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Abstract

Traditionally, control over the appearance of objects in the real world
was performed manually. Understanding how some physical prop-
erty of an object would affect its appearance was achieved primarily
through trial and error. This procedure could be lengthy and cumber-
some, depending on the complexity of the effect of physical properties
on appearance and the duration of each fabrication cycle. Precise
control of how light interacts with materials has many applications in
arts, architecture, industrial design, and engineering. With the recent
achievements in geometry retrieval and computational fabrication
we are now able to precisely control and replicate the geometry of
real-world objects. On the other hand, computational appearance
fabrication is still in its infancy. In this thesis we lay the foundation for
a general computational appearance fabrication framework, and we
demonstrate a range of applications that benefit from it. We present
various instances of our framework and detail the design of the corre-
sponding components, such as: forward and backward appearance
models, measurement, and fabrication. These framework instances
help in understanding and controlling the appearance of three general
classes of materials: homogeneous participating media (such as wax
and milk), specular surfaces (such as lenses), and granular media
(such as sugar and snow). More specifically we show how we can
precisely measure, control, and fabricate the real-world appearance of
homogeneous translucent materials, how to computationally design
and fabricate steganographic lenses, and finally we present a fast ap-
pearance model for accurately simulating the appearance of granular
media.
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Zusammenfassung

Traditionell wurde Kontrolle über das Erscheinungsbild von Objekten
der realen Welt manuell ausgeübt. Das Verständnis darüber, auf wel-
che Art und Weise die Veränderung physikalischer Eigenschaften das
Erscheinungsbild beeinflussen, wurde hauptsächlich durch systemati-
sches Ausprobieren erlangt. Dieses Verfahren konnte jedoch langwie-
rig und mühsam sein, abhängig von der Komplexität des Einflusses
der physikalischen Eigenschaften auf das Erscheinungsbild, und der
Dauer jedes Fertigungszykluses. Die präzise Steuerung von Lichtinter-
aktionen mit verschiedenen Materialien hat vielfältige Anwendungen
in der Kunst, Architektur, sowie im Industriedesign und Ingenieurs-
wesen. Mit den jüngsten Errungenschaften in der Geometrierekon-
struktion sowie der computergesteuerten Fabrikation sind wir in der
Lage, die Geometrie realer Objekte präzise zu steuern und zu repli-
zieren. Andererseits steckt die computergesteuerte Herstellung von
spezifischen Erscheinungsbildern immer noch in den Kinderschuhen.
In dieser Dissertation legen wir die Grundlagen für ein Rahmenkon-
zept für allgemeine rechnergestütze Fabrikation von Erscheinungsbil-
dern und zeigen eine Reihe von Anwendungen die davon profitieren.
Wir präsentieren verschiedene Variationen unseres Konzepts und ge-
ben Details über das Design der entsprechenden Komponenten, wie
etwa Forwärts- und Rückwärtserscheinungsmodelle, Messung und
Herstellung. Diese Instanzen unserer Konzepts erlauben uns das Er-
scheinungsbild dreier verschiedener allgemeinen Materialklassen -
homogene partizipäre Medien (wie etwa Wachs oder Milch), spie-
gelnde Oberflächen (wie etwa Linsen) und granulare Medien (wie
etwa Zucker oder Schnee) zu verstehen und zu kontrollieren. Insbe-
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sondere zeigen wir wie man das Erscheinungsbild von homogenen
lichtdurchlässigen Materialien präzise messen, kontrollieren und her-
stellen kann, wie man steganographischen Linsen computergestützt
modellieren kann, und stellen letzlich ein effizientes Erscheinungsmo-
dell für die akkurate Simulation des Aussehens granularer Medien
vor.
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C H A P T E R 1
Introduction

Controlling the appearance of objects in the real world has been
a long standing goal of artists. This process involves modifying
some physical properties of the object, which in turn have
some indirect (and sometimes hard to understand) effect on
appearance. Traditionally this has been performed manually
and required a potentially lengthy trial-and-error procedure,
depending on the complexity of the physical property’s effect
on appearance.

Precise control and understanding of appearance is desired
not only by artists but is also useful for a plethora of other
applications such as design of reflective/transmissive displays,
calibration standards, lenses, headlights, retro-reflective gear,
telescope lining [Brown et al. 2002], architecture, visible light
communication, and more.

The appearance of an object is exposed to an observer when that
object is subjected to some illumination conditions. Appear-
ance can be observed or measured and it is dependent on the
physical properties of the object, the illumination conditions,
and the response of the observer. In this thesis we focus on
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Introduction

Physical state

Forward appearance model

Appearance editor

Backward model

Fabrication method

Figure 1.1: The main components of the appearance fabrication framework proposed in this
thesis.

static appearance, ignoring dynamic appearance changes over
time. We describe the important components (Figure 1.1) for a
complete computational appearance fabrication framework.

Physical state. First, we need to specify what we define as
the physical state. The physical state is described by three main
components: the physical properties of the object, the illumi-
nation conditions and the response of the observer. We define
physical properties, as the object properties that can potentially
be controlled and may affect appearance. Some examples of
physical properties are the composition of materials within the
object (discrete or continuous), the shape or geometry of the ob-
ject, surface roughness, layers and thickness thereof, and others.
A requirement for the selected fabrication method should be
to allow precise control over the desired appearance-relevant
”knobs” of the physical state.
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Forward appearance model. As a second step, we specify a
forward appearance model that takes as input the physical state
and simulates the observer’s response. While a variety of phys-
ically based appearance models can be used to accurately simu-
late appearance, it is rather uncommon to have an appearance
model with parameters that can be mapped exactly to an avail-
able physical state. In such cases we can compute a mapping
from a physical state to forward model parameters, and con-
sequently to the corresponding appearance. This mapping or
training can be performed by an optimization which uses as
input the forward model and a variety of appearance measure-
ments with known corresponding physical states. The difficulty
of this mapping and the number of required measurements de-
pend on the expressiveness and accuracy of the forward model.
Selection or design of an appropriate forward model for a tar-
get material class should be performed with care, such that the
forward model can efficiently and accurately simulate a wide
gamut of appearances, with as few parameters as possible.

Backward appearance model. Complimentary to the for-
ward model, we also define a backward appearance model. This
backward model uses as input a desired appearance and out-
puts fabrication specifications or a desired physical state. The
backward model is tightly coupled with the fabrication method
and should only output fabrication specifications that can be
reproduced in the real world. It is common for a backward
appearance model to utilize a copy of the forward appearance
model and an optimization procedure for inverting appearance
and converting it to fabrication specifications.

Appearance measurements. We would like to emphasize
the need for accurate appearance measurements and include them

3



Introduction

as another important component within our framework. There
are two main use cases where measurements are useful. The
first use case is for training the forward model and mapping
a physical state to the model parameters. In addition, mea-
surements are also useful in the case of appearance modeling
where a target appearance can be captured directly from the
real world. When designing measurements it is important to
have in mind the forward model and the main characteristics
of the general appearance class to be measured. Measurements
can be focused in parts of the domain where there is interesting
appearance variation with respect to the model parameters.
In addition, measurements could potentially be performed in
simplified physical setups where the known components of the
physical state are easy to reproduce in simulation as well as
allowing for the forward model to be computationally efficient.

A motivating example. Using an implementation of the
aforementioned components, we can examine a naive appear-
ance replication example. Assume a simplified scenario where
we would like to replicate the appearance of gray diffuse wall
paint. We have a target paint sample that we would like to
replicate. The goal of our automated process is to output a
mixture of white and black paint (physical properties) such
that the replica will have the same appearance under a specific
illumination and observer. We need to define the physical state,
the forward, and backward models. To define the physical
state, we need to specify the illuminant, the observer, and the
properties controlled by the fabrication method. The physical
property which we can control in this case is the mixture of the
replica. Since this is a low dimensional problem, the forward
model can be a very simple 1D interpolation scheme of dense
paint reflectance measurements with known mixtures.

4



The final component needed for replication is the backward
model, which will provide corresponding physical properties
for a given target appearance. In this case we can use a very
naive backward model, which for a given target appearance
finds the closest appearance measurement (e.g. CIEDE2000
[Sharma et al. 2005]) and returns the known physical properties
(paint mixture) that correspond to it.

While this replication process is generic and does not require
a complex appearance model, it does require dense sampling
of the possible physical states. In the common case where the
space of physical states is high dimensional, dense sampling
might not be feasible. In such cases an expressive and low
dimensional physically based appearance model can be use-
ful. For example, the instance of our framework for mapping
pigment concentrations to color and translucency (described in
Chapter 3) only required a total of 21 training measurements
with different pigment mixtures.

Appearance editor. We just described the necessary compo-
nents of our framework to replicate a target appearance. In use
cases where we would like to allow intuitive control over the
appearance, we will add an additional procedure (appearance ed-
itor) between the forward model and the backward model. This
procedure will transform a possibly measured appearance to
a desired one, with the help of some meaningful and intuitive
high-level edits. Then it is the responsibility of the backward
model to find a physical state that, when fabricated, will match
the novel appearance up to a user-specified threshold.

In summary, we highlight the main components and their in-
teractions within our framework in Figure 1.2. Furthermore,
the physical state encapsulates the physical parameters of the
object, the illumination conditions and the observers’ response.

5
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Real World Virtual World

Forward Model
Appearance

Fabrication

Measurements

Backward Model

Physical State

Physical State
Edit

Figure 1.2: Interaction flowchart among the components of the proposed computational ap-
pearance fabrication framework. The appearance of a physical state (composed
out of illumination conditions, physical properties, and an observer) can be
depicted virtually with the use of a forward model. This virtual appearance can
be edited and then passed as input to the backward model. Consecutively the
backward model will translate the novel appearance to fabrication specifications
that can be translated by the fabrication method to a new physical state with
the desired appearance.

The forward model encapsulates the appearance model, train-
ing measurements, and a mapping from a physical state to
appearance. The backward model is responsible for mapping
appearance to fabrication specifications or a desired physical
state. Finally the chosen fabrication method is tasked with
translating the output of the backward model to a physical
state in the real world.

In this thesis we show a range of applications that benefit
from our computational appearance fabrication framework.
We present various instances of our framework and detail the
design of the corresponding components, such as forward and
backward models, appearance editors, measurements design,
and fabrication methods. Our framework that can be used
for computational appearance fabrication within three general

6



classes of materials: homogeneous participating media, specu-
lar surfaces, and granular media.

Within these material classes we propose three applications
which make use of our framework. For the case of homoge-
neous participating media we present a fully populated in-
stance of our framework that can be used to fabricate repli-
cas of translucent materials by using continuous mixtures of
pigments with silicone. This method automatically deduces
pigment concentrations that will match a target homogeneous
translucent appearance. In the case of specular surfaces we
present a method for generating the shape of steganographic
lenses that can unscramble seemingly random patterns into
desired images when the patterns are seen through the lens.
This method proposes two different backward models (one for
milling and one for 3D printing) along with a novel appearance
editor that can be used in combination for translating desired
scrambled and unscrambled image pairs into fabrication speci-
fications. Finally, for the special case of granular media we only
deal with appearance modeling and we provide a fast paramet-
ric forward appearance model for simulating their appearance.
Example results of our applications are shown in Figure 1.3.

The current state of the art is at different stages for each mate-
rial class and application. Thus, for some applications further
research is needed in every part of the framework, and some-
times in a subset of the framework components. In the case of
homogeneous participating media we have a set of forward ap-
pearance models that can be used to simulate their translucent
appearance, but they are not suitable for fabrication. There is
also work on fabricating spatially varying translucency using a
discrete set of homogeneous voxels [Hasan et al. 2010] or layers
[Tong et al. 2005]. We provide all the necessary components of
our framework that can be used to solve an orthogonal problem:
how to fabricate a desired homogeneous translucent appear-

7



Introduction

Figure 1.3: Sample results produced by the presented framework applications. On the left
we provide a photograph of a glass filled with blue fabric softener side-by-side
with its translucent silicone replica, generated by our automated method. In
the middle we present a photograph of a computationally designed stegano-
graphic lens that can be used to unscramble patterns into predefined images.
Finally, on the right we showcase a synthetic rendering of billions of snow
grains rendered with our forward appearance model for granular media. This
rendering converges 260× faster than the reference.

ance by using continuous pigment mixtures. Our method can
be used for completely homogeneous translucent objects but
can also be potentially used to fabricate the primitives used by
the aforementioned heterogeneous methods.

Similarly, for the case of controlling how light interacts with
specular surfaces the current state of the art is also in a pretty
complete state. For example we do have forward and backward
models that can help us transition between physical properties
and appearance. A common application is allow bending of
directional light into images by computationally designing the
shape of a lens. In contrast, our application aims to compute the
geometry of a steganographic lens that unscrambles seemingly
random looking patterns into desired images.

Contrary to homogeneous participating media and specular
surfaces, the appearance of granular media is currently not well
understood. We do not have parametric appearance models
that can simulate their appearance at a reasonable level of

8



1.1 Contributions

efficiency and accuracy. In this thesis we focus on solving this
appearance modeling problem first, which is a prerequisite for
attempting computational appearance fabrication of granular
media.

1.1 Contributions

The main contributions of this thesis can be summarized as
follows:

• A general framework for computational appearance
fabrication.

• An application of our framework for fabricating ho-
mogeneous participating media.

• A multi-spectral measurement device for measuring
reflectance and translucency.

• An application of our framework for fabricating
steganographic lenses.

• A fast appearance model for granular media.

The aforementioned contributions have been published in the
following international journal articles:

• Marios Papas, Christian Regg, Wojciech Jarosz, Bernd
Bickel, Philip Jackson, Wojciech Matusik, Steve
Marschner, Markus Gross. Fabricating Translucent
Materials using Continuous Pigment Mixtures. In
ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 32(4), July 2013.

• Marios Papas, Thomas Houit, Derek Nowrouzezahrai,
Markus Gross, Wojciech Jarosz. The Magic Lens:
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Refractive Steganography. In ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia), 31(6), Novem-
ber 2012.

• Johannes Meng, Marios Papas, Ralf Habel, Carsten
Dachsbacher, Steve Marschner, Wojciech Jarosz,
Markus Gross. Multi-Scale Modeling and Render-
ing of Granular Materials1. In ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 34(4), July 2015.

During the period of my doctoral studies, I have co-authored
the following journal articles that are not directly related to this
thesis:

• Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon
Rusinkiewicz, Wojciech Matusik, Tim Weyrich. Goal-
based Caustics. In Computer Graphics Forum (Proceed-
ings of Eurographics), 30(2):503–511, June 2011.

• Marios Papas, Krystle De Mesa, Henrik Wann Jensen.
A Physically-Based BSDF for Modeling the Appear-
ance of Paper. In Computer Graphics Forum (Proceed-
ings of EGSR), 33(4):133-142, June 2014.

• Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek
Bradley, Christophe Hery, Bernd Bickel, Wojciech
Jarosz, Thabo Beeler. Recent Advances in Facial Ap-
pearance Capture. In Computer Graphics Forum (Pro-
ceedings of Eurographics), 34(2):709–733, May 2015.

1From this paper we only consider the diffusion extension of the model as a
contribution of this thesis.
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1.2 Organization

In Chapter 2 we present an overview of the existing work rele-
vant to this thesis. More specifically we summarize the current
state of the art for each class of materials and highlight the work
that has been done until now that is relevant to computational
appearance fabrication.

In Chapter 3 we present an application of our full computa-
tional appearance fabrication framework for homogeneous par-
ticipating media. We present a device for measuring the color
and translucency of homogeneous translucent materials. By
using this device, we measure various mixtures of silicone with
pigments to deduce their scattering parameters. We use the
same device to measure the appearance of some target mate-
rials, and we present a method for finding a pigment mixture
which, when mixed, will have that target appearance. In addi-
tion, we present a method for editing appearance which allows
the user to provide color and translucency edits while taking
into account what can actually be fabricated by the set of avail-
able pigments.

In Chapter 4 we propose a method for computational fabri-
cation of steganographic lenses. The main application is to
scramble the incident light field on the array such that it can be
used for steganographic purposes.

In Chapter 5 we present an extension to the rendering method
of Meng et al. [2015] for simulating the appearance of granular
media. Our key observation is that the appearance of granular
media can be split into two main components: low-order and
multiple scattering. The first observed effect is the structure
in the appearance of granular media due to interactions at the
outer part of the volume, which we attribute to low order scat-
tering. The second effect is a more smoothly varying effect
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which we attribute to multiple scattering. In granular media
with low absorption (e.g. cane sugar and snow) most of the
contribution is due to multiple scattering. Multiple scattering
is usually more difficult to simulate with traditional methods
since it is the result of an extremely large number of interactions
with the individual grains. Instead of simulating individual
bounces of light, we propose to leverage a diffusion approach
inspired by the work of Li et al. [2005] to efficiently summa-
rize the effect of multiple scattering within granular materials
with a single diffusion connection. This provides significant
speedup in low absorbing granular media with minimal impact
on accuracy.

The technical chapters of this thesis (Chapters 3, 4, 5, Ap-
pendix A and B) are largely word-for-word reproductions of
published work that I have co-authored and use passages of
text from these publications with explicit permission from the
co-authors.
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C H A P T E R 2
Related work

In this section we present an overview of the relevant prior
work in general appearance capture, modeling, editing, and
fabrication (Section 2.1). We continue with an overview of
the current state of the art relevant to our selected applications
(Sections 2.2, 2.3 and 2.4).

2.1 Appearance capture, modeling and fabrication

Within the computer graphics community there is a vast
amount of work on simulating and controlling how light inter-
acts with materials from the real world. This is usually referred
to as appearance modeling and facilitates the reproduction of
real-world materials in virtual scenes. The main purpose of
these appearance models is to simulate how light is scattered
and absorbed as it interacts with a material. Surface interactions
are modeled using a Bidirectional Scattering Distribution Func-
tion (BSDF) which encodes the ratio of outgoing radiance over
incident irradiance as a function of the respective outgoing and
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incident directions. This function can be reduced into a Bidirec-
tional Reflectance Distribution Function (BRDF) when accounting
only for reflectance (i.e. incident and outgoing directions lie
on the same side of the surface), and into a Bidirectional Trans-
mittance Distribution Function (BTDF) when accounting only
for transmission (i.e. incident and outgoing directions lie on
opposite surface sides).

BSDFs summarize surface interactions and are a key compo-
nent of the Rendering Equation [Kajiya 1986]. Similarly phase
functions (along with scattering and absorption coefficients)
are used within the Radiative Transfer Equation [Chandrasekar
1960] to model interactions with participating media.

Many currently used physically-based renderers use Monte
Carlo integration to solve these equations. Monte Carlo
integration is commonly used to evaluate global illumina-
tion in research oriented renderers [Jakob 2010; Pharr and
Humphreys 2010], but it is also heavily used in movie produc-
tion (RenderMan R©, Maxwell Render R©, Hyperion, and Arnold
among others). During this integration process, light paths orig-
inating from the sensor and/or the emitters are incrementally
constructed as they interact with materials. In such interaction
events, an outgoing direction and position are generated (sam-
pled) and the appearance model is evaluated. The remaining
path contribution is proportional to the value of the appearance
model at each such interaction. Thus, we preferably want to
generate the outgoing direction and position with a probabil-
ity density function linearly related to the appearance model’s
function value. This is referred to as importance sampling and
allows significant convergence improvements when used for
Monte Carlo integration.

For this reason, we also include within the requirements of an
appearance model the ability to efficiently sample and evaluate
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light scattering behavior as a function of an incident direction
and position. Another desired property of appearance models
is being able to provide intuitive parameters that can be altered
by the user for controlling various aspects of the appearance of
a material such as glossiness, opaqueness or transparency, and
color.

Physically-based appearance models designed with the goal of
modeling the appearance of real-world materials often make
use of measurements. These measurements can be used to
discover and expose a characteristic appearance property and
can also be used to validate the model based on how well it
matches the real-world measurements.

Appearance models can be divided into two main categories:
parametric and data-driven. Parametric models usually have
some simplified interpretation of the underlying physical prop-
erties of the corresponding material. The parameters of these
models can be either related to a physical property or to a de-
sired appearance effect. When a more direct relation between
the model parameters and the physical properties is required,
measurements and an optimization procedure can be used to
discover such a mapping. An advantageous property of para-
metric models with parameters related to physical properties,
is that once the mapping is found then the model could be
used to predict appearance even outside the convex hull of
measurements.

Data-driven models are more heavily dependent on measure-
ments and do not require a good understanding of the under-
lying physical properties. Oftentimes they can be better than
parametric models at capturing the appearance of the target
material, especially near the measured parts of the appearance
domain. There are however some drawbacks and challenges
with data-driven models. One drawback is that they potentially
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require denser measurements than parametric models, depend-
ing on the variation and the dimensionality of the appearance
within the domain. Unlike physically based parametric mod-
els, extrapolation outside the convex hull of measurements is
more difficult. In addition, a summary of the measurements is
usually needed in memory such that the model can be evalu-
ated and sampled efficiently. Finally, another challenge with
data-driven models is appearance editing. It is very difficult to
devise methods that allow appearance edits that widely span
the gamut of the represented material class.

