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Figure 1: Get-up motions synthesized using our DRL framework. Style is achieved by curves specifying the desired vertical height and torso
orientation of the character. Distinct motion styles are possible, such as rolling on the right (top) and pushing straight up (bottom).

Abstract
We propose a method for synthesizing get-up motions for physics-based humanoid characters. Beginning from a supine or prone
state, our objective is not to imitate individual motion clips, but to produce motions that match input curves describing the style
of get-up motion. Our framework uses deep reinforcement learning to learn control policies for the physics-based character.
A latent embedding of natural human poses is computed from a motion capture database, and the embedding is furthermore
conditioned on the input features. We demonstrate that our approach can synthesize motions that follow the style of user
authored curves, as well as curves extracted from reference motions. In the latter case, motions of the physics-based character
resemble the original motion clips. New motions can be synthesized easily by changing only a small number of controllable
parameters. We also demonstrate the success of our controllers on rough and inclined terrain.

CCS Concepts
• Computing methodologies → Physical simulation; • Theory of computation → Reinforcement learning;

Keywords: physics-based character animation, deep
reinforcement learning, get-up motions, standing, motion control

1. Introduction

Physics-based characters in recent years have demonstrated
impressive capabilities to perform human tasks ranging

† sheldon.andrews@etsmtl.ca

from walking and running [MTT∗17, PALvdP18, BCHF19],
climbing [NBRH19], throwing [CL18, LXAK21], and even
boxing [WGH21]. Typically, the character must perform these
tasks while avoiding falling, and in the case that it does, a get-up
motion is synthesized to return the character to a state where it can
continue performing the task.

However, few approaches have focused specifically on the
task of getting up. Get-up motions are complex and contact
rich, often requiring many contacts between the humanoid and
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the environment. This makes synthesizing get-up motions from
arbitrary prone or supine postures challenging since the valid
configuration space is constrained by the surrounding environment
and self-collisions, and dynamic control is further constrained
by limitations of the physics-based character model. Therefore,
current motion synthesis techniques often lack the variety,
complexity, and naturalness that is exhibited by real humans get-
up motions.

Many existing methods rely on motion capture data, and thus
are only capable of producing get-up motions that imitate clips
found in a motion database, whereas approaches that do not rely
on reference motion often produce highly energetic motions and
appear unnatural. Additionally, nearly all the work in this area
demonstrates getting up from a flat terrain, and obviously humans
can successfully get-up and stand in more complex environments.
Finally, there are a variety of ways in which humans can go from
lying down to standing up, and to our knowledge no previous work
has explored authoring the style of get-up motions without having
to explicitly pose or animate the character model, which can be
tedious.

Motivated by these challenges, we focus on the problem of
synthesizing realistic get-up motions for physics-based characters.
Our approach is based on a deep reinforcement learning (DRL)
framework, and provides a simple user interface to change the style
of the motion in which curves determine the speed and form of the
synthesized motions. The resulting animations exhibit more variety
compared to imitation learning and reference motion tracking,
yet with a controllable stylization. Furthermore, we demonstrate
that our technique is suitable for a variety of rough and sloped
terrains. A curriculum learning approach gradually increases the
slope and roughness of the terrain to learn control policies that can
successfully get-up for many different environments.

2. Related Work

The surveys by [GP12] and [MHLC∗21] provide an overview
of approaches that have been developed in recent years for
controlling physics-based based characters. Deep learning (DL)
neural network models have demonstrated an excellent ability for
synthesizing complex and agile motions, and thus in this section we
mainly focus on summarizing DRL and related machine learning
techniques for animating physics-based characters.

