology

We have seen that the topology of the rod structure strongly affects the solution
space and hence the range of possible deformation behaviors. In this thesis, we
present design approaches that avoid employing topology optimization and circum-
vent this limitation by using different strategies. In chapter 5, we automatically
determine the hexagonal topology of the rod mesh to reduce the structural stiffness
to in-plane deformation. In chapter 6, the user is directly responsible of defining the
topology of the mesh, and we offer tools to visualize mechanical information that
helps in the decision-making process.

In the last few years, topology optimization has attracted attention from com-
putational design community, e.g., [10, 128]. Most of these works are based on con-
verting the resulting discrete optimization problem into a continuous one by means
of L1 regularization. This could be also applied for the design of flexible rod meshes,
as the disadvantages in terms of computation time will not have much impact on an
offline optimization algorithm. This extension may require a new definition of the
objective function to appropriately evaluate surface deviation under arbitrary rod
sampling. A different idea would be necessary for the enrichment of the interactive
KPS design tool. In the context of microstructures, Schumacher et al. [12] recently
suggested using topology optimization to design families of related structures that
vary smoothly. A similar solution would allow our interactive tool to automatically
select or suggest topology changes that could be later optimized in real time using
interpolation. However, extending this idea to rod structures is very challenging.
First, we would need to define a coarse-scale regular tiling so that periodic bound-
ary conditions could be considered in the creation of structure families. Then, it
would be necessary to come up with a smart parameterization of each family for the
interpolation between structures, for which using signed distance fields would not
be sufficient. We consider this possibility a very interesting line of future work.

Automatic topology definition could also be used for design guidance. Other
applications for which high-level structural features are essential, e.g., 2D pat-
terns [119], furniture [118] or mechanisms [158], have already considered alternative
approaches for the guided exploration of the solution space. While the user focuses
on aesthetics, the tool suggests discrete changes to the topology of the design when-
ever there is no room for improvement. These suggestions are automatically gener-
ated following heuristics, high-level functional rules or similarity measures w.r.t. a
precomputed data base. In chapter 6, we introduced a series of heuristics for the
forward design of KPS. In the future, it would be interesting to explore the imple-
mentation of a design tool that suggests local topology changes based on user-defined
high-level goals using these heuristics.
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Zoran Popović, and Steven M. Seitz, “Estimating cloth simulation parame-
ters from video,” in Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, Aire-la-Ville, Switzerland, Switzerland,
2003, SCA ’03, pp. 37–51, Eurographics Association. (Cited on page 21.)

[150] Shoji Kunitomo, Shinsuke Nakamura, and Shigeo Morishima, “Optimization
of cloth simulation parameters by considering static and dynamic features,”
in ACM SIGGRAPH 2010 Posters, New York, NY, USA, 2010, SIGGRAPH
’10, pp. 15:1–15:1, ACM. (Cited on page 21.)

[151] K. L. Bouman, B. Xiao, P. Battaglia, and W. T. Freeman, “Estimating the
material properties of fabric from video,” in 2013 IEEE International Con-
ference on Computer Vision, Dec 2013, pp. 1984–1991. (Cited on page 21.)
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