There are many examples of specialized appearance mod-
els that can be used to simulate the appearance of real-
world materials and objects. For materials with micro-surface
roughness there is a wide variety of research on simulat-
ing the aggregate reflectance [Torrance and Sparrow 1967;
Cook and Torrance 1981] and transmission [Walter et al. 2007] of
specular micro-facets oriented according to an analytic micro-
facet normal distribution function. These analytic paramet-
ric models were validated against measurements and can be
efficiently evaluated and sampled. Oren and Nayar [1994]
developed an analytic forward model for approximating the
reflectance of diffuse micro-facets. Ashikmin et al. [2000] pro-
vided a method which allows an arbitrary micro-facet normal
distribution function to be used for creating plausible energy
preserving BRDFs. Ngan et al. [2005] performed BRDF mea-
surements on a variety of materials and concluded that for
isotropic BRDFs the existing analytic models perform well but
in the case of anisotropic BRDFs a custom micro-facet normal
distribution function was needed. They were able to produce
a suitable distribution function by inverting the BRDF gen-
erator of Ashikmin et al. [2000] by fitting on measured data.
Their resulting model was able to qualitatively reproduce the
anisotropic BRDF measurements.
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Another type of material whose appearance has attracted a lot
of attention within the computer graphics community is hair
fibers. The work by Kajiya and Kay [1989] on simulating the
appearance of fur is considered the starting point. Marschner
et al. [2003] presented a parametric model for simulating single
scattering of light within hair volumes. Their hair model was
able to better capture the characteristic highlights of dark hair
than the model of Kajiya and Kay [1989]. A survey on hair
appearance modeling can be found in the work of Ward et
al. [2006]. More recently, researchers focused on hair capture
[Paris et al. 2008; Jakob et al. 2009; Zinke et al. 2009] and efficient
simulation of multiple scattering [Zinke et al. 2008] which is
a prominent part of hair appearance, especially in the case of
blond hair.

Other examples of appearance models include the work of
Matusik et al. [2003] on designing a data driven model for in-
terpolating the appearance of measured BRDFs, as well as the
work of Marschner et al. [2005] for modeling the appearance
of wood including anisotropic BRDF effects. Jakob et al. [2014]
developed a method for consolidating the aggregate appear-
ance from multiple thin layers with different BSDFs and media
into a single BSDF model. Finally, Brady et al. [2014] presented
a framework that can be used to synthesize analytical BRDF
models able to describe real-world measured appearance, using
genetic programming.

Appearance editing is another important procedure for the de-
sign of virtual scenes. Schmidt et al. [2014] performed a survey
of the existing methods that facilitate artistic editing of appear-
ance in virtual scenes. They categorized the existing methods
according to the interface exposed to the user: direct, indirect,
and goal-based. Direct user interfaces allow the user to directly
edit the model parameters, they are easy to implement but
usually not very intuitive. Indirect and goal-based interfaces
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allow a more high-level specification of appearance and the
underlying changes to the scene properties are performed by
the system.

It is important to note, that even though many of the aforemen-
tioned appearance modeling and editing methods were able
to capture and simulate the appearance of real-world materi-
als, none of them addressed the challenges of computational
appearance fabrication.

When simulating the appearance of real-world objects in a vir-
tual scene, physically accurate appearance models are usually
desirable but not required. On the other hand, when forward
appearance models are used for fabrication, using a model that
accurately simulates how light interacts with a material in the
real word is essential.

In more recent years, researchers have started focusing on com-
putational appearance fabrication. A notable example is the
work of Weyrich et al. [2009b] on fabricating faceted surfaces
that allow a customized angular reflectance distribution. Hullin
et al. [2011] designed a prototype that can visualize a rough and
anisotropic BRDF on a water surface by super-imposing multi-
ple high frequency sine waves. Their method allows control of
anisotropy by changing the frequency of the waves. Malzben-
der et al. [2012] combined lenses and blockers to achieve fabri-
cation of spatially-varying BRDFs. Lan et al. [2013] presented
a fabrication method that combines 3D-printing and milling
for printing spatially-varying anisotropic BRDFs. Bermano et
al. [2012] provided a method that takes as input a small set of up
to four gray-scale images and designs a surface, that when fab-
ricated, depicts one of these images (through self-shadowing)
according to the illumination direction.
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2.2 Translucency fabrication

Our goal with this application is to precisely control the appear-
ance of homogeneous translucent materials in the real world
by using continuous pigment mixtures with silicone. We allow
appearance replication of measured translucent materials but
also goal-based design and fabrication of novel translucent ap-
pearances, within the gamut of our pigments and silicone. In
the remainder of this section we describe the work related to
this application.

Color matching systems. Related to this application are the
computerized commercial systems developed for color match-
ing which have been successfully used in many industries (e.g.,
house paint, automotive etc.). They typically use a spectropho-
tometer to determine material reflection as a function of wave-
length. Then they either determine the closest material, al-
ready in the database, or they output the combination of base
pigments to obtain the best match. The most common sys-
tems include Sher-ColorTM by Sherwin-Williams [Sherman and
Simone 1989] and ChromaVision R© by DuPont [Kelly 1987].
While some of these systems try to match sheen as well, the
translucency of a material is never considered.

Forward appearance models. In the case of translucent ma-
terials, the main difference from the aforementioned surface
scattering models (BSDFs) is that interactions are not only re-
stricted to surfaces but can also happen anywhere within a
participating medium. These interactions can be accurately
simulated by using Monte Carlo methods to solve the radiative
transfer equations such as volumetric path tracing. Computa-
tionally, this is an extremely expensive process even with the
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current state-of-the-art efficiency improvements [Lafortune and
Willems 1996; Walter et al. 2009; Jakob and Marschner 2012;
Novák et al. 2012b; Novák et al. 2012a; Georgiev et al. 2013;
Křivánek et al. 2014], especially in the case of optically thick and
low absorbing media enclosed within a dielectric boundary.

The first practical model for approximating subsurface scatter-
ing in computer graphics was developed by Jensen et al. [2001].
An image-based measurement system was used to estimate
model parameters for a variety of homogeneous translucent
materials. This appearance model was later on extended by
Donner and Jensen [2005]. In their work they were also able to
approximate sub-surface scattering within and between thin
layers. Their results include a rendering of a human face whose
layered appearance was based on scattering parameters orig-
inating from the medical literature. Similarly, d’Eon and Irv-
ing [2011] introduced a BSSRDF model that accurately decou-
ples single and multiple scattering. Their model as well as the
model of Habel et al. [2013] approximates multiple scattered
light from a linear light source which allows better approxi-
mation of light scattering from absorbing materials and thin
translucent layers.

Capture. Hawkins et al. [2005] developed a method to esti-
mate the phase function and albedo of aerosols. Narasimhan et
al. [2006] created a method to estimate scattering parameters of
translucent liquids by diluting low concentrations of a material
in a clear solvent. Their method relied on the absence of multi-
ple scattering from measurements and approximated the phase
function with an analytic model [Henyey and Greenstein 1941].
More recently Gkioulekas et al. [2013] have presented an im-
proved parameter estimation framework for liquids that could
handle multiple scattering in measurements and provided scat-
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tering parameters along with high-resolution tabulated phase
functions.

Peers et al. [2006] developed a data-driven method for appear-
ance capture and modeling of heterogeneous translucent mate-
rials by using a factored representation of the scattering func-
tion. The acquisition was performed using a projector-camera
pair.

Weyrich et al. [2006] used a contact-based measurement device
to estimate subsurface scattering parameters of human skin.
For our measurements we use an improved version of this de-
vice to estimate reflectance and translucency in homogeneous
translucent materials. Klehm et al. [2015] performed a survey
on appearance capture of human faces and skin. An overview
of the relevant forward appearance models was provided along
with a categorization of the methods based on whether they
could explicitly capture and model the inherent translucency
of human skin.

Editing. There has been some recent work on authoring and
editing the appearance of translucent materials [Xu et al. 2007;
Song et al. 2009]. This work focused on editing and prescrib-
ing the subsurface scattering appearance in simulation, where
inaccuracies in the forward appearance model and fabrication
constraints can be completely ignored. We, on the other hand,
are interested in editing the appearance of materials in the
real world that can actually be fabricated by a mixture of our
pigments. With our proposed editor we safely navigate the fea-
sible gamut of translucent appearances based on the physical
properties of our pigments and silicone.
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Fabrication. In addition to the aforementioned appearance
fabrication research, two closely related methods have ad-
dressed computational design and fabrication of materials with
desired translucency [Hasan et al. 2010; Dong et al. 2010].
These approaches express the output as a material composed
of discrete voxels or layers with known subsurface scattering
properties. However, the materials for the layers/voxels are
fixed. These methods can approximate materials with hetero-
geneous subsurface scattering as well. Nevertheless, they also
have some disadvantages, in particular, materials with homo-
geneous subsurface scattering cannot be accurately reproduced
since these methods rely on either voxel dithering or layering of
discrete materials. Our proposed approach explores an orthog-
onal research direction that can be naturally combined with the
discrete methods. Instead of manufacturing a compound multi-
layer (or multi-voxel) material as in previous approaches, we
fabricate materials using continuous pigment mixtures within
a single homogeneous shape. Therefore, by default all our
materials have homogeneous subsurface scattering properties.

2.3 Steganographic lens fabrication

Our goal with this application is to computationally design
and fabricate lenses with steganographic properties. The main
use-case is a user viewing a seemingly random looking pattern
through the steganographic lens which optically unscrambles
the pattern into the intended message or image. In the re-
mainder of this section we describe the work related to this
application.

Image obfuscation. Recent works in computer graphics en-
code hidden visual information into 2D images or 3D objects.
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Different encoding and decoding schemes distinguish seem-
ingly unrelated approaches that all share the same basic goal:
encoding structured image information into potentially un-
structured images or objects. Autostereograms [Tyler and
Clarke 1990] encode a (depth) image that can be decoded by a
viewer by controlling vergence, while camouflage and emerg-
ing images [Chu et al. 2010; Mitra et al. 2009] hide images
decoded by the temporal delays of the human visual system.
Classic “invisible ink” writing, using for instance lemon juice,
is only revealed when exposed to a catalyst such as heat. More
recent computational approaches use metallic inks to embed
images that only appear under specular reflection [Hersch et
al. 2003], or print with specialized inks that are only visible
under UV light [Hersch et al. 2007]. Band Moiré images [Her-
sch and Chosson 2004] encode a hidden image in interfering
Moiré patterns caused by superimposing transparent sheets.
We also manufacture transparent surfaces, but instead, rely
on a customized refractive lenslet-array to expose our hidden
images and animations.

Patch matching. The shape of our lenslet-arrays is deter-
mined by matching regions between the source and tar-
get images. Many existing image feature and patch match-
ing operations, commonly used in texture synthesis and im-
age recognition [Lowe 1999; Pritchard and Heidrich 2003;
Barnes et al. 2009; Barnes et al. 2010; Barnes et al. 2011;
Barnes 2011], could be adapted to our task. However, our
matching criteria is rather unique since we must constrain the
smoothness of the resulting refractive lenslet-array. As such,
we use a simple matching procedure specialized to our task.

23



Related work

3D displays. Simple auto-stereoscopic lenticular
sheets [Lippmann 1908] “descramble” multiplexed left/right
image pairs into distinct images seen from different view-
points. Our approach can also be used to encode distinct
images and, as such, can be seen as a special type of auto-
stereoscopic display. We additionally encode target images
completely unrelated to the structure of the source images
by providing more degrees-of-freedom during lens opti-
mization. With a directionally-dependent source image, our
approach can also be interpreted as a way to optically warp
one light field into another, opening up potential applications
in light field display design [Gotoda 2010; Lanman et al. 2011;
Wetzstein et al. 2011].

Hidden watermarks. Another family of methods generate
digital watermarks, which can then be decoded using for ex-
ample, lenticular sheets [Alasia 1976; Alasia 1998; Brosh and
Wright 1994]. These methods require that the parameters of
the lenticular sheets are known prior to the generation of the
watermarks citeRenesse:2004:ODS.

Fabrication. Recent techniques can manufacture 3D objects,
which, when lit in a controlled manner reveal hidden im-
ages. Niloy and Pauly [2009] designed 3D objects which,
when lit from different directions, cast distinct shadow im-
ages, while Baran et al. [2012] constructed multilayer attenu-
ators which cast several colored images depending on light-
ing conditions. Yue et al. [2012] allowed users to manually
arrange refractive pixel-like sticks in a grid arrangement to
generate projective pixel art. Relief images [Alexa and Ma-
tusik 2010] encoded two unique images in the diffuse shading
of a height-field lit from two directions. Fuchs et al. [2008]
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presented prototypes of various passive reflectance field dis-
plays where the outgoing light-field is dependent on the in-
cident light direction. Related works [Finckh et al. 2010;
Papas et al. 2011] optimized the geometry of refractive surfaces
to deform incident light into desired caustic patterns. More
recently, Schwartzburg et al. [2014] have presented a method
for fabricating continuous caustic-generating lenses using an
optimal transport map. Their method enforces the surface con-
tinuity as a hard constraint, whereas the method of Papas et
al. treats continuity as a soft constraint. The benefit of the
method of Schwartzburg et al. is the production of smooth
lenses without discontinuities, which are easier to fabricate
with the use of milling machines. A drawback of the method of
Schwartzburg et al., when considered for our steganographic
application, is that the shape of the lens is highly correlated to
the resulting caustic image. A warped version of the resulting
caustic can be seen on the surface of the lens. In contrast, the
faceted lenses generated by the method of Papas et al. breaks
this correlation between the surface of the lens and the resulting
caustic image, a property highly desirable for our application of
steganographic lenses. Our goal is to fabricate steganographic
lenses which is, in a sense, the optical dual of such caustic lens
generating approaches. We apply a similar manufacturing pro-
cess and optimization framework as Papas et al. [2011], but our
optical system operates in reverse: we focus outgoing reflected
or emitted light from a source image, using a lenslet-array, to
form an image (or stereo pair, or animation) directly on an
observer’s eye(s).
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2.4 Rendering granular media

Our goal with this application is to lay the foundation for future
research on computational appearance fabrication of granular
media. We identify as a necessary first step toward this goal,
the design of a fast and accurate forward appearance model
for simulating the appearance of granular media. This crucial
component if currently missing from our computational ap-
pearance fabrication framework and is a necessary building
block for future research in granular media fabrication. In the
remainder of this section we describe the work related to our
proposed forward appearance model.

Existing forward models. There is very little work on ac-
curately simulating the appearance of granular media in the
field of computer graphics. For this class of materials there
has been work mainly on rendering by Moon et al. [2007] but
their method is still prohibitively slow. Our goal is to create a
fast multi-scale forward appearance model, inspired by Li et
al.’s [2005] hybrid model that is able to render granular media
accurately for the first few media interactions and then switch
to a fast and accurate diffusion approximation. This will be
a potentially useful tool for future research with the goal of
controlling and fabricating the appearance of granular media.

Our work is a direct extension of the model developed by Meng
et al. [2015]. They proposed a multi-scale modeling and ren-
dering method that adapts to the structure of scattered light
at different scales. They rely on explicit path tracing (EPT) of
the individual grains only at the finest scale, and—by decou-
pling individual grains from their arrangement—they develop
a modular approach for simulating longer-scale light trans-
port. They model light interactions within and across grains as
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separate processes and leverage this decomposition to derive
parameters for classical radiative transport, including standard
volumetric path tracing (VPT). This volumetric approximation
can describe the large scale transport due to many grain in-
teractions. They require only a one-time precomputation per
exemplar grain, which they reuse for arbitrary aggregate shapes
and a continuum of different packing rates and scales of grains.

Moon et al. [2007] precomputed scattering functions on spheri-
cal shells inside a random medium, accounting for the aggre-
gate effect of transport within and between individual objects
that make up the medium. A key difference in our work is
that unlike Moon et al., we do not require any scene depen-
dent global precomputations. Similarly to Meng et al. [2015]
we only require a light-weight precomputation for a single
constituent grain, and not an agglomeration of grains. This
allows us to decouple shape, arrangement, scale, and packing
of grains. Avoiding costly precomputations when changing
these physical properties is essential when designing a back-
ward appearance model and very useful when designing a fast
forward appearance model.

Level-of-detail and prefiltering. Our approach combines
several distinct representations and rendering methods to
model the appearance and light transport within granular ma-
terials. Such multi-scale, level-of-detail approaches have a
long history in graphics. Luebke et al. [2002] have given a
thorough treatment of this early work, whereas Bruneton and
Neyret [2012] have provided a recent survey of non-linear pre-
filtering techniques for smoothly transitioning between multi-
scale representations of appearance.

Rendering granular materials has conceptual similarity to work
in hair [Moon and Marschner 2006; Zinke and Weber 2006;
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Zinke et al. 2008] and cloth rendering [Schröder et al. 2011; Zhao
et al. 2013] where individual fibers are visible and therefore
need to be modeled explicitly, but costly and smooth large-scale
transport is approximated.

Methods outside graphics. Understanding the optical and
heat transfer properties of densely packed media is of great
importance for fields outside of graphics, including thermal
engineering, atmospheric sciences, and nuclear reactor physics.
Accurate solutions can be obtained using a full wave ap-
proach [Foldy 1945] and solving Maxwell’s equations [Durant
et al. 2007], but are computationally infeasible and not neces-
sary for graphics-related problems.

Since exact solutions considering each granule are impracti-
cal, a popular alternative is to make the “homogeneous phase
approximation” [Randrianalisoa and Baillis 2009], where the
densely packed medium (with statistically dependent scatter-
ing) is approximated using the standard RTE, valid at low
volume fractions or for long-scale transport. Randrianalisoa
and Baillis [2010] proposed a data-driven procedure to fit such
“effective RTE properties” to the results of a Monte Carlo ran-
dom walk through a discrete granular medium. This requires
a separate, scene-dependent simulation, akin to Moon et al.,
which we avoid.

Singh and Kaviany [1992] modeled dependent radiative trans-
fer by pre-computing a scattering function with positional
offsets for a large, smooth, dielectric spherical particle. Re-
placing the standard phase function in the Discrete Ordinates
Method [Chandrasekar 1960] with this new scattering function
allows them to account for intra-grain transport effects.

Donovan et. al. [2003] used a two-step process where they
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sampled chord lengths for transport between grains from a
statistical distribution and computed intra-grain transport by
instantiating grain geometry. Our teleportation model is very
similar, but uses a statistical representation for intra-grain trans-
port.

2.5 Summary

To summarize, our finding show that there is a tremendous
amount of work within the computer graphics community on
transferring the appearance of real-world materials to the vir-
tual world. Existing appearance models and editing methods
often have the required properties for simulating the underly-
ing material class. In many cases, though, they are not directly
usable for computational appearance fabrication. The main
requirements for fabrication-friendly forward appearance mod-
els are: they can correctly capture the real-world appearance
of their material class, they have low dimensional parameters
that can be mapped to a physical state, and finally are compu-
tationally efficient to evaluate, since they usually end up in an
inner loop of an optimization procedure.

We also observe that the current state of the art with respect
to computational appearance fabrication is at different stages
for each class of materials. For the class of translucent materi-
als the field is fairly advanced. Existing methods can already
reproduce a limited gamut of translucent appearance in the
real world with the use of 3D printers. For specular surfaces,
computational appearance fabrication has also been demon-
strated, and we provide an additional use-case of goal-based
design of steganographic lenses. In the case of granular media,
there is not much research available. There is some work on
modeling the appearance of this material class, but there are
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no suitable appearance models available which are suitable
for computational granular media appearance fabrication. We
provide the first step towards this future goal starting with a
fast and accurate forward appearance model for modeling the
appearance of granular media.
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C H A P T E R 3
Translucency fabrication

In this chapter we present a full instance of our framework (Fig-
ure 3.1) tailored for capture, design and physical reproduction
of homogeneous translucent materials with desired color and
translucency.

Our fabrication process allows us to precisely control pigment
concentrations that can be suspended in a base material. Our
backward appearance model is able to determine pigment con-
centrations that best reproduce the appearance of a given target
material. In order to achieve this task, we need to train our
forward appearance model such that it can be used to predict
the appearance of a physical state. We first fabricate a collec-
tion of material samples composed of known mixtures of the
available pigments with the base material. Their appearance is
acquired using a custom-built measurement device. The same
device is then used to measure the reflectance and translucency
of a target material. Based on the forward model predictions
which were trained on this database of mappings from pigment
concentrations to reflectance profiles, we design a backward
appearance model. This backward model uses an optimization
process to compute a concentration of pigments that, when
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Real World Virtual World

Forward Model
Appearance

Fabrication Backward Model

Physical State

Physical State
Edit

Measurements

Figure 3.1: An instance of our framework depicting an example of translucency fabrication.
A physical state is translated into the virtual world with the use of our forward
model. The appearance is then edited and passed as input to the backward
model. Finally, the backward model uses an optimization to provide pigment
mixtures that, when fabricated, will produce a new physical state with the
desired appearance.

fabricated, will reproduce the target appearance. We demon-
strate the practicality of our method by reproducing a variety
of different translucent materials. We also present an appear-
ance editing tool that allows the user to explore the appearance
gamut defined by a fixed set of pigments and base silicone.

It is important to describe the three main components of the
physical state at this point. First, the physical parameter of
the object that can be controlled is the mixture composition of
pigments and base silicone. In our case we use homogeneous
mixtures of six pigments and base silicone at desired concen-
trations. We can additionally control the shape by using molds,
but the computational aspect of geometry fabrication is outside
the scope of our work.