Learning from motion. Learning human skills from a
collection of animation clips is a popular approach to generate
natural looking motions for physics-based characters [PALvdP18,
LPY16, MTT∗17]. Chentanez et al. [CMM∗18] addressed fall
recovery using a special policy to resume locomotion in case of
failure. Complex tasks may be achieved by learning composite
control policies that combine skills [PALvdP18], or by organizing
low-level controllers into graph structure [LPY16]. Bergamin
et al. [BCHF19] proposed a framework to learn responsive
locomotion controllers based on exemplars produce by a motion
matching technique. Other approaches leverage large databases of
unorganized motion clips to learn a motion generator the produces
a sequence of poses tacked by the controller [PRL∗19]. These
approaches produce natural looking and agile get-up motions, but

without explicit style control. There has recently been interest on
methods that handle challenging continuous control tasks using
low-level controllers trained on task-agnostic motions [WGH20,
WGH21, PCZ∗19]. Peng et al. [PGH∗22] recently addressed the
problem of robust recovery from a fallen state by learning fast and
agile motions that allow the agent to quickly recover from large
perturbations. However, the character often exhibits superhuman-
like abilities during recovery. The authors mention that having
more get-up motions in their database would help to create natural
recovery motions. Our approach offers more fine-grained control
over the style and speed of get-up motions.

Latent motion models. Latent variable models learned from
motion capture data have been shown to perform well for
synthesizing natural and stylized motion. Yuan et al. [YK20] used
a variational autoencoder (VAE) to robustly imitate motion capture
trajectories using dynamical models. A related technique called
generative adversarial imitation learning (GAIL) was employed
by Wang et al. [WMR∗17] to learn robust motion controllers
from a small number of motion clips that also demonstrated
diversity in the synthesized behaviors and an ability to transition
between locomotion styles. More recently, Peng et al. [PMA∗21]
proposed a technique based on generative adversarial learning to
synthesize natural motions from a large database of motions that
produces compelling styles for a variety of different tasks. Other
approaches encode the action space of an RL controller using
a latent subspace representation [LZCVDP20, MHG∗19, PCZ∗19,
MTA∗20]. In our work, a pose VAE similar to the one used by Yin
et al. [YYVDPY21] is trained and used to evaluate the naturalness
of motions produced by the control policy. A discussion about this
choice can be found in Section 3.5.

Trajectory optimization and other learning methods. One of
the objectives of our work is that the character is able to get-up
on non-flat terrain. Ling et al. [XLKvdP20] proposed a curriculum
learning approach for locomotion on non-flat terrain. Curriculum
learning methods have also succeeded for learning complex
tasks by increasing the difficulty over the training [YYVDPY21,
LLLL21]. We are inspired by this type of approach and use
curriculum learning to gradually train the agent to get-up on
increasingly complex terrains. Heess et al. [HTS∗17] trained
physics-based humanoids to perform locomotion tasks without
reference motion. Also, trajectory optimization approaches have
been successful animating characters getting up in complex
environments [MTP12,TET12,ABdLH13]. Lin and Huang [LH12]
specifically addressed the problem of authoring get-up motions.
Their approach uses a rapidly-exploring random tree (RRT) and
a physics-based filter to generate intermediary poses from a motion
capture database that animate between a lying down pose and
key frame poses. Our approach requires only the initial state and
the desired style of motion that is encoded in the input curves.
The entire motion that we produce is physically plausible and
generated within a natural pose space. Early work by Faloutsos
et al. [FvdPT01] proposed a framework that combines several
controllers using a state machine that is capable of returning to a
balanced state. In our work, a single policy uses a latent space of
poses to execute a get-up motion from a fallen state.
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Robotics. Standing controllers have long been of interest for
the robotics community as well. Morimoto and Doya [MD98]
proposed a hierarchical RL framework for generating standing
motions for simple humanoids. Kanehiro et al. [KFH∗07]
generated get-up motions by interpolating between the current pose
of the robot and its closest pose in a predefined state graph. Other
work by Fujiwara et al. [FKK∗03] has similarly divided get-up
motions into phases based on a contact configuration graph.

Human motion. Standing motions have been well studied in
the biomechanical and kinematics literature. In particular, getting
up from the floors has long been studied as a measure of the
physical performance of elderly persons [AT00, KAS∗16]. To
our knowledge, no taxonomy exists to describe and classify the
many different styles of get-up motions. However, Bohannon and
Lusardi [BL04] identified typical strategies used by humans during
supine-to-standing tasks: side-sit to half-kneel pivot, quadruped
push-up, and sit-up and roll-over. In the results section, we
demonstrate that our framework is capable of generating motions
for each of these strategies. Recently, Tao et al. [TWGVdP22]
proposed a framework for synthesizing get-up motions without
using a database of reference clips. Natural motions are obtained
by using a curriculum-based approach that modulates the torque
of the character to learn successful controllers, and new behaviors
are created by tracking slower versions of motion generated by
fast policies. In contrast, we propose another approach by training
a single policy that provides an extra user control for the style
of the motion. Furthermore, our controllers are robust to terrain
variations.

3. Methodology

An overview of our DRL framework is shown in Figure 2. A single
control policy is used for both the get-up and standing phases of the
motion, although we consider these phases separately in how the
agent is trained. Further details about training are presented later in
Section 5.

Control over the speed and style of get-up motions is achieved
by curves that specify the desired height and torso orientation of
the character during the course of the motion. These curves may be
extracted from real motion data or authored (e.g., using a spline).
Additionally, a C-VAE is trained using a motion capture database
that includes getting up motions, as well as many other motions,
and provides a latent space for synthesizing natural poses.

3.1. Character Model

The character model used in our experiments is shown in Figure 4.
It is comprised of n = 19 joints with m = 49 controllable degrees
of freedom (DOF). Boxes, capsules, and spheres are used to
approximate the body shape. The height and shape follow an
average human morphology with a mass of 65 kg and height of
1.7 m [PEA83]. Each joint is controlled by a proportional derivative
(PD) servo. Torque limits, stiffness and damping values are the
same as in DeepMimic [PALvdP18]. In addition, joint angle limits
reflect realistic human kinematics to ensure naturalness of the
motions. The front direction is computed using the cross product
of the vector connecting the neck and hips and the side vector. The

side vector is oriented with the hips and directed to the character’s
right side. The height tracking position is located at the base of the
neck.

3.2. Environment

Several environments are used for training the agent that range
from flat terrain, rough terrains, and sloped terrain. Rough terrain
variations are created by perturbing the height of 1.0 m × 1.0 m
tiles of a flat terrain. Examples are shown in Figure 3. A Coulomb
coefficient of friction µ = 1.0 is used for all character-terrain
interactions.

The agent is provided with a height map of the surrounding
terrain similar to the one used by DeepMimic [PALvdP18].
However, no convolution network is used to process the height map,
and instead a simpler fully connected network architecture is used.
The height map is a 1.0 m × 1.0 m grid with 25 cm accuracy,
which is computed using the vertical distance between the hips
and the ground. We found that this resolution is sufficient for the
agent to learn good end effector placement, but without severely
impacting simulation performance (i.e., the state vector size
increases quadratically with the height map resolution, potential
performance bottlenecks due to many distance queries against the
terrain geometry).

3.3. Representation

The environment state s ∈ R352 combines the character and task
states:

st =
[
qt pt ωt vt wt ht tt yt−1

]
The subscript t refers to values from the current simulation step,
and t − 1 refers to values from the previous step. The components
of the state vector are described in detail in the subsequent sections.

3.3.1. Character State

The pose of the character is given by q ∈ R76, which contains
the rotations of each link as quaternions. The character state also
contains the position of each link relative to the root, p ∈ R57,
and the angular and linear velocities of each link, ω ∈ R57 and
v ∈ R57 respectively. The global orientation and translation are
not stored since our tasks are primarily concerned with standing
up (i.e., global translation is unnecessary, and the orientation is
sufficiently encoded by the torso angle).

The state also contains kinematic information related to the
features determining the style of the get-up motion. Specifically,
the vector w =

[
wh wθx wθy

]
∈ R3 contains the height of the

torso, wh, the angle between the torso side facing direction and the
global up direction, wθx , and similarly the angle between the torso
front direction and global up direction, wθy .