The geometric illumination setup under which we simultane-
ously match appearance is divided into two cases. The first case
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is when the surface of the object is uniformly illuminated by a
distant light source (reflectance) and the second case when a
beam of light is entering from a position on the surface and trav-
els through the material (translucency). In addition, the light
source emits light in five narrow spectral bands. The observer
is defined as a gray-scale camera placed at some predefined
distance on top of the sample with uniform sensitivity over the
visible spectrum.

Due to the bidirectional nature of light transport and the fact
that we can programatically control the emitters and the cam-
era, we can also describe this setup as the equivalent of a pen-
tachromat observer, viewing a material illuminated with an
ideal ”white” light source that emits radiant flux uniformly
over the visible spectrum.

While matching appearance with such a sensitive observer al-
lows for the fabricated appearance of an object to match for
human observers under spectrally varying illumination, this
drives the optimization in sub-optimal solutions when the ap-
pearance cannot be matched well in parts of the spectrum, to
which the human visual system is not sensitive.

In practice, a more common scenario is to have a standard
human observer and a fixed illuminant (e.g. Sunlight, LEDs
and fluorescent lights). Under this fixed observer and fixed
illuminant assumption, we can use perceptual metrics and thus
focus appearance matching in parts of the spectrum where
humans are more sensitive— effectively allowing our method
to match appearance within a wider gamut.
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Figure 3.2: A side by side comparison of real translucent materials (right) next to their
silicone replicas (left) fabricated using our method.

3.1 Introduction

Most of the materials in our man-made environment are col-
ored by dyes, pigments, or other colorants suspended in a
scattering medium. Paints, plastics, papers, textiles, stained
glass, ceramic glazes, candy—nearly all surfaces that are not
metallic or completely transparent fall under this description.
Many natural materials are also well approximated as colored
scattering media—skin, leaves, flowers, foods—in which the
colorants are naturally occurring. Because of the ubiquity of
colored scattering materials, the technology of predicting and
controlling their color is very mature, as epitomized by systems
that automatically mix paints to match a given sample.

But color is not the only attribute of a colored scattering
medium; pigmented media are, by their very nature, translu-
cent. Some materials are so dense (wall paint, for instance) that
the translucency can be ignored at macroscopic scales, but for
others it is subtly (“opaque” plastic, skin) or obviously (translu-
cent plastics, stained glass) part of the appearance. Translu-
cency is a more complex phenomenon than diffuse color, and
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currently the appearance of such materials is normally con-
trolled by trial and error.

The goal of this chapter is to create the fundamental tech-
nology of controlling translucency as precisely as color can
already be controlled, including an accurate forward model
that can predict the appearance of translucent materials, au-
tomatically matching existing real or virtual materials, and
synthetically adjusting mixtures with feedback about translu-
cent appearance. Over the last dozen years, the field of com-
puter graphics has developed an increasingly mature under-
standing of how to simulate [Jensen et al. 2001; d’Eon and Irv-
ing 2011], measure [Hawkins et al. 2005; Dorsey et al. 2008;
Weyrich et al. 2009a], and manipulate [Xu et al. 2007;
Song et al. 2009] the appearance of translucent objects in ren-
dered scenes, and we believe this technology is becoming ma-
ture enough to be applied to the more demanding application
of manipulating materials in the real world.

The resulting methods are directly useful in design applications
involving pigmented translucent materials, such as industrial
design of consumer products where appearance is important,
or design of dental materials, prostheses, or animatronics that
should match a given person’s body—appearance in all these
examples is currently matched manually by trial and error.
Together with the ability to accurately render translucent ma-
terials, this will make translucent materials an integral part of
realistic product pre-visualization, letting the user see on screen
the exact appearance the manufactured product will have.

In addition, as multi-material 3D printers become sufficiently
capable, the same fundamental technology of controlling the
appearance of scattering materials can ultimately enable 3D
printing of nearly arbitrary materials with precise control
over appearance. Our work complements existing work on
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spatial mixtures of 3D printed materials [Dong et al. 2010;
Hasan et al. 2010] by examining how to control the properties
of individual materials. Printers that can control both material
properties and spatial arrangement precisely will enable physi-
cal appearance prototyping as well as the direct manufacture
of products whose appearance is important.

In this research we have developed a system to generate a
pigment mixture to match the subsurface scattering of a ho-
mogeneous target material. Our system is analogous to com-
puterized paint matching systems that measure the spectral
reflectance of a target material and then reproduce it by com-
bining pigments in a scattering or clear base material. We
use a similar concept, but instead of treating the material as
having only diffuse surface reflection, we model it as a vol-
ume with corresponding subsurface scattering effects. This
approach extends our system beyond just color matching to
cover translucent materials with significant subsurface scatter-
ing in a way that can be easily integrated into existing systems.
Figure 3.2 shows a sample of different materials that can be
reproduced using our system. Our methods are applicable to
any process where pigments are used to control the appearance
of a material.

Our process for matching subsurface scattering of a given tar-
get material has the following steps. First, we manufacture a
collection of samples with different concentrations of pigments
mixed into a base material. We use a custom-built measure-
ment system (Section 3.4) to acquire multi-spectral reflection
profiles for each material sample. This allows us train our
forward model and establish a mapping from pigment concen-
trations to reflection profiles that capture subsurface scattering
properties. Using the same measurement device we acquire
multi-spectral reflection profiles for a given target material.
We design a backward model with an iterative optimization
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procedure that computes the pigment concentrations required
to reproduce the target material accurately (Section 3.5). We
demonstrate the whole process by reproducing a number of
organic and inorganic materials (Sections 3.8 and 3.9). In ad-
dition, we describe an appearance editing tool that enables
interactive exploration of the range of translucent appearances
that is achievable with a given set of pigments.
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Figure 3.3: Overview of our system.
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3.2 Method overview

At a high level, the goal of our system is to provide a recipe of
how to mix pigments with a base material (clear silicone in our
system) in order to reproduce a measured target material. Our
process can be divided into five main stages (illustrated in Fig-
ure 3.3): database and target measurement, pigment parameter
estimation, concentration estimation, and, finally, fabrication.

In a preprocess we fabricate and measure various mixtures of
the available pigments with base material (Database Measure-
ment). This collection of measurements becomes our appear-
ance database which we then use to estimate a global set of
pigment parameters for predicting the subsurface scattering ap-
pearance of a silicone mixture (Pigment Parameter Estimation).

To create a silicone replica, we first measure the diffuse re-
flectance and translucency of a target material (Target Measure-
ment). We then perform an optimization that will estimate
pigment concentrations for the target (Mixture Optimization),
assuming global pigment parameters (Pigment Parameter Esti-
mation). This process is refined by an iterative local pigment
parameter estimation step, with the goal of enabling better re-
sults in regions of the domain where the forward model, and
consequently the global set of pigment parameters, is no longer
a good approximation.

In Section 3.3 we describe our chosen forward appearance
model, which balances our needs for both accuracy and per-
formance. We use a single, custom-built measurement device,
which we describe in Section 3.4, to perform both the database
and target measurements. In Section 3.5, we describe both
the pigment parameter estimation (Section 3.5.3) and mixture
optimization stages (Section 3.5.4) used for computing a pig-
ment concentration recipe that will match a measured target
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appearance. In Section 3.6 we describe an improvement to this
method (Local Pigment Parameter Estimation) which accounts
for inaccuracies in the forward model approximation. With this
system in place, we enable users not only to replicate target
materials, but also to edit and pre-visualize (Section 3.7) the
appearance of a desired material before fabrication. The output
of the appearance matching and appearance editing process is
a recipe, which we fabricate by mixing pigments with silicone
(Section 3.8). We compare the fabricated results of our system
against a set of target translucent materials in Section 3.9. Fi-
nally, we propose an extension of our method (Section 3.10) that
increases the appearance matching gamut in the case where we
have a fixed illuminant and a human observer.

3.3 The forward appearance model

Before we can fabricate a replica, we need a computational
model to predict the appearance of scattering materials which
we can later invert to derive the scattering parameters necessary
for fabrication. According to the theory of scattering media, a
homogeneous material can be described by a phase function
and two parameters, the absorption coefficient σa and the scat-
tering coefficient σs, or equivalently by the extinction coefficient
σt = σa + σs and albedo α = σs/σt. If any two of these parameters
are known the other two can be computed. In highly scattering
materials, the flow of light can be well modeled with a diffusion
equation, which leads to approximate analytical models that
are useful to describe translucent materials. In such materi-
als, one can replace the scattering coefficient with the reduced
scattering coefficient σ′s, and then treat the phase function as
isotropic (see Jensen and Buhler [2002] and references therein
for details). In this thesis we will always use the reduced pa-
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rameters σ′s, σ′t , and α′ but will omit the customary primes for
notational convenience.

Scattering Profile. From the many available diffusion mod-
els, we chose quantized diffusion [d’Eon and Irving 2011] to
analytically express the subsurface reflectance profile since it
remains relatively accurate even in the case of moderately ab-
sorbing materials. For the purposes of our task, the chosen
diffusion model simply returns an analytic reflectance profile
between two surface points x and y:

dLλ
r (x)

dΦλ
i (y)

= RQD
d (αλ,σλ

t ,d;r), (3.1)

as a function of their distance r = ‖x − y‖, thickness d, and
the reduced albedo α and reduced extinction coefficient σt per
wavelength band λ. This also depends on η. In this thesis
we always use a measured silicone index of refraction value
of 1.41. The internal details of the diffusion model are largely
unimportant for the rest of our pipeline, hence Rd can be treated
as a black box.

Diffuse Reflectance. We also require a computational model
for the diffuse reflectance ρ. We evaluated the accuracy of var-
ious analytical and numerical models for diffuse reflectance,
but found that none matched Monte Carlo simulations well
enough (see Appendix A for our detailed comparison analysis).
We therefore created a dense tabulation of diffuse reflectance
values from brute force Monte Carlo [Wang et al. 1995] simula-
tions:

ρ(α,σt,d) = 2π

∫
∞

0

RMC
d (α,σt,d;r)

π
r dr. (3.2)
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For our tabulation we parametrize ρ according to reduced
albedo (α) and optical thickness (σtd, where d is the measured
thickness of the sample) and store the values in a 2D table for
lookup and interpolation.

Please note that our reflectance term assumes that the multiple
scattering process (including internal reflection) is isotropic,
and that ρ is the reflectance for incoming light inside the surface
to outgoing light inside the surface.

3.4 Measurement setup

Using our fabrication process, we would like to reproduce a
wide range of organic and inorganic materials that exhibit sub-
surface scattering. To allow measuring of target materials, that
cannot be diluted or modified in other ways, we use a non-
invasive contact-based measurement device inspired by, but
extended from, the design proposed by Weyrich et al. [2006].
We use this device to measure both the database silicone sam-
ples as well as the target materials we want to replicate.

Our setup incorporates a single housing to perform two distinct
types of measurements. The first type of measurement is used
to extract the diffuse reflectance, ρ̄λ, of the target material, and
the second type is used to measure the bulk scattering profile,
R̄λ

d , of the target material. In Figure 3.4 we illustrate a cross-
section view of our enclosed device, which we fabricated using
an 3D printer. The device has a height of 11 cm and a diameter
of 25 cm. The sample is placed at the bottom of the measure-
ment device, in contact with the base opening circle (A), and we
place a monochromatic QImaging Retiga-2000R camera into the
circular opening (B) at the top of the device. This non-invasive
method only requires that a small circular patch of the target
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Figure 3.4: Top: An illustration of the setup used to measure the appearance of a target
sample. The measurement device performs a diffuse reflectance measurement
and as well as a bulk scattering profile measurement without any moving
parts. Bottom Left: An example gray scale HDR image of a diffusion profile
measurement. Bottom Right: An example gray scale HDR image of a diffuse
reflectance measurement.

material is fairly flat and can be brought in contact with our
measurement device for a few seconds or minutes, depending
on how dark the material is. All measurements are performed
for five distinct wavelength-bands (indexed by λ) using two
identical sets of five color LEDs, one for reflectance and one
for profiles. This allows us to capture reflectance and profile
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3.4 Measurement setup

measurements in sequence without having to move the sample
or reconfigure the measurement device.

The camera used for our measurements was an actively cooled,
monochromatic QImaging Retiga-2000R which captures 12-bit
RAW images. After extensive testing we found that these RAW
files have a linear radiance response and variations due to vi-
gnetting are negligible for the regions we measure. To create
HDR images we sum up the unclipped pixels from each image
and divide by the total exposure time. This approach effectively
applies low weights to photographs with low exposure times,
which is desirable since extremely low exposure photographs
are prone to noise. For these measurements, an absolute radi-
ance value is not required.

Diffuse Reflectance. The diffuse reflectance measurement
is performed using an array of five fiber optic cables located
in the top right edge of the device (C), aiming towards the
center of the sample (A) as seen in Figure 3.4. The other ends
of these fiber optic cables are mounted to an LED holder with
five color LEDs. We place a 5 mm diameter opal glass diffuser
at the outgoing end of the fiber optic cable to ensure a constant
angular intensity distribution on the sample. Figure 3.4 shows a
gray scale HDR diffuse reflectance capture (bottom-right) with
one LED turned on.

In reality, we cannot easily observe ρ̄λ directly. Instead, we
observe values of reflected radiance, L̄λ

s , off the sample. How-
ever, we design the geometric configuration so that we can
derive ρ̄λ from our observed measurement under some reason-
able assumptions. In particular, if we assume that the material
is a homogeneous medium with a smooth Fresnel boundary
and that single scattering is negligible, we have the following
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general expression for the observed radiance:

L̄λ
s (~ωo) = 2π

∫ ∞

0

∫
Ω

L̄λ
i (~ωi) (~ωi ·~n)

Sλ
d (r,~ωi,~ωo)

π
r d~ωi dr, (3.3)

where ~ωi and ~ωo are the incident and outgoing directions
respectively, ~n is the surface normal, and S̄λ

d (r,~ωi,~ωo) =

Ft(~ωo) R̄λ
d (r) Ft(~ωi) is the BSSRDF with Fresnel reshaping.

In our case, we observe the sample from directly above, ~ωo = 0◦,
and we illuminate the sample from a single direction ~ωi at 45◦

to normal incidence (to avoid imaging direct specular reflection
of the light). We measure the per-wavelength-band radiance
of the sample, L̄λ

s (0◦), by averaging an approximately 1 cm2

square patch centered at (A). Assuming that the incident direc-
tion is constant at contributing regions, the observed radiance
therefore simplifies to:

L̄λ
s (0
◦) ≈

Iλ
i

t2 cos(45◦)Ft(0◦)Ft(45◦)2π

∫
∞

0

R̄λ
d (r)
π

r dr. (3.4)

Where Iλ
i is the intensity of the light source, located at distance

t. To estimate the intensity we also perform a one-time measure-
ment, L̄λ

c (0◦), for a gray diffuse calibration target placed at (A).
By assuming that the calibration target is perfectly Lambertian
we have:

Iλ
i =

t2 L̄λ
c (0◦)

ρ̄λ
c (0◦,45◦)cos(45◦)

, (3.5)

where ρλ
c (0◦,45◦) is the reported reflectance of the diffuse cali-

bration target. Though we allocate a small warm-up time for
stability within a measurement, we cannot assume that the
intensity of the LEDs will be consistent across measurements
over multiple days. To correct for fluctuations in LED intensity,
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we additionally use four small reflectance standard patches
(D) which are always visible in our measurements. We then
scale Iλ

i by the average radiance ratio of these four patches in
the material sample measurement and the calibration target
measurement.

By combining Equations (3.4) and (3.5) and rearranging terms
we obtain a simple expression for use as our model reflectance
ρ (Equation 3.2):

ρ̄λ = 2π

∫
∞

0

R̄λ
d (r)
π

r dr ≈ ρ̄λ
c (0◦,45◦)

Ft(0◦)Ft(45◦)
L̄λ

s (0◦)
L̄λ

c (0◦)
. (3.6)

Bulk Scattering Profile. Our contact measurement device
also contains a second set of five LEDs and fiber optic cables
originating from the left side (E).1 These are in contact with the
material sample and illuminate it at a location (F) which is not
directly visible by the camera. The horizontal distance between
the center of the 1 mm diameter fiber optic cable end and the
first measurable location on the sample is 0.9 mm.

Light from the fiber optic cables propagates through the scatter-
ing material and into the field of view of the camera. We show
an example gray scale HDR capture with one LED turned on
in Figure 3.4 (bottom-left). We capture five such HDR images,
one for each LED. We extract the horizontal scan-line, vertically
aligned with the currently active light source, and use this as
the bulk, per-wavelength-band, diffusion profile measurement,
R̄λ

d . The measured profile has an inherent arbitrary scale factor,
due to the unknown intensity of the LEDs. Additionally by

1We measured the spectral distributions of all LEDs using a Photo Research Spec-
traScan PR 730 spectrometer to ensure there is negligible variability between
corresponding LEDs across the two sets.
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assuming that for our profile measurements the Fresnel trans-
mission terms are not spatially varying, then the Fresnel terms
can also be folded into this scale factor. We will later on show
how knowledge of this unknown factor is not necessary for our
purposes.

3.5 Designing the backward model

Once a target material is measured, our goal is to reproduce the
material by mixing one or more pigments into the base material.
To compute a recipe, or a vector containing a concentration for
each available pigment, our forward model must be able to
predict the appearance (both the reflectance and the scattering
profile) that will result from any given set of concentrations.
This mapping from recipe to appearance is then inverted in our
backward model with an optimization process to determine the
best recipe for matching the appearance of a target material.

Our key task is to derive a mapping from concentrations cp

for p = 1, ...,np to the observed appearance characteristics ρλ

and Rλ
d for λ = 1, . . . ,nλ. We build this model from a number of

example materials that are fabricated and measured ahead of
time, forming what we call a database of appearance measure-
ments (Section 3.5.1). Our approach leverages the approximate
forward model from the previous section to intelligently in-
terpolate among the database samples and to provide starting
points for nonlinear optimization of pigment concentrations.

Given the measurements of R̄λ
d and ρ̄λ for any particular mate-

rial, the parameters of that material (α,σt) can be estimated by
fitting to the forward model, seeking a match in the (relative)
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diffusion profile and the (absolute) total reflectance:

(αλ, σλ
t ) = argmin

α,σt

F(Rd(α,σt,d), ρ(α,σt,d), R̄λ
d , ρ̄λ) (3.7)

F(Rd, ρ, R′d, ρ′) =

[
E(Rd, R′d) +

(
ρ− ρ′

)2
]

where E is a profile difference measure we will describe in
Section 3.5.2.

In principle, this fitting approach could be used to determine
the material parameters of each of the training examples, from
which the properties of each individual pigment could be de-
rived. The parameters of a target material could then be deter-
mined in a second fit and used to find the pigment concentra-
tions required. However, the diffusion approximation is not
accurate enough to directly achieve a visual match using this
simple approach, i.e. the model parameters are not linearly re-
lated with pigment concentrations. In the following subsections
we describe our approach for finding a set of global pigment
parameters, linearly related to pigment concentrations, that
best predicts appearance.

3.5.1 Measurement database selection

The first step in estimating the pigment parameters is design-
ing the input set, which we call the Measurement Database.
Our goal is to use the methodology and machinery described
in Section 3.4 to acquire the per-wavelength-band diffuse re-
flectance measurement, ρ̄λ, the per-wavelength-band bulk scat-
tering profile, R̄λ

d , for a set of samples with known pigment
concentrations, and then estimate αλ and σλ

t for each pigment
and for the base silicone using the methods of the previous
section.
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The main challenge, when the input set of pigments contains
highly absorbing entries, is the design of database samples
that will not violate the assumptions of diffusion theory which
will be used to estimate their parameters. The two main as-
sumptions for diffusion theory to hold are σλ

a � σλ
t and that

the multiple anisotropic scattering in the material can be well
approximated using an approximately equivalent isotropic ma-
terial with reduced scattering parameters.

We use a total of 6 pigments. With the exception of white and
yellow pigments, the remaining (red, green, blue, and black)
pigments are highly absorbing. We created for each pigment
a set of database entries, which we call a dilution set. Each
such dilution set consists of fabricated silicone samples with
varying concentrations of that pigment, always mixed with
white pigment at a concentration of 0.05%. For each dilution
set, we used the minimum amount of pigment such that both
the color and the profile differentiate enough from the appear-
ance of white pigment at 0.05% concentration. The maximum
concentration was chosen such that the smallest measurable
profile is at least 3 mm long. We also include a dilution set with
varying concentrations of only white pigment. This ensures
that the scattering parameters of white pigment can be distin-
guished from the parameters of the base material. The physical
size of our database samples is 10× 10× (2–4) cm, achieving a
minimum optical thickness of about 10 along their minimum
dimension. A set of plots showing the concentrations used for
our dilution sets, along with the forward model fits, can be
found in Appendix A.
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3.5.2 Fitting the forward model to a single material

The simplest fitting operation is to fit the forward model to the
measured appearance data R̄λ

d and ρ̄λ for a single wavelength
band of a single material.

Initial Guess. To find a starting point for the optimization,
we use our diffuse reflectance lookup table to find α such
that ρ(α,σt,d) = ρ̄λ initially assuming that the sample is semi-
infinite (d = ∞). To obtain an initial guess for σt, we perform
an asymptotic simplification of the quantized diffusion model,
valid for r� 1/σt:

Rd(α,σt,d;r) ≈ k
e−r
√

σa/D

r
, (3.8)

where D is the diffusion coefficient and k is a constant. As
shown in Figure 3.5, this asymptotic approximation states that,
for large enough r, we can expect a plot of log(rRd(r)) against
r to be a straight line with slope −

√
σa/D. Hence, by fitting a

line to log(rR̄λ
d ), we obtain

√
σa/D, from which we compute σt

using the currently estimated value of α. We repeat these two
steps (α and σt estimation), but for the following iterations we
no longer assume a semi-infinite sample but instead we use
the measured thickness of the sample, d. This process usually
converges after 3–5 iterations.