The height map h ∈ R25 is an 5×5 grid uniformly sampled
around the character that encodes the vertical distance of the hips to
the ground, as described in Section 3.2. The height map is aligned
with the local character frame. Finally, the previous filtered policy
action yt−1 ∈ R65 is also part of the character state.
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Figure 2: An overview of our framework. The policy π produces a get-up motion that tracks curves defining the height and torso orientation
trajectories. A pose C-VAE, trained using a motion capture database, helps to ensure that target poses for PD servos appear natural. The
pose distribution is conditioned by the vector c that contain the three curves features. Offsets are applied to the natural pose to discover new
styles, but also to react properly to the physics and adapt to the terrain variation. Temporal filtering of actions helps during the training to
find better terrain adaptation and smoother exploration.

Figure 3: The training environment contains terrain with four
regions of difficulty, including three sloped terrains (top row) and
easy, medium, and hard rough terrains (bottom row). A curriculum
learning approach begins training on a flat region and more
difficult regions are unlocked as training progresses.

3.3.2. Task State

Vector t =
[
th tθx tθz

]
∈ R12 contains the target height, side

facing angle, and front facing angles, respectively, which are
specified at 0 ms, 100 ms, 200 ms, 300 ms in the future. These
target values give the agent important indications about the desired
style of get-up motion. The values in t are sampled from three
curve functions– ph, pθx , pθz – that define the target height, side
torso orientation, and front torso orientation, respectively. Curves
may be manually authored, or extracted from a reference motion
clip. Further details about the feature curves used for controlling
the style of get-up motion are provided in Section 4.

Joint

Front 

direction Side 

direction

height 

position

Figure 4: Our character model, showing the height tracking
position and the torso side and front facing vectors.

3.4. Actions

Actions produced by the policy contain a latent parameter vector
z′ ∈ R16 and joint angle offsets ∆q′ ∈ R49, such that

a =
[

z′ ∆q′ ] .
Action filtering [BCHF19] is further used to produce smoothly
changing target angles for the PD servos, and we specifically
observed that it helped to improve end effector placement on
challenging terrains. Filtered actions are computed by

yt = βat +(1−β)yt−1 ,

where at is the action from the policy at time t, yt−1 is the
filtered action from the previous time step, and β = 0.2 is the
smoothing coefficient. The latent pose parameters z and offsets ∆q
are extracted from the filtered action, such that

yt =
[

z ∆q
]

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

210



A. Frezzato & A. Tangri & S. Andrews / Synthesizing Get-Up Motions for Physics-based Characters

The final joint angle targets for PD servos are computed as

q̄ = DECODER (z,c)+∆q ,

where the decoder function maps a latent pose using z and c to
full character pose by a process that is explained in Section 3.5.
However, since a conditional VAE is trained and used to decode
the latent pose vector, in addition to z, the auxiliary variables

c =
[

ph pθx pθz

]
are also required to compute the full character pose. The vector
c ∈ R3 contains the target height and torso orientations sampled at
current time t.

3.5. Natural Poses

Humans motion is synergistic, with joints moving in coordination
to accomplish tasks. We therefore exploit this characteristic by
learning a natural pose manifold for motions produced by our
character controllers. We build on the β-VAE proposed by Yin et
al. [YYVDPY21] for generating natural poses. However, rather
than training an auto-regressive model on a motion capture dataset,
we condition the model on the features tracked by our controller.
Specifically, a conditional VAE (C-VAE) is used to regress poses
that are also conditioned on the target height and torso angles,
which are computed for each pose in the mocap dataset.

We found that conditioning the motion prior in this way helps
the policy to generate poses that are more appropriate for the target
height and torso angles. This results in faster learning and reduced
training times compared to a standard pose VAE.

The natural pose C-VAE is shown in Figure 2. Only the decoder
is used at run-time to compute full character poses from filtered
latent parameters z, which are generated by the policy, and the
auxiliary variables, c, which contains the target height and torso
angles.