Non-linear Optimization. Starting from these estimated val-
ues for σt and α, we use the Levenberg-Marquardt algorithm
to compute the minimum of (3.7). To compute the difference
between two scattering profiles we use the metric:

E(Rd, R′d) =
1

r1 − r0

∫ r1

r0

[
(Rd(r)/µ)

1
3−
(

R′d(r)/µ′
) 1

3

]2
dr (3.9)
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Figure 3.5: A log plot of a measured bulk scattering profile as a function of distance. Only
the grey highlighted region is used for fitting with the diffusion model.

where we divide the profiles by their mean values (µ and µ′)
to account for the unknown intensity of the light source in
the diffusion profile measurement. The interval [r0,r1] is a
range of distances over which the model is expected to fit well.
This range is determined by shrinking the interval until a line
fits within a given tolerance, and can be manually overridden
to avoid any glitches in the measured profiles. An example
from our measurements highlighting this range is shown in
Figure 3.5.

As a final step in the single-material fitting process, we summa-
rize the residual error of each database sample using a confi-
dence:

zλ
m = min

(
µλ

d
dλ

m − dλ
75% + µλ

d
,1

)
, (3.10)

where dλ
m is the residual (the minimum value of (3.7)) in wave-

length band λ for the mth sample, dλ
75% is the 75th percentile
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3.5 Designing the backward model

residual over the whole database for this wavelength band, and
µλ

d is the median error for this wavelength band over the entire
database. We use this confidence later as a weight in fitting
pigment parameters.

This process of fitting to a single profile produces material
parameters that correspond to the observed appearance, but
because the model is only approximate, the best-fit parame-
ters may not be close to the true parameters of the material.
This is particularly problematic in the case of anisotropically-
scattering materials for which the forward model is less accu-
rate. To obtain more meaningful results we subsequently fit
larger collections of samples at once, as described in the next
section.

3.5.3 Global pigment parameter estimation

Once we have separately estimated the parameters of all the
database samples (each of which consists of a known mixture of
one or more pigments with the base material), we have material
parameters for each sample, which describe that sample’s ap-
pearance. However these pigment parameters are not linearly
related to pigment concentrations as radiative transport theory
predicts (see Figure 3.6). As a result, interpolating between
the independently fit parameters can lead to poor prediction
results.

To get more reliable predictions, we instead use the results of
independent fitting to initialize a larger fitting problem that
finds material parameters for each pigment that are globally
consistent with all samples in the database, under the radiative
transport theory assumption of a linear relationship between
pigment concentrations and the parameters of the mixture. This
linear relationship can be succinctly expressed using a matrix Σ,
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which contains the properties of all samples in all wavelength
bands:

Σ =

 σ1
...

σnp

 (3.11)

where

σp =
[
σ1

s,p σ1
t,p · · · σ

nλ
s,p σ

nλ
t,p

]
(3.12)

are the material parameters of the pth pigment, and a matrix C,
which contains the known concentrations of all pigments in all
database samples; entry cmp is the concentration of pigment p
in sample m. The np× 2nλ matrix Σ has a row for each pigment
(including the base material) and a column for each parameter
in each wavelength band. The nm × np matrix C has a row for
each material in the database and a column for each pigment.
With these definitions, the matrix M = CΣ contains the material
parameters of every material in the database.

To find globally consistent material parameters for the pig-
ments, we fit the same objective function (3.7) independently
for each wavelength band, except summed over all materials:

σλ
global=argmin

Σλ

nm

∑
m=1

F(Rd(α
λ
m,σλ

t,m,d), ρ(αλ
m,σλ

t,m,d), R̄λ
d , ρ̄λ) (3.13)

where

σλ
s,m =

np

∑
p=1

cmpσλ
s,p, σλ

t,m =
np

∑
p=1

cmpσλ
t,p, and αλ

m =
σλ

s,m

σλ
t,m

.

To ensure convergence to the global minimum, in this initial
phase we estimate the properties of the pigments one at a time,
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3.5 Designing the backward model

using the one- and two-pigment dilution sets described in Sec-
tion 3.5.1. We begin with the white dilution set, optimizing
(3.13), summing only over the materials in that set, for the prop-
erties of the base material and the white pigment. For each
color dilution set, we then similarly optimize for the proper-
ties of the color pigment, holding the white and base materials
fixed. We initialize these optimizations by fitting a line to the
scattering parameters (from the previous step) of all entries in
a dilution set.
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Figure 3.6: Per-wavelength-band scattering coefficients for the blue pigment dilution set
as a function of concentrations. Note how σs is non-linear with respect to
concentration.

3.5.4 Mixture optimization

Once we have parameters for each of the available pigments,
we can compute a recipe to match a target material using the
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same tools. Given the measured diffuse reflectance ρ̄λ and
scattering profile R̄λ

d for the target material, we first use the
fitting process of Section 3.5.2 to estimate the 2nλ-vector of
scattering parameters Σ̂ = [σ̂s

1 · · · σ̂t
nλ ]T for the target mixture.

Then we solve the linear system cT
i Σ = Σ̂ to get a p-vector of

pigment concentrations ci = [ĉ1 · · · ĉnp ]
T . Using ci as an initial

guess, we optimize the predicted appearance to the target:

c = argmin
c1,...,cnp

nλ

∑
λ=1

F(Rd(α
λ, σλ

t , d), ρ(αλ,σλ
t ,d), R̂λ

d , ρ̂λ) (3.14)

where αλ and σλ
t are defined by

σλ
s =

np

∑
p=1

cpσλ
s,p and σλ

t =
np

∑
p=1

cpσλ
t,p.

The resulting vector c is the recipe to replicate the appearance
of the target material using the given pigment set.

3.6 Local pigment parameter estimation

The mapping of measurements to pigment concentrations as
it is described until now assumes that the forward model can
globally fit the entire database with a single set of pigment
parameters. However, even though our forward model is rela-
tively accurate, we cannot expect it to work well over the entire
parameter range when using a single global set of pigment
parameters. In particular, the forward model will be less accu-
rate for low optical thickness, low albedo, or anisotropically
scattering materials. This is the case, for instance, for Silicone
Mixture 2 shown in Figure 3.9 which by design is within the
gamut of our pigments, but is not replicated accurately.
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3.6 Local pigment parameter estimation

To overcome inaccuracies in the forward model, we introduce
a local refinement strategy to find a set of pigment parameters
that locally fits the samples in the database that are most similar
to the target. To accomplish this, we apply a higher weight on
the neighbors, with respect to the pigment concentration, when
estimating the “effective” pigment scattering parameters for
finding the recipe.

This can be performed in an iterative procedure which inter-
leaves the Parameter Estimation and Mixture Optimization
stages with the difference that row weights are used in the
Parameter Estimation stage to bias the error to be lower for
neighboring mixtures already in the database. In practice, we
found that the dot product of the normalized pigment con-
centration vectors between the currently predicted pigment
concentrations and a database entry (excluding base silicone
concentration) provides consistent results.

The procedure for the local pigment parameter estimation par-
allels the global optimization in Section 3.5.3; however, the
objective function (3.13) is replaced by:

σλ
local(c) = argmin

Σ̃λ

nm

∑
m=1

(3.15)[
(wλ(c,cm)+kreg)F(Rd(α̃

λ
m, σ̃λ

t,m,d),ρ(α̃λ
m, σ̃λ

t,m,d), R̄λ
d , ρ̄λ)

]
,

where the material parameters α̃ and σ̃t are the local ones (de-
rived from the optimization variable Σ̃λ). The kreg parameter
regularizes the problem so that even when some pigments are
not used by the nearby samples, their parameters stay close to
the global parameters. The regularization parameter kreg is set
just high enough (around 10−4 relative to a unit maximum) to
stabilize the optimization, while still low enough not to affect
the quality of the local fit.
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The weights wλ are set to

wλ(c,cm) = zλ
mDmixture(c,cm) (3.16)

where

Dmixture(c1,c2) = normalize(c1) · normalize(c2). (3.17)

These weights cause the pigment estimation stage to find pig-
ments parameters that fit well to database materials similar in
composition to the target mixture, resulting in better prediction
of appearance for the optimized recipe. After a new recipe has
been found, we update the weights, and we repeatedly solve
re-weighted systems until convergence or for a maximum of 5
iterations.

3.7 Appearance editing

In addition to matching the appearance of measured targets, we
also developed an authoring tool which allows the user to pre-
visualize recipes before fabrication and edit the desired color
and translucency, while staying within the gamut imposed by
the minimum and maximum possible pigment concentrations.
Our approach provides an intuitive editing work-flow by de-
coupling edits to the color and the translucency of a desired
material.

Overview. Our editing process starts with an initial recipe
and sample thickness provided by the user. We then provide
intuitive browsing control to fine tune the color followed by
translucency. We took inspiration for our system from the
“variations” control interface in Adobe Photoshop R©. Screen-
shots from our editor are shown in Figure 3.7.
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Current Recipe under D50
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Figure 3.7: Top: Screen-shot from the color selection phase of our editor. The variations
along the CIELab primaries are shown above and below the current pigment
recipe. Bottom: A screen-shot from the translucency selection phase. The user
can navigate along the T,S,R coordinate system. The blacked out images show
directions in translucency that are limited by our pigments’ gamut.

For editing color, our interface displays the diffuse reflectance
color of the current recipe and six color-variations, estimated
by moving in both the positive and negative directions of the
three CIELab primaries. When the user selects a variation, the
current recipe gets updated and the process repeats until the
user has reached the desired color.

For editing translucency, our interface renders a synthetically
fabricated recipe under step edge illumination to visualize the
reflectance profile (similar to the captured photographs in Fig-
ure 3.9). We again show the current recipe and translucency-
variations which can be selected to modify the shape of the dif-
fusion profile without affecting the overall diffuse reflectance.

We detail the steps necessary to accomplish this below.

3.7.1 Color reproduction

To display the CIELab color predictions of a recipe, we require
a mapping, (L, a,b) = PLab(c,d), to convert pigment concentra-
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tions c to CIELab color values, given the depth d of the sample.
We use globally linear estimates of pigment scattering parame-
ters from our database, and then linearly mix these parameters
according to c to get the resulting scattering and absorption co-
efficients of this mixture. These coefficients are then converted
to a 5D reflectance vector using the interpolation method de-
scribed in Section 3.5. We then convert our 5D spectral color
values to spectral reflectance distributions by training a set of
“eigen-spectral reflectance functions” from spectral reflectance
measurements of our database [Park et al. 2007]. Once we have
an approximate spectral distribution for the color, we convert
to CIEXYZ and subsequently to CIELab and sRGB. The CIELab
is used for computing the variation distances and sRGB for
displaying the predicted reflectance values to the user.

3.7.2 Color editing

Our goal is to find variations of our recipes with a given dis-
tance in CIELab. For this, we first compute the partial deriva-
tives Jc→Lab of PLab(c) with respect to pigment concentrations
c, using finite differences. This matrix represents the predicted
color change with respect to pigment concentration changes.
In order to find the pigment concentration changes that allows
movement along the CIELab primaries, we first perform a sin-
gular value decomposition on Jc→Lab: [U,Σ,V] = svd(Jc→Lab)
and compute the pseudo inverse of Jc→Lab as VLab = VΣ−1UT .

Each column of the resulting 6 × 3 matrix VLab is now the
derivative of the pigment vector with respect to the CIELab
primaries. The difference in pigment concentrations, ∆c, to
achieve a desired change in CIELab, ∆Lab, is given by ∆c =
VLab∆Lab.
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3.7 Appearance editing

3.7.3 Translucency editing

Given the scattering and absorption coefficients for each wave-
length band, we render a column image using the diffusion
model described in Section 3.5. Each pixel representing the
radiance of our 5 wavelength bands is transformed into CIELab
using the process described in Section 3.7.1.

For navigating the translucency space without affecting the
color, we reuse a part of the 6× 6 matrix V from the singular
value decomposition of the color derivatives matrix Jc→Lab. We
split V into two sub-matrices [VcVt] = V, where Vc are the first
3 columns of V and Vt the remaining 3 columns. While the
pigment vectors in Vc affect the color of the final recipe, the
pigment vectors in Vt do not and can be used to influence just
the translucency.

Unfortunately, the pigment vectors in Vt do not correspond
to meaningful directions. One intuitive direction for control-
ling translucency is increasing the average reduced extinction
coefficient 〈σλ

t 〉, over all wavelength bands, by scaling the cur-
rent pigment concentrations with the desired s = 〈σλ

t 〉. For a
semi-infinite slab, this directly corresponds to scaling all pro-
files by s, but for finite-slabs this can inadvertently affect the
diffuse reflectance color. We can find the closest direction T in
the space defined by Vt by solving the linear system VtT = C.
Now, given T, we find the orthonormal directions S and R that
should not change color, nor the average reduced extinction
coefficient 〈σλ

t 〉. These vectors T, S, and R are used to define
the variations in translucency that are presented to the user.

When editing translucency, it is often impossible to move in
some directions, most often the S and R directions, because of
the constraints on how much pigment can be used. For steps
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that exceed the limits, we black out that direction to indicate to
the user that they have reached the edge of the gamut.

3.8 Fabrication

Fabricating the generated recipes with a high degree of pre-
cision is critical to the correct evaluation of our method. The
main challenges in fabrication are: ensuring that the correct
amount of each pigment is added, avoiding air and other im-
purities, and finally ensuring that there is at least one side on
the sample which appears near-specular. In this section we pro-
vide a brief description of the materials and machinery used
for fabrication and then we describe the hierarchical dilution
process we employ for improving the concentration accuracy,
reducing waste and streamlining the fabrication process.

Silicone and Pigments. We use SortaClear40 Translucent,
Addition Cure silicone rubber by Smooth-On. This silicone
rubber cures at room temperature with a shrinkage of less than
0.01 %. The two-component silicone rubber requires a catalyst,
mixed in with a ratio 1:10, to activate the curing process. The
curing is roughly 24 hours. The silicone is completely cured
after 7 days.

For manipulating the appearance of the silicone we use silicone
pigments which are used for coloring silicone rubber. The
pigment colors we use are: White (Pantone White C), Yellow
(RAL 1018), Red (Pantone Red C), Green (Pantone 3292), Blue
(Pantone 2757C), Black (Pantone Black C). These pigments are
mainly absorbing except for White, Yellow and Red, for which
scattering is significant.
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3.8 Fabrication

Hierarchical Dilution. For fabricating the generated recipes
as faithful as possible, we employ a hierarchical dilution
scheme.

For each pigment we initially produce 1kg master batches of 5%
pigment concentration. This is the maximum ratio of pigment
that still allows the silicone to cure. To achieve a target concen-
tration, we then dilute some quantity of this master batch, in
an iterative fashion, with base silicone. We start with some of
the 5% mixture and repeatedly mix the current dilution with
an equal amount of base silicone to halve the pigment con-
centration. Once the concentration is roughly twice the target
concentration for our recipe, we mix with the exact ratio of base
silicone needed to achieve the desired target concentration.

This dilution tree structure is automatically generated by a sim-
ple script using a bottom-up approach. Intermediate dilutions
that are needed by many target recipes are merged and created
only once. We ignore concentrations of pigments with absolute
concentration less than 10−8 of the total sample weight, or less
than 3¯g for a typical 300g sample. Our process also accounts
for catalyst that will be added at the very end for curing the
final samples.

We use a digital balance with accuracy of ±0.05g when mixing
dilutions. To ensure high accuracy, we always use a minimum
of 10g of both dilution and base silicon when mixing. Though
limiting the minimum weight increases the number of steps, we
obtain a relative accuracy lower bound of 1% at each dilution
step. This relative error is reduced with each dilution step by
the mixing ratio.

Mix Preparation Process. During the fabrication process,
preserving homogeneity is very important. Once all ingredi-
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ents are added, we stir the mixture for several minutes until it is
homogeneous. Since this process accumulates air, the mixture
is placed in a vacuum chamber for about 10 minutes to further
improve homogeneity. We then pour the mixture into a mold,
constructed using acrylic plates. We use acrylic plates so the
sample has smooth, near-specular surfaces for better compli-
ance with our model assumptions and more angularly uniform
reflectance for our 45o/0o measurement setup, due to the lack
of micro-surface roughness. Finally when the samples cure,
they are measured using the method described in Section 3.4.

3.9 Results

We validated our forward model, measurement setup, and opti-
mization procedures first in simulation and also by fabricating
physical replicas using silicone. We describe these here in turn.

3.9.1 Reproduction of simulated examples

To ensure that our method can properly measure and replicate
real-world translucent materials, we first validated our entire
pipeline in simulation by fitting on synthetic images generated
using brute-force volumetric path tracing with the Mitsuba
renderer [Jakob 2010]. We designed an analogous database of
measurements and tested our method on synthetic targets. We
created 6 synthetic pigments with prescribed RGB material pa-
rameters and isotropic phase functions. The database samples
and targets are created by linearly blending the pigment param-
eters according to their concentrations. For our synthetic tests,
we recreate the geometry of our physical setup: the camera and
light sources are placed at the same positions and orientations,
all the database samples had a thickness of 30 scene units and
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our diffusion profile light source was modeled as a disk light
touching the sample.

Our path traced measurements (which mimic our real measure-
ments) omit the beginning of the profile, so to enable rendered
validations in a realistic shadow edge configuration (which
requires access to the entire profile) we performed an uncon-
strained fit of our forward model to these path traced measure-
ments. Given the fitted profiles we use the same method as in
Section 3.7 to render the shadow edge illumination seen in Fig-
ure 3.10.2 The differences between the targets and the replicas
in this synthetic test are barely noticeable. In fact, over this set
of 14 synthetic targets the average relative reflectance error was
0.10% and the mean relative reduced mean free path error was
6.44%. This confirms that our measurement and optimization
procedures are able to accurate replicate unknown translucent
materials.

In Figure 3.11 we perform a similar synthetic evaluation, but us-
ing a simpler optimization strategy and error metric to demon-
strate that our more involved approach is necessary to obtain
accurate results. The only difference compared to Figure 3.10
is that the replicas are obtained by minimizing the MSE be-
tween the estimated/measured parameters for the target (re-
duced scattering coefficient and absorption coefficient) and the
linearly blended global parameters of pigments of the tested
recipe. This can be modeled as a simple linear system, similar
to our initialization step in the Mixture Optimization section.
The results show that, fitting on parameters directly does not
perform as well as using our appearance distance term. This
is due to two reasons: a) the material parameters recovered
by a single target measurement are highly under-constrained;

2We confirm in Appendix A that these fitted profiles are indistinguishable from
the 1D Monte Carlo profiles.
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and b) our appearance distance term can leverage “appear-
ance metamerism” (several recipes and pigment parameters
can lead to indistinguishable translucent appearance) to toler-
ate ill conditioning in the mapping from optical properties to
appearance.

3.9.2 Reproduction of real-world examples

In addition to validating on synthetic measurements, we also
demonstrate the quality of our pipeline on real-world examples.
We measured and replicated several homogeneous real-world
materials such as strawberry drink, fabric softener, full-fat milk,
low-fat milk, soap, and white chocolate. We computed the
corresponding mixing recipes using our iterative optimization
procedure and fabricated the samples in various shapes. Each
replica has the same shape and thickness, d, as its correspond-
ing target. The computation time for estimating a recipe is
about 2 minutes with the global method and 30 minutes for the
local method. The local method training database also includes
the replicas fabricated using the global method.

For our real-world examples, we capture photographs of the
original targets and the replicas using a Nikon D800 camera.
We construct HDR images from 12-bit RAW images with 6 dif-
ferent exposure times. The RAW LDR images are processed
with DCRAW [2004] and white balanced using a white refer-
ence card. We recover and account for the camera response
curve using the technique of Mitsunaga and Nayar [1999]. This
results in white balanced linear sRGB images which are then
converted to HDRs using the aforementioned method. At the
very end, we tone-map the HDR image to an 8-bit sRGB image
by applying the sRGB gamma curve. We compare the target
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material against the fabricated replicas under two different
illumination configurations.

In Figure 3.2 we showcase side-by-side visual comparisons
of various liquid and solid translucent targets next to their
replicas, in their natural form under top and side illumination.

Figure 3.9 shows side-by-side shadow edge comparisons with
an illuminant that approximates a color temperature of 4700K.
For each triplet, the target is in the middle, and we show the
results of the global and local methods to the left and right of
the target respectively. Visually, even our global method is able
to match both the translucency and reflectance of many of these
materials quite well. For the global method, the appearance
distance (defined in Equation (3.7)) averaged over all 9 targets
is 0.00644, with a standard deviation of 0.01142. Our local
refinement usually performs better, and sometimes significantly
better, than predicting the appearance of the replicas using
the global parameters (Table 3.1). In fact, the mean distance
after local refinement decreases to 0.00276, with a standard
deviation of 0.00213. The improvement is especially noticeable
for the dark Silicone Mixture 2 seen in Figure 3.9, and some

Table 3.1: Global estimate of reduced scattering and absorption coefficients for pigments
and base silicone used in our fabrication process. Units are in 1/mm.