The LAFAN1 dataset [HYNP20] is used to train the C-VAE.
Specifically, we use only motions sequences from the Fall and get
up theme, which contains approximately 20 min / 36,000 frames of
human motion. Our analysis indicates that about 30% of the frames
are from get-up motions.

The C-VAE is trained with β = 1 × 10−6 and learning rate
of 1 × 10−4. The encoder and decoder are modeled as fully-
connected neural networks with two layers of 256 units and tanh
activation. For training the C-VAE, the pose height and angles are
concatenated with the input pose for the encoder, and with the input
latent vector for the decoder. Because the mo-cap data contain only
joint angles, we compute the angles based on the character stance,
this process is done once before training the C-VAE. The model
is trained for 100 epochs and a batch size of 128 is used. The β-
VAE loss is optimized using Adam. We performed a preliminary
principal component analysis (PCA) on the training data to select
the dimension of the latent vector and found that 16 components
was sufficient to cover 85% of the variance across all poses in the
LAFAN1 dataset, which is slightly higher than the 13 used by Yin
et al.

4. Controlling the Get-up Style

Our approach for synthesizing various styles of get-up motions
does not require imitating a full motion trajectory. Rather, a simple
interface allows authoring three curves that define a few desired
characteristics of the motion. One curve defines the desired vertical
height of the character, and two other curves give the desired torso
orientation.

4.1. Spline Representation

A cardinal cubic B-spline is used to represent the trajectories
of the three features tracked by our get-up controllers. Through
experimentation, we found that nine control points are sufficient to
synthesize a variety of get-up motions. The curves may be directly
extracted from real motion clips (e.g., by evaluating the features for
each animation and then sampling them at nine equally distributed
instances in time). Alternatively, curves may be authored using an
editing interface.

We define a feature curve p(s) as a general function that returns
the target trajectory based on the parameter s. The curve parameter
lies in the interval s ∈ [0,1], and for motions with an arbitrary time
interval, the normalized parameter value is computed as:

s = min
( t − t0

T
,1
)

(1)

Here, t0 is the start time of the motion, T is the duration of the
get-up motion, and t is the current simulation time.

4.2. Motion Features

Recall that the height of the character is measured as the vertical
distance from the base of the neck to the average terrain height
computed from the height map, and the torso orientations are
computed as the angle between local directions of the upper and
lower torso segments and the global vertical direction. These
features of the character’s posture are shown in Figure 4.

The location of the height position and torso vectors were
determined by a trial-and-error process, with the goal being to
simplify the authoring process while still providing sufficient
control to create various natural-looking get-up motions. In
preliminary experiments, we tested tracking the center of mass
(COM) height. However, the character often cheats by raising its
arms and legs in order to raise the COM. Also, the torso vectors
are situated at two different locations: the lower and upper torso.
This allows for some twisting of the torso during roll-over motions,
and makes it easier to author curves for which the character can
successfully go from lying down to standing.

4.3. Curve Editing

A simple interface for visualizing the get-up motions produced
curve editing is shown in Figure 5. The editing tool may be used to
make adjustments to an original reference motion, or alternatively
to craft a get-up motion from scratch. Also, the duration of the
motion can be adjusted simply by changing the duration T .

In the supplementary videos, we show an example of using this
editing tool in which the control points of each feature curve are
modified using sliders.
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Original motion key points

Raise later

Raise sooner

Create sit-up and roll over 

Original

Original

Create side-sit to kneel-pivot

Figure 5: Adjustments are made to a reference motion curves (top).
For instance, by having a delayed (second row) or earlier (third
row) rise time. Curve editing may also be used to synthesize a
different style of motion, such removing the turnover and converting
the motion to a sit-up and roll over (fourth row) and create a side-
sit to kneel-pivot (bottom row).

5. Training

In this section, we present details related to training the get-up
control policy for mapping the environment state s to an action a
at each simulation step. The control policy is a distribution over
actions π(a|s) for an arbitrary state s. The distribution is modeled
as a Gaussian distribution with state-dependent mean µ(s) and fixed
covariance Σ:

π(a|s) =N (µ(s),Σ)

A deep neural network is used to implement π, where network
inputs are processed by two fully-connected hidden layers, each
with 256 units and a ReLU activation function. A final output layer
with linear activation function produces the actions, as show in
Figure 2.

Policy training is performed using reinforcement learning, where
an agent learns from experience to maximize a reward over time.
The policy generates an action at based on the current state
st , which causes the environment to transition to a new state
st+1. A reward rt is used to convey if the action resulted in
a good transition, or a bad one. Proximal policy optimization
(PPO) [SWD∗17] is used to update the policy. Specifically, the
PPO-Clip algorithm with generalized advantage estimator GAE(λ).
The general idea of this algorithm is to keep the new policy close
to the old policy after an update using a clipping parameter ε. We
refer the reader to the original paper for more details.

5.1. Rewards

Rewards for training the policy have a multiplicative form:

rt = rtask
t rnatural

t (2)

The term rtask
t is a task specific reward, and rnatural

t is a naturalness
reward following Yin et al. [YYVDPY21].

5.1.1. Naturalness Reward

The natural reward is computed as:

rnatural
t = 1− CLIP

((
∥∆q∥1

c

)2

,0,1

)
(3)

Intuitively, Equation 3 penalizes large joint angle offsets ∆q that
generate target poses away from the natural pose manifold. During
training, the value of c can be adjusted to control the amount of
exploration at different stages. However, we found that a constant
value of c = 10 was sufficient.

5.1.2. Task Reward

The get-up task reward also has a multiplicative form:

rtask
t = rh

t rθ
t rv

t rp
t (4)

Briefly, the term rh
t encourages the agent to follow the height

curve, rθ
t encourages tracking the torso curves, rv

t reduce the joint
velocities toward the end of the motion, and rp

t encourages the
agent to track a neutral standing pose. Since the torso orientation
and the height are dependent, a multiplicative reward helps the
policy to produce motions where both the height and torso
orientation reward are maximized. The height reward is computed
as:

rh
t = e−1.7 |ht−ph(s)| (5)

The target height ph(s), and ht is the current height of the character.
A similar reward is used to track the torso orientation:

rθ
t = e−1.5(|θx,t−pθx (s)|+|θz,t−pθz (s)|) (6)

Target angles for the side and front torso vectors, pθx(s) and pθz(s)
respectively, and θx,t and θz,t are the current torso angles.

In order to help the agent find a final stable standing pose, a
velocity reduction reward penalizes angular motion of character
links toward the end of the get-up motion:

rv
t = (1−αt)+αte−0.05∥ωt∥ (7)

The phase variable αt transitions smoothly from 0 → 1 as the
character stands up. The phase variable is computed as

αt = e−20 (1−φ) , (8)

where φ = ph(s)/ph(s = 1) is the ratio between the current target
height ph(s) and the final target height ph(s = 1). The velocity
reduction reward in Equation 7 allows the agent to move around
unhindered during early stages of the get-up motion, but quickly
begins to penalize fast motions as they transition to a standing pose.

Finally, the agent is encouraged to assume a neutral posture q̂
once they are standing. The reward

rp
t = (1−αt)+αt e−0.1(∑ j |log(q̂ j

t ,q
j
t )|), (9)
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where q̂ j and q j
t are the target relative orientation and current

relative orientation of the jth joint, respectively, and their difference
is computed by a log map.

5.2. Initialization

The character is initialized at the start of each training episode
either (i) lying on the floor or (ii) using a standing pose selected
from one of the reference motion clips. In the case of the latter,
reference poses are only used when training on flat terrain, since
this matches to the original capture environment. We found that
having several standing poses in the set of initial states is necessary
for learning successful get-up motions since the agent explores
states near the goal early in training. Whereas for irregular terrain,
initial states are created by dropping a passive rag-doll model with
a prone or supine posture onto the terrain at various locations.
However, with this method for state initialization, we observed
that sometimes the initial orientation of the torso was significantly
different from the angles in the curves. This lead to problems with
training, and so curves are filtered to have angles less than 30◦ from
the initial orientation of the torso. In the case of initializing from a
standing pose on irregular terrain, the feet of the character are re-
oriented to match the local terrain slope.