Reduced scattering coefficient (σs) Absorption coefficient (σa)

blue cyan green orange red blue cyan green orange red

white 848.9 847.6 783.6 669.4 718.3 0.0 0.0 0.0 0.0 0.0
yellow 92.6 74.0 78.8 64.0 55.8 30.1 1.8 0.5 0.2 0.1

red 0.0 0.4 0.3 620.3 96.7 515.4 839.8 999.6 163.9 9.2
green 7.1 0.0 10.0 0.1 0.0 19.5 9.4 15.8 164.0 264.4

blue 92.3 9.1 0.0 0.1 0.2 41.6 90.2 181.1 1080.9 1045.9
black 25.3 21.8 22.9 25.9 26.6 321.6 331.4 330.1 323.7 325.4

base 0.078 0.053 0.061 0.054 0.021 0.002 0.002 0.001 0.001 0.001
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Table 3.2: Concentration percentages prediction generated using our local method for the
9 targets used. The last 2 rows show the actual concentration of the fabricated
silicone mixtures used as targets.

white yellow red green blue black

silicone mixture 1 0.20590% 0.20897% 0.00345% 0.00140% 0.00735% 0.00000%
blue fabric softener 0.16384% 0.00000% 0.00037% 0.00170% 0.01407% 0.00000%

low-fat milk 0.13572% 0.01291% 0.00000% 0.00012% 0.00000% 0.00000%
red soap 0.41249% 0.19489% 0.01169% 0.00247% 0.00000% 0.00000%

strawberry drink 0.25791% 0.06423% 0.00467% 0.00000% 0.00062% 0.00000%
white chocolate 0.32361% 0.24976% 0.00261% 0.00284% 0.00000% 0.00000%

full-fat milk 0.35230% 0.02702% 0.00000% 0.00000% 0.00000% 0.00012%
mocha drink 0.21805% 0.37069% 0.00953% 0.00543% 0.00124% 0.00000%

silicone mixture 2 0.00000% 0.19234% 0.00142% 0.00000% 0.00547% 0.00702%

silicone mixture 1 (actual) 0.20000% 0.20000% 0.00300% 0.00000% 0.00750% 0.00000%
silicone mixture 2 (actual) 0.00000% 0.20000% 0.00300% 0.00000% 0.00750% 0.00000%

improvement is also visible for the Blue Fabric Softener and
Strawberry Drink samples.

We provide plots of the simulated, predicted, and measured
diffuse reflectance and scattering profiles for our targets in
Appendix A. In general, we observed a good prediction for
materials with high reflectance and optical thickness. With
a decrease of the reflectance and optical thickness, we notice
an increase in matching error. This is not surprising, since
diffusion theory is not a very good approximation for very
dark materials with low optical thickness.

To isolate the performance of our optimization, we tested our
pipeline with materials that are in theory exactly reproducible
by our system. To ensure that our target material is within
the gamut of reproducible materials, we fabricated target sam-
ples out of silicone mixed with pigments that are available to
our fabrication process. We then measured these samples and
used the diffuse reflectance and scattering profiles as input to
our optimization process (these samples are not included in
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Figure 3.8: On the left we present the spectral reflectance values of three target materials
whose appearance cannot be reproduced for our pentachromat observer. On
the right we present spectral reflectance measurements of our pigments mixed
with white. Both figures have the spectral intensities of our LEDs overlayed.
The grayed out regions indicate spectral bands that are not sampled well with
our LEDs. We observe that the three targets exhibit a significantly positive
gradient in the region between 540 and 580 nm, which is not captured by our
setup. In addition we can see on the right that our current set of pigments does
not have a member that exhibits a significant positive gradient in this region,
indicating that these targets are outside of the gamut of our pigments for a
pentachromat observer.

our measurement database). Table 3.2 shows the ground truth
pigment concentrations of two samples and the estimated con-
centrations using our optimization process. In Figure 3.12, we
compare the profiles of the original measured sample, the pre-
dicted appearance, and the measured fabricated replica. Note
that the appearance of the replica closely matches the target,
even though the pigment concentrations are different. This is
an example of an “appearance metamer” where we cannot per-
ceive the appearance difference between two different recipes.
Such a replica would never be created when using a simpler
parameter optimization as shown in Figure 3.11.
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3.10 Perceptual extension

In this section we describe an extension of our method for im-
proving color and translucency matching when the observer
and illuminant are specified. The main idea is to match how
humans perceive color and translucency, under a known illumi-
nant, instead of fitting on the raw measurement data. In terms
of our computational appearance fabrication framework this
means that we fix the illumination conditions and observer to
one of the standard human observers.

In Figure 3.8 (left), we present the spectral reflectance values
of three target materials that are not suitable for our method.
On the right we provide spectral reflectance measurements of
our pigments mixed with white. Both figures have the spectral
intensities of our LEDs overlayed. In the plot on the left (mid-
dle gray region) we observe three targets with a strong positive
gradient in their spectral reflectance distribution, whereas, in
the plots on the right we observe that our current set of pig-
ments does not have a member that exhibits such a significant
positive gradient in the corresponding spectral region. This is
a strong indication that an exact reconstruction of the spectral
reflectance distribution for these targets is not possible using
our current set of pigments.

To alleviate this issue and also extend the gamut and accu-
racy of our method, we exploit the limitations of the human
visual system. In particular we change the appearance distance
metric (Equation (3.14)) which currently equally weights all
spectral bands, to a perceptual distance which allows exploiting
metamers. That makes use of the fact that two spectral distri-
bution functions that are different, can actually be perceived as
identical by humans. Our basic modification to Equation 3.14
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3.10 Perceptual extension

is replacing the distance F with the perceptual distance F̃:

c̃ = argmin
c1,...,cnp

F̃(Rd(α̃, σ̃t, d), ρ(α̃, σ̃t,d), R̃d, ρ̃), (3.18)

where the raw measurements (R̄λ
d and ρ̄λ) are now projected

into the perceptual color space CIELAB (denoted as R̃d and ρ̃).
As converting to this perceptual color space requires a reference
illuminant, it is important to note that the resulting appearance
of the replicas matches well only when they are illuminated
with the specific illuminant we optimize for. We define this
new perceptual distance (F̃) as a weighted sum of two terms:

F̃(Rd, ρ, R̃d, ρ̃) =

[
wr DE00 (ρ, ρ̃)2 + wt Ẽ(Rd, R̃d)

]
, (3.19)

a perceptual reflectance distance term on the left hand side of
the addition, and a perceptual translucency distance (or profile
shape) term on the right. We found that a relative weight
wt/wr = 25 works well for our dataset.

Perceptual reflectance distance. The first step is to convert
the 5D reflectance measurements (ρ̄λ) into spectral reflectance
distribution estimates. This process is described in the second
half of Section 3.7.1. For replicas created using our pigments
this method works well, but for arbitrary targets we found that
the recovery of the spectral reflectance distribution function
using spectral eigenvectors trained on our pigment database
was not a good basis. Instead, we discovered that the method
works better when the target reflectance distribution function
is measured directly by using a spectrometer, or by using the
spectral eigenvectors from Park et al. [2007]. In our case we
used spectral measurements of our 4700K halogen light source
as the reference illuminant. Now, given the spectral radiance
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estimates of the target sample and the replica, we can con-
vert the raw measurements (ρ̄λ) in CIELAB (denoted as ρ̃),
and estimate their color distance using the perceptual metric
CIEDE2000 [Sharma et al. 2005].

Perceptual translucency distance. The next step is to con-
vert Equation (3.9) to a perceptual distance metric for translu-
cency. To do this we first perform an unconstrained fitting of
the forward model on our reflectance partial profile measure-
ments (R̄λ

d ) and then use the model values to extrapolate the
entire 5D profiles. The main reason for this optimization is
that we miss the first few millimeters of the profiles, since they
are occluded due to the measurement device wall during our
measurement. We then convert the extrapolated 5D profiles
to CIELab (denoted as R̃d) and compute the integral of the
CIEDE2000 squared distance for all measured profile locations:

Ẽ(Rd, R̃d) =
1

r1 − r0

∫ r1

r0

DE00
(

Rd(r), R̃d(r)
)2dr (3.20)

Preliminary results. We implemented this new perceptual
distance metric in our computational appearance framework.
By converting our 5D multi-spectral measurements in this
lower-dimensional 3D perceptual appearance space where the
illuminant is our halogen lamp and the observer is defined as
the standard human observer. We were able to compute mix-
tures for our pigments and silicone that, when viewed under
the specified illuminant, provide a qualitatively better appear-
ance match for the previously deemed out-of-gamut materials
(carrot juice and purple fabric softener). We also observed that
this appearance qualitatively matched better under sunlight
which exhibits a similar spectral emission as the target illumi-
nant. In contrast, the replicas produced with our perceptual
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3.11 Discussion and future work

extension appeared different from the targets when we used a
drastically different illuminant such as our green LED.

3.11 Discussion and future work

We presented a method to physically replicate homogeneous
translucent materials by mixing pigments into a substrate. By
using local fits to a diffusion model, we intelligently interpo-
late between measurements of known materials to predict the
appearance resulting from novel mixtures. The method only
considers homogeneous materials, and its accuracy drops off
for highly forward scattering and highly absorbing materials,
with low optical thickness, where diffusion theory is less ac-
curate. We believe that there is room for improvement on the
reproduction accuracy of our method.

It is important to discuss the work on fabricating spatially vary-
ing translucency using a discrete set of homogeneous voxels
[Hasan et al. 2010] or layers [Tong et al. 2005]. These methods
are a form of volumetric dithering where the primitive can be a
homogeneous voxel or layer. They can achieve a desired hetero-
geneous translucent appearance by computationally specifying
an arrangement of these primitives. These methods only con-
trol the shape and location of the primitives and have no control
over other physical primitive properties such as albedo and
opaqueness. Thus, the achievable range of different appear-
ances is limited by the minimum size (or thickness) and the
fact that the remaining physical properties of the primitives
are fixed. Our method is able to solve an orthogonal problem:
how to fabricate a desired homogeneous translucent appear-
ance by using continuous pigment mixtures. Our method can
be used to computationally design and fabricate the appear-
ance of a complete homogeneous translucent object but can
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also be potentially used to fabricate the primitives used by the
aforementioned heterogeneous methods.

There are various options for expanding the reproducible ap-
pearance gamut of our method. One such option would be
to add additional pigments with useful spectral features not
present in our current set. With minimal changes to our method
we can improve the spectral resolution of our measurement
device by using our discrete set of LEDs (with the addition of
an LED at the empty spectral region of 560 nm) and a multi-
spectral camera.

There are many other directions in which our method can be
further developed. Improved light transport models and/or
better interpolation with larger databases can extend the gamut
towards darker and less optically dense materials, ultimately
covering the whole range from perfectly clear to opaque mate-
rials. We demonstrated the application of a perceptual distance
metric that can be used to increase the appearance matching
gamut of our method, for a human observer and a known il-
luminant. An interesting next step would be to find a new
perceptual distance metric that can match appearance (possibly
independently) under different illuminants such as sunlight,
fluorescent light, and UV light.

By itself, the ability to control the appearance of homoge-
neous materials has implications for many industries where
pigmented materials are used: plastics, food, prosthetics, and
even dentistry, where the critical matching of appearance be-
tween natural teeth and artificial resins is still done painstak-
ingly by eye. Translucent appearance matching is also impor-
tant for fabricating more complex materials. Previous work
on fabricating translucent appearance has been limited to spa-
tial combinations of fixed materials. Our new method, with
its ability to continuously tune material parameters, opens up
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3.11 Discussion and future work

the possibility to more powerful new methods for inhomoge-
neous materials. The latter optimize both the spatial mixture
of materials and also the properties of the individual materials
themselves. Ultimately, these technologies will lead to future
machinery that can automatically replicate the appearance of
almost any translucent material.
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C H A P T E R 4
Steganographic lens fabrication

In this chapter we present another instance of our framework
which provides an automatic approach to design and manu-
facture steganographic lenses. These lenses are composed of
refractive lenslet arrays that reveal hidden images when placed
over potentially unstructured printed or displayed source im-
ages. Our backward model determines the refractive geometry
(or shape) of these surfaces by formulating and efficiently solv-
ing an inverse light transport problem, taking into account
additional constraints imposed by our fabrication methods.
The input of our backward model is a mapping of patches on
the lens to regions on the source image, generated by our ap-
pearance editing (patch-matching) step. We fabricate several
variants on the basic steganographic lens idea, including using
a single source image to encode several hidden images. The
latter are only revealed when the lens is placed at prescribed
orientations on the source image or viewed from different an-
gles. We also present an important special case, the universal
steganographic lens, that forms an injection mapping from the
lens surface to the source image grid, allowing it to be used
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Real World Virtual World

Forward Model
Appearance

Fabrication

Physical State

Physical State

Patch 
Matching

Height
Optimization

Simulated
Annealing

Facet
Orientation

Measurements

Figure 4.1: An instance of our framework, used for source-optimized steganographic lens
fabrication. Please note our appearance editing step (right) which allows
goal-based appearance edits by using user provided source and target image
pairs. The appearance editing step provides a mapping to the backward model.
Through the depicted optimization steps the backward model computes the
appropriate geometry of the resulting lens, according to the desired fabrication
method.

with arbitrary source images. We use this type of lens to decode
hidden animation sequences.

An instance of our framework suitable for steganographic lens
fabrication is shown in Figure 4.1. The illumination conditions
are more relaxed in this application and they do not require
rigorous radiometric and photometric calibration. Ideally we
have some low frequency ambient illumination and/or a dif-
fusely emissive display is used to depict the source image. For
this application the physical parameter that we can computa-
tionally control is the lens geometry. We define the observer as
a pinhole camera aimed at the center of the lens and positioned
at a fixed distance.

By assuming that the surface of the lens is a perfect refractor,
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4.1 Introduction

the forward model is trivial and is mainly based on Fermat’s
principle and Snell’s law of refraction.

One interesting aspect of this application is the design of an
appearance editor which allows high-level appearance edits.
In the case of source optimized lenses, the input of the editor
is a combination of scrambled source images and decoded
target images, whereas the output is a mapping of regions on
the source image to patches on the lens surface. In the case
of the universal steganographic lens, the user specifies some
scrambling related parameters and the editor automatically
outputs a mapping.

The goal of our backward model is to compute a valid lens
geometry which guides the observer’s view frustum from lo-
cations on the front side of the lens, to regions on the source
image in the back of the lens, according to the mapping pro-
duced by the appearance editing step. We show variations of
the backward model that accommodate the limitations of two
common fabrication methods: 3D printing and milling.

4.1 Introduction

Steganographic techniques, from simple hidden message de-
coders to invisible inks and complex watermarking schemes,
have led to active areas of research and have been applied in
a wide variety of fields. Searching for and finding structure in
unexpected places is also a fun and insightful process. Some
common day examples of this expedition include the pursuits
of a child armed with only a magnifying glass and their imagi-
nation, to a family huddled around a table, completing a jigsaw
puzzle.
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Coming out 
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Figure 4.2: A sketch of other potential applications for our steganographic lenses. Left
to right: architectural-scale steganographic lenses reflect hidden images to
pedestrians as they walk past buildings; a teenager learns about dinosaurs by
placing his steganographic lens over a museum exhibit pedestal; students find
clever ways to exchange encoded images which are decoded with steganographic
lenses; a $100 bill has an embedded steganographic lens that, when placed over
a scrambled verification pattern, confirms the validity of the bill; cinephiles
view a movie billboard through specialized steganographic lens side-walk
installations, revealing interesting facts about the movie.

We leverage and incite this sense of wonder, encountered when
inanimate objects suddenly convey a unexpected message or
reveal surprising behavior, by combining the ideas of steganog-
raphy, hands-on physical user manipulation, and structure
from unstructured patterns. We design and construct several
different types of steganographic lenses, using a custom compu-
tational procedure, capable of warping both structured and
unstructured image sequences into unexpected target images.
Our steganographic lenses are composed of lenslets that, when
placed atop an image/video and viewed from prescribed loca-
tions, warp the image through refraction to form the desired
images specified during lens generation.

We pose secret image encoding as an inverse light transport
problem and present a fully-automatic approach for design-
ing and manufacturing various types of steganographic lenses
(see Figure 3.2). We experiment with various use-cases, for
example enabling multiple target images to be warped from a
single source image depending on the viewing angle between
the user and the lens, or depending on the relative rotation or
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alignment of the lens and the source (see Section 4.5 for more
results). In addition, while we experiment with two manufac-
turing processes to generate physical prototypes of hand-sized
steganographic lenses, nothing about our technique precludes
more exotic use-cases such as those depicted in Figure 4.2:
e.g., replacing architectural fixtures with large-scale stegano-
graphic mirrors, revealing hidden messages for interactive and
exploratory museum exhibitions, sending secret messages that
can only be viewed with a user’s steganographic lens, or em-
bedding thin, flexible steganographic lenses in paper currency
as an anti-counterfeiting and validation measure.

We are motivated by recent work on computationally embed-
ding images into physical material properties, classic stegano-
graphic techniques such as the Cardan grille, as well as “magic
decoder rings” which reveal secret messages already present
in the source image using masking or subtractive transmission.
In contrast, our lenses use optical refraction (or reflection), and
we require little relation between the input and output images
as long as the original image contains all the colors of the target
image. Furthermore, our approach can be passive, removing
the need to carefully design or modify the source image (car-
rier signal) to encode the secret image. We also present an
important special case of a steganographic lens called a uni-
versal steganographic lens (Section 4.4) that completely removes
the dependence of the lens on the source image by generating
an optical injection between the lens and an arbitrary source
image grid.

Steganographic lenses are specialized passive display devices,
related to light field displays, and we validate our simulation
results with many real manufactured surfaces. Our approach
is a first step towards realizing ideas such as those sketched in
Figure 4.2. It has possible applications not just in art, education
and entertainment (e.g. optical illusions, hidden message re-
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trieval, optical decoder rings, holography), but also in banknote
verification and security (see Section 4.7).

4.2 Problem statement and goals

Our goal is to design and manufacture passive micro-lenslet
arrays, which we call steganographic lenses, capable of generat-
ing one or many target images when placed over one or many
physically displayed source images (e.g., printed on paper or
displayed on a monitor). The manufactured steganographic
lenses we present (see Section 4.5) are all hand-sized, however
the approaches we present are not limited in the size or form-
factor of the lenses they can generate and one can imagine
both larger-scale lens installations (in architectural settings) or
miniaturized lenses (for banknote verification).

We will begin by describing the simplest case of warping a
single source image to a single target image (i.e., viewed from
a single position), and later address more interesting use-cases
(Section 4.3.6).

Each steganographic lens is divided into an N × N grid of
refractive facets1 which we initially assume to be flat to simplify
our exposition. Our target images are also divided into N ×
N tiles, which we wish to observe through the facets. We
decompose source images, which are warped by our lenses,
into a set of unstructured image patches, which are arbitrarily-
sized rectangular regions in the source.

Each facet is constructed to refract light from the source image
so that, when viewed from above, the image seen through
each facet matches that of the corresponding image tile. In

1A similar principle could also be applied to reflective facets.
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Section 4.3.5 we eliminate the flat-facet constraint using a multi-
scale refinement, and so our finalized steganographic lenses
are ultimately composed of a grid of N × N smooth lenslets.
We will present two different types of steganographic lenses:
source-optimized lenses and universal lenses.

Source-Optimized Lenses. In the simplest case, a source-
optimized lens will “index” (through refraction) only the sub-
set of source image patches necessary for it to reproduce its
target image. As such, a source-optimized lens is “tied” to its
input source image. This constraint allows us to better enforce
smoothness and manufacturability, but at the cost of flexibility.
This case is particularly useful when the source image must re-
main fixed (e.g. in the case of a well-known painting). We detail
our approach for generating source-optimized steganographic
lenses in Section 4.3.

Universal steganographic lenses. These lenses are an im-
portant special case and are constructed so that each lens facet
indexes a unique source image patch, forming an optically injec-
tive mapping between the lens and the source (i.e., each pixel in
the source image maps to at most a single facet). As such, a sin-
gle universal steganographic lens can be used with an arbitrary
number of source images which can be scrambled, according
to the optical bijection, in order to generate a target image. This
case is most useful when there is flexibility in manipulating
a source image or when a single lens must be used with an
undetermined set of images. We discuss the modified approach
we use for universal steganographic lenses in Section 4.4.
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4.3 Generating source-optimized lenses

Source-optimized lenses are most related to goal-based caus-
tics [Papas et al. 2011], where a lenslet array warps incident
light into a desired caustic image. Papas et al. form a bijection
between facets and caustic image splats, however our search
space is far larger as we are not constrained to the subset of
solutions induced by one-to-one mappings. Instead, for source-
optimized lenses, each facet has complete freedom to refract to
an arbitrary source patch.

While having this larger space does expose a wider range of po-
tential facet-patch pairings, special care must be taken to main-
tain a reasonable computation cost. We juggle these constraints
using a multi-step and multi-pass approach: we ensure a base-
line image quality using facet-patch matching (Section 4.3.2)
prior to optimizing the geometric lens quality (Sections 4.3.3
and 4.3.5).

We decompose the procedure for generating source-optimized
steganographic lenses into four mandatory (and one optional)
steps (Sections 4.3.2 to 4.3.5): facet-patch matching, facet orien-
tation, simulated annealing, and multi-scale height optimiza-
tion. Optional facet-patch matching variants are detailed to han-
dle special use-cases (Section 4.3.6) such as multi-source/multi-
target warping, multi-view warping, and multi-rotation warp-
ing. These steps are repeated until a termination criterion is
met. Figure 4.3 overviews the entire procedure.

4.3.1 Input

Source-optimized lenses require at least one input image and
one or more target images to be specified. Focal distances from
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Figure 4.3: Overview of source-optimized steganographic lens generation.

the lens to the source, and from the viewer to the lens must also
be specified.

4.3.2 Facet-patch matching

Each facet of a source-optimized lens should refract a portion
of the source image that matches the facet’s associate target
image tile. The first step of surface generation is to find and
assign suitable facet-to-patch matches.

We divide target images into grids of N × N tiles and map each
tile to its facet on the lens. Now, for each facet, we must find
and rank regions in the source image which can serve as poten-
tial matches (according to pixel-wise differences) to the target
image tiles.

We then search image regions within a neighborhood
{Rx, Ry} ∈ [−m/2,m/2]2 of m × m pixels in the source im-
age, starting directly underneath the facet (assuming the lens
is aligned atop the source). We compute a matching score for
every eligible region, M(Rx, Ry) = Md(Rx, Ry) + λ Ms(Rx, Ry),
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where Md is the image color matching term

Md(Rx, Ry) = ∑
i∈P

∑
j∈P

[
T(i, j)− S

(
i + Rx, j + Ry

)]2 (4.1)

and Ms(Rx, Ry) = (m2 − R2
x − R2

y)
−1 − m−2 is a smoothing

term that penalizes distant matches which cause steep nor-
mals. Here, P is the target patch region, S indexes the source,
T indexes the target, and λ = 2552 P2 is our regularization
constant.

We compute M for every Rx × Ry offset and additionally com-
pute matching scores at multiple scales S. We initially associate
the best (lowest) match to the facet. Apart from a matching
score, each potential match is assigned a facet-patch transforma-
tion (FPT) which consists of the match’s (Rx, Ry) offset and the
corresponding scale S, which map the facet to the associated
region on the source. All matches with scores below an accep-
tance threshold are retained and sorted for future consideration,
at each facet.

This marks the half-way point of the initialization phase for
source-optimized lens generation.

4.3.3 Facet orientation

Once each facet has been associated its top-ranked FPT, we
proceed with the final initialization phase: assigning an orien-
tation to each facet in order to induce the refraction necessary
to match its FPT’s transformation. It is important to note that
facet heights are not yet modified and thus, after these first two
initialization steps, the surface is discontinuous and therefore
not manufacturable.
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4.3 Generating source-optimized lenses

Figure 4.4: Source/target images (left pair) are mapped with a source-optimized lens
without (middle set) and with (right set) simulated annealing. Simulated
results are indistinguishable but the lens generated with simulated annealing
is smoother and manufacturable. The lens (128× 128 facets with 11× 11
micro-facets) is designed to be placed at 10 cm from the source and 40 cm from
the viewer.

To determine facet normals we solve an inverse lighting
problem: the normal of each facet is computed so that an
eye ray passing through the facet center will refract to the
matching source image patch. We define this mapping as
g0 : (x,y,∆x,∆y)→ nxy , where (x,y) index the lens facets in the
plane of the lens, (∆x,∆y) are the offsets onto the source image
from the facet (in the source image’s parallel plane), and nxy is
the facet normal. With θb = arctan(d/D), we can solve for θr
using Snell’s Law and the fact that θi = θr − θb:

θr = [arctan(ηo − sinθb)]/ [ηo cosθb − ηi] . (4.2)

We solve for the surface normal that induces the unique re-
fractive light path between the source patch and facet with
a tailored version of Walter et al.’s [2009] technique, which
simplifies the problem to discrete root finding solved using a
handful of Newton iterations.

At this point, the initialization of the source-optimized lens
generation is complete and we enter the optimization phases.

4.3.4 Simulated annealing

We find solutions in our large, non-linear search space using
a stochastic simulated annealing search. This search will con-
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sider FPTs across neighboring facets while increasing surface
smoothness and maintaining high quality reproduction of the
target image. Surface smoothness is a useful property for fabri-
cation methods such as 3-axis milling where discontinuities are
difficult to manufacture.

We induce smoothness between neighboring facet normals us-
ing stochastic search: we choose a facet at random and consider
swapping its current FPT with another from its list (see Fig-
ure 4.5) if the new FPT assignment improves the lens smooth-
ness of the lens (see below). We repeat this process at least
25 N2 times.

Swap

(a)
(b)

FPTs

Figure 4.5: During simulated annealing, a facet is randomly selected (left) and its current
FPT is swapped with another from the list of FPTs generated during facet-patch
matching (right).

When considering the swap we compute the facet’s new normal
using facet orientation, and we compute a facet energy consisting
of a geometric smoothness term E (see below). Prior to the first
swap, the initial lens energy Einitial is the sum of E for every
facet.

After computing the facet energy E, we perform an energy valida-
tion step to check whether the change in facet energy satisfies a
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threshold T = Einitial · e0.01t/
(
100 · N2), where t is the iteration

number corresponding to simulated annealing’s temperature
metaphor. After repeating the swapping and energy validation
steps, accepting FPT changes only if the energy change is below
the threshold T, we compute the total lens energy as the sum of
all facet energies. If this energy is lower than Einitial, we update
the lens with the new facet settings and t is incremented.

This entire process is repeated until either the total energy of
the lens does not decrease for 10 iterations in a row, or the
reduction of energy is less than 10−1 × Einitial. An example of a
lens before and after simulated annealing is shown in Figure 4.4
with its corresponding simulated results.

Smoothness Term for Normals. The per-facet geometric
smoothness energy term

E = α||∆g0||2 + β||E1||2 + γ||E2||2 (4.3)

is computed every iteration at each facet. Here ∆g0 is a discrete
geometric boundary gradient term

A = ||g0(X + 1,Y)− g0(X,Y)||2 = ||(ax, ay)||2

B = ||g0(X− 1,Y)− g0(X,Y)||2 = ||(bx,by)||2

C = ||g0(X,Y + 1)− g0(X,Y)||2 = ||(cx, cy)||2

D = ||g0(X,Y− 1)− g0(X,Y)||2 = ||(dx,dy)||2

∆g0 =
√
(A + B + C + D)/4 , (4.4)

measuring the deviation of the two normals in the x (A and B)
and y (C and D) directions, and E1 and E2 are component-wise
geometric error terms

E1 = (ay + by+cx + dy)/4, E2 = ((ay − by)−(cx − dx))/8,
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which correspond to deviations of the normal’s y components
in the x direction, and the normal’s x components in the y
direction (the change of the z component is corrected during
height optimization; see Section 4.3.5) for E1, and a constraint
on the integrability of the surface for E2. We normalize each
term and set α = 0.125, β = 0.375 and γ = 0.5 so that E ∈ [0,1].

4.3.5 Multi-scale height optimization

Once every facet has been assigned an FPT (and hence an ori-
entation), we formulate the problem of optimizing heights for
surface smoothness as a global optimization in the heights of
the facets. This stage serves two important purposes. Firstly,
facet heights are adjusted to maximize coincidence with neigh-
boring facets along facet boundaries (see Figure 4.6), which
increases manufacturability2. Secondly, after facet heights are
optimized, each facet is decomposed at a finer-scale into a grid
of micro-facets which are optimized to approximate a smooth
lenslet shape over the facet. Height optimization is equivalent
to integrating a normal field into a height field and we use the
over-constrained linear system of Papas et al. [2011] to solve
this problem.

We repeat height optimization with facet orientation until con-
vergence since: any height change may invalidate the selected
FPT, which would require facet re-orientation; and, any facet re-
orientation may reduce facet boundary smoothness, requiring
further height optimization. After facet height and orientation
are set, we dice facets into grids of micro-facets, performing a
nested iteration of facet-orientation and height optimization on
the micro-facets grids of each facet in order to generate smooth

2Smoothness is necessary for manufacturing with an engraving milling machine,
but can be relaxed when using a 3D printer (Section 4.5).
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(a) (b)

Figure 4.6: Height optimization displaces facets with (non-geometric) normals (left) along
z, enforcing smoothness along facet boundaries and inducing the correct geo-
metric normal (right).

lenslets instead of planar facets for our final surface. Micro-
facets are generated once, at the end of the entire procedure.

4.3.6 Facet-patch matching [optional]

Several variants of the standard single-source/target stegano-
graphic lens can be realized by adjusting the facet-patch match-
ing process. We detail three important examples below, but
note that the application of these steps is optional depending
on the desired use of the lens.

Rotating Lenses. One interesting use-case for source-
optimized lenses is when a single lens produces several
different target images depending on its relative rotation about
the source image. To realize this type of lens, we can extend
our matching scores to include scores (and FPTs) for rotated
versions of the source image. We do so by augmenting the
source sampling function S with a rotation parameter, and,
for our square-shaped lenses, we have experimented with
0◦,90◦,180◦, and 270◦ rotations.

91



Steganographic lens fabrication

Multiple Source-to-Target Pairings. Another use-case is
when a single source-optimized lens is used to warp several
source images to different target images. In this case the match-
ing score is computed as the sum of matching scores for each
source/target pair.

Multi-view Lenses. Multi-view source-optimized lenses are
a more complex use-case: a lens that warps a single source
image into different target images depending on the viewing
angle of the user with the lens. This is a more complicated
case since changes in the FPT for a given view direction in-
duce changes in other view directions. We alternatively set
each viewing direction as a “master” direction and optimized
separately according to its FPT. The final matching score, as in
the case of multiple source-to-target pairings, is the sum of the
matching scores over all viewing direction conditions given the
facet orientation for the master direction. After each direction
has been selected, multiple matching scores corresponding to
each master direction are sorted and only the top score which
corresponds to the best master direction is kept for each FPT.

For each multi-target use-case, we require an additional op-
timization step after height optimization to re-introduce new
FPTs that take the updated lens geometry into account. This
occurs since height changes affect the regions each facet can
“index” from the source (and thus invalidates the facet’s FPTs).

4.3.7 Output

The result of this process is a mesh of a steganographic lens
surface which we then forward to one of two manufacturing
pipelines for physical construction (see Section 4.5).
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Figure 4.7: Heatmap for a source-optimized lens (left) with values from 0 (blue) to 18 (red)
overlaps. Clearly, several facets are matched to the same source patch. The
heatmap for a universal steganographic lens (right) illustrates the injective
mapping: red corresponds to a single match and blue to no match.

4.4 Generating universal steganographic lenses

While source-optimized lenses are tied to the input source im-
ages, we can also devise a generalized patch-matching pro-
cess that does not depend on the source image, allowing us
to construct a steganographic lens that can be re-used with
an arbitrary number of different sources. The dependence on
the source image in source-optimized lenses arises from the
fact that many lens facets may target the same region on the
source image. Figure 4.7 visualizes the difference between the
facet-patch mappings of a source-optimized lens and a univer-
sal steganographic lens, where we can clearly see that each
patch on a source image is sampled by at most one facet on the
universal steganographic lens.

Such a universal steganographic lens could be thought of as a “key”
that can “unlock” hidden target images embedded in seemingly
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Figure 4.8: Overview of universal steganographic lens generation.

arbitrary (but specially authored) sources. An example use-
case where this could be useful is the generation of encoded
animations (see Figure 4.9).

The fundamental difference between universal and source-
optimized lenses is that, once constructed, source images must
abide by the optical injective mapping induced by the lens in or-
der to be decoded by it. Figure 4.8 overviews the different steps
of the universal steganographic lens generation process: assum-
ing a single-view use-case again for simplicity, we substitute
the facet-patch matching and simulated annealing steps of the
source-optimized procedure with a customized dart-throwing
approach that forms the injective mapping between our lens
and the source. In addition, after repeating iterations of height
optimization and facet orientation, as in the source-optimized
lens procedure, we follow with an inpainting stage that embeds
the target image into an arbitrary source image.
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Figure 4.9: Unscrambling an unstructured video sequence with a universal steganographic
lens with 16× 16 facets. The middle row has the different (shrunken) source
images, and the top and bottom rows are photographs of a manufactured lens
placed over the source images as they animate.

4.4.1 Orientation initialization with dart-throwing

We devise a modified dart-throwing approach which replaces
facet-patch matching and facet orientation with: choosing a
patch on the source image to match to facets on the lens, and
determining the orientation of the facet in order to target the
matched patch. For universal steganographic lenses, however,
each source patch can only be matched to one facet at most.

We employ a multi-scale approach, dividing the source into
N× N square patches, aligned with the facets of the lens. Then,
each patch is divided into smaller square sub-regions in order
to promote flexibility in finding a match without resulting in
an identity mapping. At each facet, we then select one of the
physically-reachable (via refraction) regions at random and
mark it as used so it cannot be selected by any other facet. After
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repeating for all the facets we are left with an injective mapping
between the facets on the universal steganographic lens and
the sub-regions (and patches) on the source.

We can optionally supply a source mask image to invalidate
regions on the source from use in the dart-throwing selection
procedure. The mask can be useful to reserve regions on the
source images that are guaranteed to not perturb the output
target image.

4.4.2 In-painting and texture synthesis

Given a universal steganographic lens, specified by the output
of the dart-throwing process, and a target image, we take an
empty (or arbitrary) source image and inpaint the sub-regions
in order to match the target image, given the injective mapping.

Once in-painting is complete, some pixels of the source im-
age (which are never indexed by any facets) are uninitialized
(white). We optional perform an additional texture synthesis
step in order to fill the uninitialized regions with camouflage:
we isolate un-mapped sub-regions in the immediate neigh-
borhood surrounding mapped sub-regions, and synthesize an
input pattern or a background image in these regions. This
approach was employed in our worm animation example in
Figure 4.9.

4.4.3 Iterative adjustment and convergence

After the execution of the dart-throwing injective initialization
and the inpainting steps, the final universal steganographic
lens is obtained by similarly repeating the height optimization
and facet orientation stages until our stopping criterion is met.
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Figure 4.10: Four source images with questions (top; center zoom-ins) are warped to reveal
pictographic answers (bottom) with a single universal steganographic lens
(16× 16 facets). Note that the region containing the question is not targeted
by any of the facets. More examples and the full-sized sources are included in
Appendix B.

As with source-optimized lenses, this results in a mesh surface
which we forward to our manufacturing pipeline for physical
construction (Section 4.5).

4.5 Fabrication details and results

We evaluate our lenses with simulated and fabricated results.

Fabricated Results. We physically manufacture our lenses
using two separate processes: milling of acrylic blocks using a
computer controlled engraving machine (a Roland EGX-600),
and 3D printing with a clear material on a fast 3D prototyping
machine (an Object Connex 350). These two manufacturing
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modes have different physical constraints, which we can ac-
count for in our optimization. All lenses are 10×10 cm, with
thickness varying between 2 to 4 cm. All lenses are placed
directly on the source image, unless stated otherwise in the
caption.

Figure 4.11 shows a source-optimized steganographic lens that
transforms an image of random circles into a panda. We visual-
ize the steganographic lens surface and show a simulated result
as seen through the lens. We manufactured this lens using our
milling approach — a photograph of the fabricated lens placed
over the source image is also shown.

The precision of the milling machine is higher than our 3D
printer, but the surfaces it produces have a frosted finish and
need to be manually polished. This can be quite time consum-
ing, and can also alter the shape of the lenslets, reducing quality.
Because of this, and because 3D printed lenses do not need to
be as continuous, we produce all our remaining results with
the 3D printing method.

In Figure 4.12 we show another source-optimized stegano-
graphic lens with the panda as a target image but, when viewed
at a different angle, the lens reveals a penguin image, all using
the same random circle pattern as a source. Figure 3.2 also
uses the same random circle source, but the source-optimized
lens is capable of displaying four different targets (panda, bat,
penguin, and whale) at four 90 degree rotation increments.

We also manufactured a universal steganographic lens that we
place over a scrambled image sequence (Figure 4.9). When
viewed through the physical lens, an animated sequence of a
worm is revealed.

Steganographic lenses can also be used for more creative inter-
actions. For instance, question-answer lenses can be designed
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(a) (b) (c) (d)

Figure 4.11: A physically milled result of a source optimized lens. Simulation (middle left)
closely matches the target, however the smooth lens (middle right; 32× 32
facets with 11× 11 micro-facets) is degraded during milling and manual
polishing, resulting in a lower quality physical result (right) than that of a
3D printer (see Figure 4.12).

to reveal pictorial answers when placed over source images
posing questions. Figure 4.10 shows four different question im-
ages being answered using the same universal steganographic
lens as in Figure 4.9. Since we use a universal steganographic
lens, there is actually no limit on the number of randomized
question-answer image pairs that can be used with this single
lens (see Appendix B for more examples).

Simulated Results. In Figure 4.4 we illustrate, using simula-
tion, the theoretical output that could be obtained with a higher
quality manufacturing process. We simulate a high resolution
lens (128× 128 facets) that warps two images with fine-scale
details. Our simulated annealing process is clearly capable
of generating smooth, continuous lenses, but these lenses are
beyond the manufacturing capabilities of our current milling
or printing processes (especially at hand-held output sizes). In
Figure 4.16 we show another example of a question-answer
lens, this time source-optimized to the four question images,
and simulated at a higher resolution (128× 128 facets) than our
current manufacturing processes allow.
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4.6 Discussion

We have presented the idea of steganographic lenses as well as
a general approach for creating various special case lenses. This
is a significant first step towards realizing additional use-cases
in the future, and we will discuss lessons learned and some
considerations for extending our work in this section, before
itemizing concrete ideas for future work in Section 4.7.

Manufacturing Quality and Considerations. Our proof-of-
concept manufacturing process cannot yet yield lenses which
match the high quality of our simulation results. In general,
these discrepancies arise due to the differences between our
idealized model of specular refraction used in simulation, and
the additional surface roughness introduced during the manu-
facturing process (for both milling and 3D printing processes).
In the case of milling, surface roughness is further diminished
through a manual polishing post-process, which is necessary
to render the lens smooth enough for refraction but which also
degrades the surface quality and accuracy (when compared to
the prescribed mesh output). Milling also imposes additional
surface smoothness constraints, limiting the space of image
patches each facet can index. To alleviate this constraint, we
place milled lenses higher above the source and not directly
atop it (as is the case for 3D printed lenses). Figure 4.11 is
the only milled result we illustrate, and it is clearly of lower
quality than the results generated using the 3D printer, due to
the aforementioned issues. This lens is placed 10 cm from the
source and is intended to be viewed at 40 cm above the lens.

Our fabricated lenses are currently thick and likely too bulky
and expensive for immediate public use. Improved manufactur-
ing processes in the future can permit us to shrink the thickness
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(a) (b) (c) (d)

Figure 4.12: A 3D printed multi-view result. Left to right: source image, lens (32×32
facets), and photographs of a manufactured lens viewed from two locations.

of the final lens object without compromising the warping capa-
bilities of the lens, especially in the case of 3D printed surfaces
where smoothness is less of an issue. In general, we do not
see any reason why a higher quality (e.g., commercial) manu-
facturing process could not rectify many of the discrepancies
between our simulation and manufactured results.

Physical Limitations. We consider the physical manufactur-
ing limitations that must be taken into account when designing
our lens optimization. We constrain the search range of each
facet to 10% of the source image width to reduce the maxi-
mum steepness of facets and increase the lens surface regularity.
When milling, lens thickness is limited to 4 cm by the milling
machine and vertical transitions are limited in range due to
the V-groove shape of the milling bit. On the other hand, two
pragmatic limitations of the 3D printing process are its price
and limited resolution. Transparent 3D printing material costs
several orders of magnitude more than an equivalent volume
of acrylic, and the 3D printer’s precision is limited for our pur-
poses, with significant surface roughness added as a side-effect
of printing (Figure 4.13).

We found that, despite the additional undesired surface rough-
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Figure 4.13: A photographic zoom-in of one of our 3D printed steganographic lenses.
Notice the easily visible z layers deposited by the printer and the semi-
transparent nature of the printing material.

ness introduced by 3D printing process, we can actually place
the final lens objects directly on the source image mainly due to
fewer constraints on inter-lenslet smoothness. By moving the
lens closer to the source image we reduce blurriness and calibra-
tion sensitivity, resulting in increased usability. Reducing the
distance between the lens and source often requires an increase
in the facets’ slopes. This increase introduces a non-negligible
Fresnel reflection effect, especially when the angle between the
average facet normal and the view direction is greater than 60o.
We account for these effects during lens construction using the
search distance threshold and using the physical lens in low
(external) light settings.

Source Image Constraints and Manipulation Currently,
the two types of lenses we produce place different constraints
on the input. Source-optimized lens assumes a very rigid con-
straint on the source image (namely, that it is provided by the
user as input and cannot be edited), whereas the universal
steganographic lens allows complete freedom when generating
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the source image(s). However, one could imagine a continuum
of approaches between these two extremes: for instance, where
a source image is provided, but the optimization is allowed
to modify it for increased fidelity or smoothness. This type of
approach could be very useful for our source-optimized exam-
ples which use an unstructured random pattern as the source.
We have indeed experimented with applying variants of in-
painting and texture synthesis procedure during the simulated
annealing component of source-optimized lens generation. In
doing so, we allow (un-masked) regions of the source image to
be manipulated during lens optimization. Our initial results
have proven promising and have permitted the generation of
smoother and more accurate source-optimized lenses.

Use-case Customization. We have demonstrated that our
approach can be readily and easily extended to handle more
complex use-cases (see Section 4.7 for examples, as well as
Figure 4.2), and it is our hope that this will promote future
work in not only investigating interesting use-cases that we
have not conceived, but also in using our approach for larger-
scale applications.

Another example of this type of customization is presented in
Figure 4.14, where we modify our multi-view lens generation
to enhance the viewing stability of our manufactured lens: we
generate a multi-view lens, with views arranged in a circular-
cross layout, and with all the target images set to the same
panda image. The apex of the inner viewing cone is 1.15o. The
resulting multi-view lens affords a much larger “viewing zone”,
in case a user slightly shifts their viewing position.

Cryptographic and Steganographic Strength. For certain
applications steganographic or cryptographic strength is an
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Figure 4.14: We induce a stable viewing zone by exploiting multi-view lens generation
in a novel way: by using the same target images at each of the nine views,
arranged in the layout on the left. The lens consists of 128×128 facets.

important consideration. For a useful discussion, “strength”
needs to be better defined in our context and depends on the
usage scenario. If an “attacker” gains access to the lens, the
mapping can be easily inverted (i.e., it is weak). However, for
image-specific lenses, if the attacker obtains the source image it
is hard to deduce the target without the lens (i.e., it is strong).

For our physically-manufactured universal steganographic
lenses the mapping is not cryptographically strong since parts
of the target could be deduced from the source. However, this
is a limitation of the manufacturing quality (using fewer/large
facets), and not of our overall approach. With improved manu-
facturing, or in simulation, our universal steganographic lenses
can be “steganographically stronger” in the limit of pixel-wide
facets: e.g., by randomly scrambling the image pixels plus
injecting arbitrary noise pixels to further evade detection.

A useful analogy of our universal steganographic lenses are pa-
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(a) (b) (c)

Figure 4.15: Visualization of the warping behavior of a universal steganographic lens with
16× 16 facets: Given the target image (b) and lens geometry (c), we compute
the source image (a) using our inpainting method.

per shredders (cutting images into small slices) but our method
shreds and scrambles in 2D while also allowing for zooming
effects. A shredder that produces only a few slices (large facets)
is less secure. Security is improved by increasing the number
of slices (smaller facets) and mixing slices with other random
shredded documents (inpainting with random pixels). We il-
lustrate the mapping obtained from a universal steganographic
lens that satisfies manufacturing constraints in Figure 4.15.

Visual Cryptography [Naor and Shamir 1994] can provide
stronger cryptographic guarantees than our method. Our
method does not explicitly optimize for cryptographic strength,
though we believe this is an interesting avenue for future work.

3D Displays. Mass-produced 3D technology (e.g., lenticular
sheets, parallax barriers) are less expensive to manufacture than
our lenses, but these have significant limitations such as low
signal to noise ratio, aliasing and crosstalk. Customizing 3D
display optics to the expected displayed content is one possible
direction which could overcoming these issues. Our lenses
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Figure 4.16: A single source-optimized lens (128×128 facets) encodes four hidden picto-
graphic answers to four textual questions (simulated).

are an example of such customized optics and, although they
are not yet cost-effective, fabrication quality and cost will only
improve in time, opening the door to content-optimized display
techniques, like ours, in this domain.

4.7 Conclusion and future work

We introduced steganographic lenses, a form of passive display
device for exposing hidden messages and images from both
seemingly random as well as structured source images. We
are able to efficiently navigate a large search space of viable
solutions using stochastic search and multi-scale height opti-
mization and our process also addresses manufacturability con-
straints of the final output lens surfaces. We have manufactured
physical prototypes using two processes: commodity 3D print-
ing and engraving with a milling machine. We obtained high
quality simulation results and also demonstrated promising
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manufactured results, despite using a proof-of-concept manu-
facturing process.

Future Work. In the case of colored source and target images,
the source must contain all the colors desired in the target image.
One can imagine using back-lit source projectors and modeling,
or even inducing, dispersion effects in order to side-step this
constraint.

As we currently assume perfect refractive surfaces, a better
modeling of the surface roughness resulting from our man-
ufacturing processes can be achieved by using a physically
based BSDF such as the one introduced by Walter et al. [2007].
Renderings of steganographic lenses with the aforementioned
rough glass BSDF can be found in Appendix B. This may lead
to better agreement between simulated and manufactured re-
sults, however we believe that a higher-quality manufacturing
process is a more important first step of investigation towards
this end.

We similarly also assume perfect diffuse reflectance of the
source image(s), and an interesting direction of future work
would be to model the effects of glossy reflection or directional
emission off of the source. In this case, the observed radiance of
each facet will change not only as a function of location but also
as a function of the facet’s “viewing” direction. As discussed in
Section 4.6, investigating methods for optimizing or manipulat-
ing a set of random source images to best reproduce a desired
set of target images is also an interesting area of future work.

Our multi-view steganographic lenses may be suitable as a
form of stereoscopic or light field display. We have experi-
mented with the stereoscopic use case (using a 3D stereo pair
as target images, and specifying view conditions that line up
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with inter-eye distance), however with mixed results. We have
yet to find a solution that consistently generates stereo image
pairs that are comfortable to fuse.

As we feel that the general idea of steganographic lenses can be
exploited for many different specialized applications, the most
exciting areas of future work may in fact be the ones we have
not yet conceived of. It is quite possible that tailored stegano-
graphic lens solutions will find their way into unique optical
illusions (e.g., imagine an enhanced version of a magic mir-
rors room at an amusement park), cheap personal encryption,
holography, banknote security, or architectural art (Figure 4.2).
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C H A P T E R 5
A fast, forward model for

granular media

In this chapter we investigate the material class of granular
media such as salt, sand and snow. A full computational fab-
rication pipeline for this class of materials remains undefined
at the time of writing. In this chapter we present a critical
component which is required for a full appearance fabrication
pipeline– a fast forward model for simulating the appearance
of granular media. This component could potentially be useful
in the future for creating a full pipeline, since it fulfills the nec-
essary requirements of the framework. This chapter is partially
based on the paper by Meng et al. [2015] which presents a multi-
scale model for rendering granular media. From that work we
describe the diffusion extension which provides significant ren-
dering speedups, and makes the model more compatible with
the requirements of computational appearance fabrication.
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A fast, forward model for granular media

5.1 Introduction

Treating each individual grain as explicit geometry and simu-
lating global light transport using path tracing [Kajiya 1986]
and its variants is a general solution for simulating the ap-
pearance of granular media, but is only practical for small
collections of grains. At the other extreme, the aggregate object
could be interpreted as a continuous medium. In this case,
the smooth, large-scale appearance of the medium may be
well expressed by rendering techniques [Cerezo et al. 2005] de-
rived from the radiative transfer equation (RTE) [Chandrasekar
1960]. Methods based on the diffusion approximation [Stam 1995;
Jensen et al. 2001] can further accelerate multiple scattering
computation. Unfortunately, even if appropriate volumetric
parameters could be determined for the continuous medium,
such an approach cannot reproduce the fine-scale structure of
individual visible grains (Figure 5.3).

Similar to Meng et al. [2015] we model a granular material as
a procedurally defined, tiled assembly of objects representing
individual grains. We augment the model by using an addi-
tional model for the transport of light in the material based
on the diffusion approximation (DA). In Meng et al. [2015] they
express the appearance of visible grains, using the most de-
tailed model, which explicitly path-traces the grain geome-
try (explicit path tracing, or EPT). To more efficiently capture
larger-scale transport above the scale of grains, they approxi-
mate the granular material as a continuous medium and ren-
der using volumetric path tracing (VPT). To avoid the need to
trace long paths, for scales above the mean free path of the
volumetric medium, we propose a diffusion-based approxi-
mation. We therefore implement a transition to a rendering
technique based on a fast diffusion approximation [Stam 1995;
Jensen et al. 2001], to account for large-scale transport due
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5.1 Introduction

to high-order multiple scattering. Diffusion allows us to ef-
fectively short-circuit the recursion of VPT and approximate
long scattering paths directly. An overview of the full forward
model of Meng et al. [2015] including our diffusion extension
is shown in Figure 5.2. We refer the reader to that paper for the
details of EPT and VPT, which are not part of this thesis.

We switch to diffusion, by sampling a location on the bound-
ary mesh and estimating the diffusion transport. We use a
technique inspired by the method of Li et al. [2005], though
we use d’Eon and Irving’s [2011] improved diffusion model
instead of the classical dipole [Jensen et al. 2001], and integrate
its contribution using Monte Carlo [Habel et al. 2013]. We also
propose a different virtual source placement procedure which
in, our experiments, produces slightly better results than the
approach described by Li et al. [2005]. Finally, we account for
the finite thickness of the medium by using a multi-pole ex-
pansion [Donner and Jensen 2005]. We detail these changes in
Section 5.4.

Using multiple levels of approximation in a practical rendering
system requires solving two fundamental problems: consis-
tency between approximations, and finding optimal switching
criteria. In Meng et al. [2015] they obtained parameters for the
first level of approximation (VPT), without any expensive scene-
dependent precomputation that would preclude modifying the
shape or composition of the aggregate object. They developed
a stochastic “teleportation” model of light transport which ac-
counts for intra-grain transport, and combined it with analytic
estimates for inter-grain propagation imported from the physics
literature [Torquato 2001]. After a one-time precomputation
for an individual grain, they can reuse the results to derive
parameters for arbitrary aggregate shapes and a continuum of
different packing rates and scales. We detail the conversion of
these VPT parameters to our next level of approximation in
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VPT

EPT

VPT+DA

EPT

EPT+VPT

EPT

EPT+VPT+DA

EPT

Figure 5.1: Diagonal comparison of proposed techniques (top left) with EPT (bottom right)
on a sphere composed of snow grains. We compare four combinations of our
methods: The first two combinations show how VPT with and without diffusion
compare against EPT. The latter two show how preceding these methods with
a few bounces of EPT can accurately recover high-frequency detail.

Section 5.2. Second, we need to determine when to use each of
the three approximations to obtain maximum efficiency gain
while remaining visually accurate. We achieve this goal using
carefully designed heuristics based on how paths diverge in
the medium, and how deeply they penetrate the medium.

5.2 Deriving diffusion parameters

Meng et al. [2015] present a method to compute RTE param-
eters {σs, σt, f (cos(θ)} for a classical homogeneous medium
which approximately matches the statistical scattering behav-
ior of the granular material. From these we then derive the
necessary diffusion parameters {σ′s,σ′t} by computing the mean
scattering cosine g from f (cosθ), and from that the reduced
scattering coefficient σ′s = (1− g)αsσt, which gives a reduced
extinction coefficient σ′t = σ′s + (σt − σs) and reduced albedo
α′s = σ′s/σ′t .

Figure 5.1 compares EPT to VPT with and without DA for a
more traditional rendering scenario. The results show that our
derived diffusion parameters closely approximate the large-
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5.3 Switching to diffusion

EPT VPT DA

PreprocessPacking
rate+scale

Aggregate
mesh

Example
grain(s) RTE

parameters
Grain statistics

Mixing
weights

Figure 5.2: Overview of the full method presented in Meng et al. [2015], including our
diffusion approximation extension. When rendering the granular material
(bottom), primary rays from the eye start out path tracing (EPT) grains,
then after enough scattering events take place , the path is continued using
volumetric path tracing (VPT), and eventually terminated using a diffusion
connection (DA) to approximate the contribution of all further interactions.
The input (top, green) to EPT consists of an aggregate mesh, packing rate
& scale of spheres, example grains, and mixing ratios of these grains. The
grain scattering statistics (blue)—calculated in a one-time, per-grain-type
preprocess— are combined with the packing rate and mixing ratios to obtain
RTE parameters (orange) needed for the VPT and DA methods.

scale transport within granular materials. In isolation, however,
neither VPT nor DA can retain the high-frequency details of
discernible grains.

5.3 Switching to diffusion

While diffusion can estimate multiple scattering very efficiently,
it also introduces a number of approximations and assump-
tions (most notably the assumption of isotropic scattering and
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Table SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable SaltTable Salt Sea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea SaltSea Salt Himalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan SaltHimalayan Salt

Cane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane SugarCane Sugar Raw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw SugarRaw Sugar RiceRiceRiceRiceRiceRiceRiceRiceRiceRiceRiceRiceRiceRiceRiceRiceRice

Figure 5.3: A selection of real granular materials illuminated from underneath with a cell
phone’s flash light to reveal their translucency. Granular materials can exhibit
long-range light transport that still retains complex small-scale structure.
Each HDR capture was individually tone-mapped for display.

planar bounding geometry) that limit its accuracy in the gen-
eral setting. To switch from VPT to DA, we adopt a criterion
adapted from the work of Li et al. [2005] which aims to allow
DA only when the approximations are not be too noticeable.

As the aforementioned work, our primary criterion for switch-
ing to diffusion is a minimum distance between the VPT path
vertex xk

i and the surface of the boundary mesh. While Li et
al. [2005] used a threshold of one reduced mean free path, we
use a threshold of dDA = min(1/σ′t , 0.5/σtr)—that is, we switch
if xk

i is at least 1 reduced mean free path away from the bound-
ary, or at least half a diffuse mean free path. This allows us to
accept diffusion connections more frequently for lower albedo
materials, which can be better represented using d’Eon and
Irving’s improved diffusion model [2011].

Li et al. [2005] accelerate the distance computation using a
kD-tree which stores uniformly sampled points on the surface.
However, as the sampling distance needs to be smaller than the
reduced mean free path, this approach is practically infeasible
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5.4 Multi-pole configuration

for optically thick volumes, such as densely packed granular
media. In our scenes, the reduced mean free path is often orders
of magnitude less than the mean distance between aggregate
mesh vertices.

For computing whether we are in a safe enough distance from
the aggregate mesh, we reuse our aggregate mesh kD-tree with
a new query. This query performs a depth-first search in the
kD-tree nodes using a sphere centered at the candidate point
for switching to diffusion xk

i , and a query radius dDA. If this
sphere intersects the bounding box of the current node, then
the bounding boxes of the child nodes are computed and re-
cursively queried. When the algorithm arrives at a leaf node,
the minimum distance between all leaf node triangles and xk

i
is computed and if it is smaller than dDA we terminate, return-
ing true as the answer to the query: ”is there a surface with a
distance smaller than dDA from xk

i ?”. When all intersecting
nodes are processed and no triangles are found, we allow the
switch from volumetric path tracing to diffusion. It should be
noted that this query performs remarkably well, since only a
small portion of the leaf nodes is actually processed, due to the
small size of the sphere relative to the triangle size.

5.4 Multi-pole configuration

In general, the diffusion approximation is derived from the
radiative transfer equation (RTE) which is solved by the VPT
implementation in Meng et al. [2015]. The RTE assumes that
the size of the scattering particles is negligible compared to the
mean free path. The diffusion approximation further assumes
a slab geometry and isotropic multiple scattering [Jensen et al.
2001]. We found that even under these heavy assumptions,
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A fast, forward model for granular media

diffusion matches the high-order scattering of granular media
well with our reduced parameters (Section 5.2).

In contrast to classical surface-to-surface diffusion [Jensen et
al. 2001; d’Eon and Irving 2011; Habel et al. 2013], we use
DA to estimate the multiple-scattering contribution towards a
location within the granular medium from illumination on the
boundary.

Ni

xo

xa

zv

xk
i

−~ωi

~ωi

Na

xi

zr

-

za

d

za

zr

zv

r

zb (d)

zb (d)

zb (0)

Given a source location xk
i —

generated by VPT—we gen-
erate the incident location
xi on the boundary by sam-
pling a uniform random di-
rection ~ωi and intersecting
the aggregate mesh [Chris-
tensen et al. 2012]. We sam-
ple the direct illumination at
xi and set up our dipoles,
where the positive receiver is
the source location xk

i , and
the negative receiver is a re-
flection of xk

i about the ex-
trapolated boundary a dis-
tance zb(0) above the plane
defined by the surface inter-
section xi and its normal Ni.
One important difference be-
tween our model and the model by Li et al. [2005], is that they
define the reflection plane using xi and the direction ~ωi (in-
stead of the normal Ni). Another difference is that they assume
r = 0 by construction, while we compute r as the projected
distance of xk

i on the plane defined by (xi,Ni), thereby comput-
ing the correct distances for scenes adhering to the planar slab
assumption.
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5.5 Results

Additionally, instead of assuming a semi-infinite medium, we
estimate a thickness d = zr + za for a finite slab, where zr is the
scalar projection of (xi − xk

i ) onto Ni, and za the scalar projec-
tion of (xa − xk

i ) onto Na, obtained with an additional ray shot
in direction −~ωi from xk

i . We define dr =
√

z2
r + r2 and dv =√

z2
v + r2, with zv =−zr − 2zb(0). We then derive the distances

to the negative receiver and consecutive dipoles using the
standard multi-pole expansion [Donner and Jensen 2005] but
adopting the improved diffusion model [d’Eon and Irving 2011;
Habel et al. 2013]. The definitions of the extrapolated bound-
aries at zb(0) and zb(d) can be found in [Donner and Jensen
2005]. We assume that the boundary of the granular medium is
index matched (i.e. η = 1), since our grains are suspended in
vacuum. Finally, we resume VPT from xi. The auxiliary point
and normal (xa,Na) are only used for computing the thickness
of the approximate parallel slab and subsequent multi-pole
mirroring.

Note, this is the dual and equivalent to computing the contri-
bution from the dipole sources to the surface location.

5.5 Results

The diffusion approximation extension is implemented in Mit-
suba [2010] as part of the granular media Integrator of Meng
et al. [2015]. We render all results on a homogeneous cluster
with nodes containing two 12-core Intel Xeon E5-2697v2 pro-
cessors at 2.7 GHz with 64 GB RAM and report all render times
in core-hours. For time related comparisons, we independently
compute many low sample count images across the machines
and average the resulting floating-point images for the final
result. In all results, RGB channels are rendered separately and
then combined and tone-mapped with an sRGB gamma curve.
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O
urs

EPT

628 / 1736 hrs (4.8e-6)

50 / 789 hrs (4.9e-6) EPT (1.1e-4)

Ours (4.8e-5)

EPT (5.5e-5)

28/77 hrs

5/78 hrs

56/155 hrs

Equaltim
e

Equalvariance

Figure 5.4: The SANDCASTLE contains about 2 billion grains, each composed of approxi-
mately 200 k triangles. We report the high-order / total render times in hours
and the variance in parentheses. Our approach (top half) renders the high-order
scattering over 12× (50 vs. 628 hrs) faster than explicitly path tracing (EPT)
the individual grains (bottom half) while providing visually indistinguish-
able results. The insets on the right provide equal time and equal variance
comparisons.

For all our figures we estimate variance (in parentheses) by
dividing the time to unit variance (ttuv) by the core hours used
for the specific scene and method. Time to unit variance for
each method is an estimate of the time needed to achieve a
variance of 1, assuming 1/N variance reduction. We compute
ttuv by rendering low sample count versions of the image, and
then multiplying the average sample variance over all pixels
with the average time needed to render a low sample count
image.

In Table 5.1 we provide a summary of render times and analysis
of variance for the main scenes shown in Figures 5.4, 5.5, and
5.7. We quantify the efficiency of each algorithm using ttuv.
On the top half of the table we report ttuv and the resulting
speedup compared to EPT for the overall render time, and on
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Figure 5.5: Rendering comparisons of our SPICES scene showcasing flour, pink salt, brown
sugar, and white sugar. We provide approximate equal variance (top left) and
equal-time comparisons (bottom left) between pure EPT and our successively
faster techniques incorporating VPT and DA, reporting the high-order / total
render time in hours and the (variance). Our full approach computes the
high-order scattering over 120× faster (34 vs. 4148 hrs) than EPT, resulting
in an 8× overall speedup for equal variance (top left). Note that all six images
on the left include all light transport, and are just simulated using successive
subsets of our full approach. Any differences are due to bias and/or variance.

EPTEPTEPTEPTEPTEPTEPTEPTEPTEPTEPTEPTEPTEPTEPTEPTEPT

VPT

DA

Figure 5.6: We visualize the individual contributions of each technique, which sum to our
final image.
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A fast, forward model for granular media

Table 5.1: Time to unit variance comparisons (measured in seconds) for all methods. The
value in parenthesis is the speedup relative to EPT alone. We report times for
100% acceptance probability (Pa) as well as our automatically computed optimal
Pa. On the top we report times for rendering both low order and high order
transport whereas on the bottom we report the timings and speedup only for the
high order component.

Time to unit variance, combined (sec)

EPT+VPT EPT+VPT+DA

Scene EPT Pa = 1 Pa = opt Pa = 1 Pa = opt

SPICES 1617.3 400.3 (4.00×) 249.7 (6.50×) 219.8 (7.40×) 201.9 (8.00×)
SANDCASTLE 30.7 14.4 (2.10×) 13.7 (2.20×) 13.9 (2.20×) 13.7 (2.20×)

SNOWMAN LG. 4000.8 132.0 (30.3×) 39.6 (101.×) 16.3 (246.×) 15.4 (260.×)
SNOWMAN SM. 2868.4 171.1 (16.8×) 52.7 (54.4×) 28.1 (102.×) 25.2 (114.×)

Time to unit variance, high order (sec)

SPICES 688.8 5.3 (130.8×) 5.0 (137.8×) 0.3 (2554.×) 0.4 (1968.×)
SANDCASTLE 11.8 0.1 (206.8×) 0.1 (230.0×) 0.4 (26.50×) 0.1 (242.0×)

SNOWMAN LG. 3548.6 8.8 (404.6×) 9.2 (385.3×) 0.4 (8473.×) 0.5 (7394.×)
SNOWMAN SM. 2338.0 6.1 (381.5×) 8.6 (271.4×) 0.4 (6431.×) 0.5 (4997.×)

the bottom for only the high-order transport which we aim to
accelerate with our approximations.

The EPT+VPT method of Meng et al. [2015] provides a signif-
icant overall speedup over EPT in all scenes scenes, ranging
from 2.1–30×. This is largely due to VPT’s ability to create
shadow connections to the light sources at various depths in-
side the granular medium, whereas EPT must rely on random
chance for any grain with a dielectric boundary. Enabling Meng
et al.’s [2015] automatic acceptance rate calculation (Pa) pro-
vides further improvements, with speedups ranging from 2.2–
101×. The details of the optimal acceptance rate are described
in Meng et al. [2015], but the main goal of Pa is to balance the
computation between EPT and higher-order methods in or-
der to minimize ttuv. Enabling diffusion provides significant
additional speedup in scenes with low-absorption grains and
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Figure 5.7: For the tall (1 m, top) and tiny (10 cm, bottom) SNOWMAN we report the
high-order / total render time in hours and the (variance). All renderings in
this figure simulate the full light transport. Any differences within the same
row are due to bias.

long transport paths such as SNOWMAN (Figure 5.7, 259× vs.
101× of EPT+VPT [Meng et al. 2015]) at the cost of some visible
bias. We attain these speedups in total render time primarily
by reducing the computation time for the high-order scatter-
ing component with the use of diffusion. Measuring just the
computation time spent on high-order scattering, our diffusion
extension obtains dramatic speedups over EPT ranging from
241–7394×.

5.6 Conclusion and discussion

In this chapter we demonstrated how to approximate the large-
scale behavior of a granular medium with a diffusion based
model. Normally, path tracing a high-albedo granular medium
like snow is completely impractical because very long, very
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high-variance paths contribute significantly to its appearance.
Our method uses diffusion approximation to reduce the length
of paths, greatly reducing the time spent on high-order scatter-
ing. The result is that render times are no longer dominated by
long paths; instead the computation is spent rendering the visi-
ble structure of grains due to low-order scattering. As shown
by our results, this makes it feasible to render many practically
relevant scenes that would otherwise take unacceptably long
to converge.

The speedups of our method are limited by the continued need
to path trace the low-order contributions that create visible
grain structure; in many cases we succeed in reducing the cost
of high-order paths essentially to zero. In order to obtain further
speedup a new problem must be addressed, that of rendering
the glittery, structured low-order contributions faster without
smoothing out the appearance.

While our method allows mixtures of different grain types in
a single medium, we currently assume the mixing ratios are
homogeneous at the scale of the aggregate. For some scenes,
mid-scale heterogeneity, in which the ratios of particle types
vary spatially, is desirable. Our method could be extended to
this case by modulating the particle ratios using a volumet-
ric texture and computing correspondingly varying diffusion
parameters. Once the spatially varying diffusion parameters
are derived then we can leverage existing work on diffusion
in heterogeneous media [Donner and Jensen 2005; Hery 2012;
Arbree et al. 2011] for the implementation.

Leveraging diffusion solutions for non-exponential mean-free
path distributions [d’Eon 2014] in our framework might fur-
ther improve accuracy or allow us to switch to diffusion more
quickly, effectively reducing the expensive computation cur-
rently needed on low-order.
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5.6 Conclusion and discussion

We proposed a bottom-up approach for specifying the appear-
ance of granular materials where the grain properties and their
packing rate dictate the large-scale appearance. An interesting
avenue for future work (similar to inverse bi-scale appearance
design [Wu et al. 2013]) would be a top-down approach where
the user specifies, or measures, the desired large-scale appear-
ance. By using this desired appearance as input, the system
then proposes the individual grain properties and their ar-
rangement from a dictionary of possibilities. Editing one scale
independently while maintaining a fixed appearance at other
scales would be a valuable appearance design tool for scenes
containing granular media.

In this chapter we displayed the capabilities and efficiency of
our forward model as part of a physically-based renderer. We
used our model to render with high resolution, complex scenes
with intricate light transport to showcase the fidelity of our
model when used as a regular appearance model. This is also
the main reason for the long computation times reported. In
practice the resolution, illumination conditions, and geometry
can be significantly simplified in the case of real-world mea-
surements, similar to the setup of Figure 5.3.

When measurements focus on capturing the large scale light
transport of granular media—without aiming to extract small
scale effects of individual grains— our simplified forward
model (DA) can be evaluated quickly. The computation time
is similar to the forward model used in Chapter 3 for translu-
cency fabrication. More specifically we used the measurement
device presented Chapter 3 along with our simplified forward
model (DA) to recover the physical properties of real snow. The
recovered physical properties were used in movie production
to model the large-scale appearance of snow.
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C H A P T E R 6
Conclusion

In this thesis we presented a general framework for computa-
tional appearance fabrication and a variety of applications on
three general classes of materials: homogeneous participating
media, specular dielectrics and granular media. We conclude
with future directions regarding the individual applications
and present our outlook, on future work in the field of compu-
tational appearance fabrication.

Translucency fabrication. We presented a multi-spectral
measurement device for measuring reflectance and translu-
cency. With the help of this device we were able to train our
novel forward and backward appearance models through very
few (21) measurements. These models allowed us to simu-
late the measured appearance and also automatically generate
recipes for our pigments and silicone. These recipes, when
fabricated, reproduce the desired appearance. Additionally we
presented an appearance editor which respects the gamut of
the possible real-world physical states and at the same time
allows intuitive control over the desired appearance.
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We also presented a perceptual backward appearance model
which for a fixed human observer and illuminant can increase
the gamut of reproducible appearances compared to the pub-
lished method [Papas et al. 2013]. An interesting extension to
this work would be to investigate simultaneous appearance
matching of multiple physical states with varying illumination
conditions and observers.

The designed components of the framework bear some limita-
tions. In our use case we only consider homogeneous translu-
cent materials. In addition, the accuracy of the forward and
backward models is reduced in parts of the domain where the
underlying appearance model is not a good approximation.
We can improve the accuracy with our local method or with a
better forward model, but for the cases of highly absorbing ma-
terials the bulk-scattering profile measurement method needs
to be re-designed. Even though our local method improves ap-
pearance replication accuracy, it does require additional target
dependent sample generation which in some cases can be a
significant drawback.

With the presented instance of our framework, we allow ap-
pearance control and fabrication of homogeneous participating
media. This ability already has implications for many indus-
tries where pigmented materials are used, including plastics,
foods, prosthetics, and even dentistry.

Our method can also be used to fabricate more complex ma-
terials. More specifically it can be combined with previous
work which allows spatial combinations of fixed materials.
An example would be using our continuous method to de-
sign and fabricate an expressive minimal set of primitives
that can be used from the discrete methods [Dong et al. 2010;
Hasan et al. 2010]. This minimal set of primitives can be com-
putationally designed with the goal of spanning a wide ap-
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pearance gamut. Moreover, the ability of continuously tuning
material parameters opens the possibility to more powerful
hybrid methods that can accurately control the real-world ap-
pearance of spatially varying translucent materials.

Steganographic lenses. We presented an application of our
framework for computational fabrication of custom lens-let
arrays. We were able to scramble the incident light field on the
array such that it can be used for steganographic purposes. The
resulting lenses expose hidden messages and images from both
seemingly random as well as structured source images.

The current methods available for fabrication limit the mini-
mum size of the patches relative to the size of the lens. They
do not allow dithering or other color mixing methods that take
advantage of the human visual system properties. With the
invention of more accurate fabrication technologies our method
could be extended to accommodate these type of effects, thus
lifting the current limitations in color images and increasing
the output color gamut.

Though our current manufacturing precision limits the resolu-
tion and number of hidden images we can encode, our simu-
lations show that significantly more sophisticated results are
possible with higher fidelity manufacturing. This opens the
door to many possible applications for encoding and extract-
ing hidden visual information, ranging from entertainment, to
architecture and art.

Currently our forward model assumes that the fabrication
method will reproduce the computer generated geometry per-
fectly. In reality the fabrication methods only approximate the
desired output and exhibit systematic imperfections. Another
interesting avenue for future work would be to model these
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fabrication specific inaccuracies within the forward model and
effectively minimize their impact on quality.

Granular media. We presented an extension to the appear-
ance model of Meng et al. [2015] to simulate the appearance
of homogeneous granular media with high computational ef-
ficiency. Our fast forward model approximates the multiple
scattering component of light transport using diffusion the-
ory. Our results show that our extension provides significant
speedup, especially in media with extremely long paths with
high contribution, with minimal impact on accuracy.

Our method uses a diffusion approximation to reduce the
length of paths, greatly improving the time spent on high-
order scattering. The result is that simulation times are no
longer dominated by long paths. Most of the computation is
spent rendering the visible structure of grains due to low-order
scattering. Our forward model makes it feasible to render realis-
tically complex scenes that would otherwise take unacceptably
long to converge.

Currently there are just a handful of fabrication methods
that use granular media. One example is the 3D Systems
ProJet R© 660 Pro 3D printer. This powder-based method was
one of the first 3D printers able to reproduce full color. It uses
a standard ink-jet printer with glue-infused inks. It applies a
thin layer of homogeneous white powder and then performs
a pass over it with the ink-jet printer heads to apply the pig-
mented glue and define the shape of the object. This process
continues layer-by-layer until the object is completed. Then
the surrounding powder that did not interact with the inks
can be cleaned. This process allows limited control over the
individual grain materials, such as modifying absorption at the
grain boundaries. It also indirectly allows (spatially varying)
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control over the optical properties of the background medium
between grains. An interesting potential avenue for future
work on granular media fabrication would be to use an in-
stance of our framework to evaluate whether the appearance
gamut of this method can be expanded by changing the optical
thickness of the powder and inks or by adding new inks that
can additionally scatter light.

A fully generic heterogeneous forward model would use ex-
plicit granular medium parameters such as per-grain physical
properties: material, shape, size, and orientation, along with
spatially varying pack rates and background medium optical
properties. Our forward appearance model can already handle
such an explicit parameter set but with globally homogeneous
constraints on the grain physical properties, pack rate, and
background medium.

According to our framework, the remaining steps needed for
computational appearance fabrication of granular media are:
a training-through-measurement procedure that can map the
physical states to corresponding forward model parameters,
and a backward model that can translate from a desired ap-
pearance to a physical state. Another remaining challenge and
potential avenue for future work is the design of a measurement
setup for mapping the explicit real-world granular medium
physical parameters to appearance.

Outlook. We believe that our computational appearance
framework will be useful for researchers who are interested
in de-constructing, understanding, and controlling the appear-
ance of real-world materials. We showed various powerful
applications and instances of our framework and its use for dif-
ferent materials and problem specifications. We hope that the
success and usefulness of these applications will inspire further
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research on the appearance aspect of the currently developing
field of computational fabrication.

Within the appearance modeling field we currently have an
abundance of specialized forward models, each specific to a
material class. One possible avenue for future work would be
to use machine learning for creating a general ”super” forward
model that can identify appearance features from measure-
ments and choose (or even create) an appropriate appearance
model.

Most of the research in computer graphics community is focus-
ing on capturing and simulating appearance within the visible
spectrum. On the other hand there is an abundance of infor-
mation that can be measured with existing devices outside of
the visible spectrum. This ”invisible” data can be potentially
used in combination with visible data to augment existing ap-
pearance models. Some examples include exposing physical
properties of materials such as internal structures inside sur-
face boundaries or isolation of different compounds within an
object that only interact with a specific range of the spectrum.

Recent advancements in nano-fabrication [Theocharous et al.
2014], show that large scale appearance can be affected by fab-
ricated nano-scale structures. Inspired by these developments,
we believe that future research can focus on simulating and
modeling light transport efficiently outside of the simplified do-
main of geometric optics (e.g. wave and electromagnetic optics)
to enable computational appearance fabrication at nano-scale.

Computational appearance fabrication is a promising new field.
As more fabrication methods become available, there will also
be more demand to match and control appearance accurately. I
believe that these conditions currently taking shape will open
up this growing field to a whole range of exciting new research,
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which in turn will offer artists, engineers and hobbyists a real-
life canvas, where they will be able to experiment and more
fully express their creativity.
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APPENDIX A
In this appendix we provide supplemental material for the
translucency fabrication chapter (Chapter 3).

Tables A.1 and A.2 provide error values for the local and global
methods respectively. In Figure A.1 we provide plots of various
appearance models that we considered when designing our
forward model. In Table A.3 we provide the optical properties
assigned to our synthetic database pigments. In Figure A.2 we
evaluate Quantized Diffusion profile fits against path tracing.
In Figure A.3 we compare the measured target appearance
against the predicted and measured appearance of the replica.
Finally, Figures A.4, A.5, A.6, A.7, A.8, and A.9 summarize
the appearance measurements of our database and provide
forward model fits on this data.
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Table A.1: Error values for the 9 fabricated replicas using the local method with
cosine concentration weights. The database includes the replicas gen-
erated using the global method. The first triplet of errors evaluates
how well the fabricated replica matches the target. The second triplet
evaluates how well our method believes it can match the targets ap-
pearance. The third triplet evaluates how well our method can predict
the appearance of the replica given the local pigment parameters and
the concentrations.

Target-Replica Error Target-Local Prediction Error Local Prediction-Replica Error

Total ρ Shape Total ρ Shape Total ρ Shape

silicone mixture 1 0.00031 0.00017 0.00014 0.00011 0.00000 0.00011 0.00037 0.00020 0.00017
strawberry yogurt drink 0.00063 0.00049 0.00015 0.00044 0.00032 0.00012 0.00027 0.00015 0.00012

white chocolate 0.00169 0.00142 0.00026 0.00207 0.00184 0.00023 0.00032 0.00007 0.00025
pink soap 0.00172 0.00155 0.00017 0.00088 0.00077 0.00012 0.00060 0.00035 0.00024

full-fat milk 0.00175 0.00083 0.00093 0.00068 0.00052 0.00016 0.00108 0.00026 0.00082
mocca yogurt drink 0.00311 0.00294 0.00017 0.00254 0.00228 0.00026 0.00052 0.00032 0.00020
blue fabric softener 0.00349 0.00314 0.00035 0.00385 0.00367 0.00017 0.00059 0.00050 0.00009

low-fat milk 0.00604 0.00567 0.00037 0.00038 0.00010 0.00028 0.00601 0.00547 0.00054
silicone mixture 2 0.00611 0.00607 0.00004 0.00073 0.00048 0.00025 0.00638 0.00628 0.00011

mean 0.00276 0.00248 0.00029 0.00130 0.00111 0.00019 0.00179 0.00151 0.00028
std 0.00213 0.00217 0.00026 0.00125 0.00124 0.00007 0.00251 0.00249 0.00024

Table A.2: Error values for the 9 fabricated replicas using the global method with-
out local weights. The database includes the replicas generated using
the global method. The first triplet of errors evaluates how well the
fabricated replica matches the target. The second triplet evaluates how
well our method believes it can match the targets appearance. The third
triplet evaluates how well our method can predict the appearance of
the replica given the local pigment parameters and the concentrations.

Target-Replica Error Target-Global Prediction Error Global Prediction-Replica Error

Total ρ Shape Total ρ Shape Total ρ Shape

silicone mixture 1 0.00090 0.00070 0.00019 0.00054 0.00005 0.00049 0.00140 0.00097 0.00043
strawberry yogurt drink 0.00098 0.00070 0.00029 0.00068 0.00049 0.00019 0.00078 0.00062 0.00016

pink soap 0.00146 0.00125 0.00021 0.00117 0.00105 0.00011 0.00037 0.00029 0.00007
white chocolate 0.00174 0.00150 0.00024 0.00262 0.00229 0.00033 0.00081 0.00023 0.00058

full-fat milk 0.00245 0.00113 0.00131 0.00032 0.00027 0.00004 0.00321 0.00091 0.00230
mocca yogurt drink 0.00298 0.00272 0.00026 0.00354 0.00292 0.00062 0.00149 0.00106 0.00043
blue fabric softener 0.00329 0.00299 0.00030 0.00409 0.00391 0.00018 0.00077 0.00064 0.00014

low-fat milk 0.00781 0.00752 0.00029 0.00022 0.00007 0.00015 0.00804 0.00739 0.00065
silicone mixture 2 0.03639 0.03565 0.00073 0.01747 0.01346 0.00402 0.03177 0.03004 0.00173

mean 0.00644 0.00602 0.00042 0.00341 0.00272 0.00068 0.00763 0.00691 0.00072
std 0.01142 0.01131 0.00037 0.00547 0.00425 0.00126 0.01672 0.01633 0.00077
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Figure A.1: Reflectance model investigation results. On the left we see reflectance plots
for a semi-infinite index-matched homogeneous medium for various reduced
albedo values. In total 5 reflectance models were plotted against Monte Carlo.
The model that performs the best is the Flock model with a mean relative
reflectance error of 2.3% followed by Kubelka Munk with a relative error of
3.31%. On the right we see the performance of our reflectance model against
Monte Carlo for varying reduced albedo and optical thickness. The relative
index of refraction here was set to 1.41 (silicone). To evaluate we removed
half of the reduced albedo and optical thickness samples, effectively reducing
the total number of samples to interpolate from by 4. Then for those missing
samples we used our interpolation method to estimate reflectance. The mean
relative reflectance error was found at 0.03% over the entire set of missing
samples.
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Table A.3: Reduced scattering and absorption coefficients used for the synthetic database
and targets.

σs σa

blue green red blue green red

White 1100 900 800 0.001 0.002 0.002
Yellow 0 85 55 25 0.4 0
Red 2 0.01 170 500 1100 10
Green 0.01 220 0.001 25 20 270
Blue 50 0.01 0 40 140 1100
Black 0.1 0 3 350 360 340
Base 1e-4 2e-6 0 0.001 0.001 0.001

A B C D E F G H I J K L M N

PT QD PT QD PT QD PT QD PT QD PT QD PT QD PT QD PT QD PT QD PT QD PT QD PT QD PT QD

Figure A.2: Profile comparisons between two rendering methods. For each sample, path
tracing was used to render the profile on the left, whereas a Quantized Diffu-
sion fit on the path traced profile was used to render the profile on the right.
Ignoring Monte Carlo noise, we observe a good match between the two methods
in this set of samples.
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Figure A.3: Target/Prediction/Replica comparison plots for the local method.
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Figure A.4: White pigment dilution set measurements and forward model fits.
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Figure A.5: Yellow pigment dilution set measurements and forward model fits.
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Figure A.6: Red pigment dilution set measurements and forward model fits.
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Figure A.7: Green pigment dilution set measurements and forward model fits.
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Figure A.8: Blue pigment dilution set measurements and forward model fits.
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Figure A.9: Black pigment dilution set measurements and forward model fits.
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APPENDIX B
In this appendix we provide supplemental material for the
steganographic lens fabrication chapter (Chapter 4).

In Figure B.1 we showcase a 3D printed source-optimized lens
that can morph multiple source images to the desired targets.
In Figure B.2 we simulate the effects of surface roughness
using a forward appearance model. In Figures B.3 and B.4 we
provide a variety of additional simulated and photographed
results using our universal lens.

Finally in Figures B.5 and B.6 we provide simulated examples
of image warping by using high resolution source-optimized
lenses.
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Figure B.1: A single manufactured lens (middle; 16× 16 facets with 11× 11 micro-facets)
warps four source images (left) to four target images (right; photographs).

αg = 0 αg = 0.01 αg = 0.05 αg = 0.10

Figure B.2: We simulate the effects of surface roughness using Walter et al.’s model [2007].
We use the GGx distribution with increasing roughness (αg) values from left
to right. These simulations illustrate the type of degradation observed in our
manufactured results.
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(a)

(b)

(c)

(d)

Figure B.3: A single steganographic lens warps the the source images in (b) (zoom-ins in
(a)) to the target images (simulated results in (c); photos of a 3D printed lens
in (d)), revealing pictographic answers to the questions in the source images.
The region where there question text appears in the sources is masked and,
thus, not accessed by the lens.
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(a)

(b)

(c)

(d)

Figure B.4: A single steganographic lens warps the the source images in (b) (zoom-ins in
(a)) to the target images (simulated results in (c); photos of a 3D printed lens
in (d)), revealing pictographic answers to the questions in the source images.
The region where there question text appears in the sources is masked and,
thus, not accessed by the lens.

144



(a) (b) (c) (d)

Figure B.5: Morphing one image to another: with the source image (a) and target image
(b) specified to our approach, the smooth lens (c) is generated and warps the
source (a) to (d). This is a simulated result.

(a) (b) (c) (d)

Figure B.6: Two more examples of morphing one image to another: for each row, the source
image (a) and target image (b) are specified to our approach, the smooth lens
(c) is generated and warps the source (a) to (d). These are also simulated
results, however in this case the source and target images are of much higher-
resolution. The resulting lens has 128 × 128 facets with 11 × 11 micro-facets,
illustrating the scalability of our approach.
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Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and
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