5.3. Early Termination

The agent is expected to closely follow the height and torso
orientation curves. Hence, a training episode is terminated when the
character begins to deviate from the target trajectory. There are two
conditions we consider: (i) the task reward is lower than 0.1, or (ii)
the character’s head touches the floor. If either of these conditions
is sustained for more than 300 ms, the episode is terminated.

5.4. Terrain Curriculum

The character will struggle to make progress in early stages of
training with rough or steeply sloped terrains. Therefore, a terrain
curriculum learning approach gradually increases the difficulty of
the terrain as training progresses. Effectively, the same terrain is
used for all experiments, but it is divided into four regions (flat,
easy, medium, and hard difficulties as shown in Figure 3. The agent
is first trained on the flat region and must succeed in getting-up
200 times to unlock the next region. The agent revisits all unlocked
regions during training in order to avoid catastrophic forgetting.

5.5. Training Curves

A collection of curves is used to train the agent for a diversity
of get-up tasks. These curves are extracted from reference motion
clips, as well as manually authored curves. Specifically, 13 curves
are from reference motion clips, and 5 are authored curves designed
to imitate various get-up styles. The agent is additionally presented
each of the authored curves for three different durations (2.5 s,
5.1 s, 7.6 s). In total, 28 different curves are used to train the agent.

The initial posture of each reference motion is used to initialize
the character model when the corresponding curve is being trained.
However, for training on irregular terrains, curves are randomly

selected from the entire collection and used to train the agent, given
that the initial torso orientation condition explained in Section 5.2
is satisfied.

5.6. Implementation Details

Our framework is implemented using PyTorch and the PPO-Clip
implementation is taken from Stable-Baselines3 [RHG∗21]. We
model the physics-based character and the environment using the
Vortex dynamics engine [CM 19]. The simulation runs at 60 Hz
and control policies are queried at 30 Hz. All experiments are
performed on a Windows PC with NVIDIA GeForce GTX 1080 Ti
GPU and 8 core Intel i9 CPU. No GPU is used to update the
networks. Each policy is trained parallel using 16 processes.

Training requires 100M simulation steps and approximately
30 hours to complete. The learning rate decreases from 1× 10−4

to 2 × 10−5 and standard deviation decreases from 0.6 to 0.3
uniformly every 20M steps. A mini-batch size of 256 is used. Other
learning hyper-parameters are: a generalized advantage estimate
0.95, discount factor γ = 0.99, and clipping parameter ε = 0.2.

During training, the episode time includes both the get-up
duration T plus a few second to train the standing phase. Thus,
the total episode time is Ttotal = T +Tstand, where Tstand = 3 s is the
additional time for standing.

6. Results

Here, we present some of the animations created using our
framework. We first present examples of synthesizing get-up
motion from curves extracted from reference motion clips, and
show the robustness of our framework to synthesize the same
motions on sloped and inclined terrains. We then demonstrate
the authoring capabilities of our framework, and present some
examples of manually authored get-up motions. Lastly, we perform
an ablation study on the effectiveness of using a latent pose motion
prior and the terrain curriculum during training.

6.1. Reference Motions

Figure 6 shows two different motions produced by feature curves
extracted from clips in the LAFAN1 dataset. Additional get-
up motions based on curves from the dataset can be found in
the supplementary video. The character controllers are able to
faithfully reproduce the style of the original motion in all the
motions, and without explicitly tracking the pose.

The teaser and Figure 6 show examples of get-up motions
taken from reference motions and retargeted to rough and sloped
terrain. Despite the original motion being performed on flat
terrain, the synthesized animations demonstrate that our get-up
controller successfully tracks the height curve, and does reasonably
well tracking the desired torso orientations. The character also
effectively adapts its stance to the shape of the terrain at the end
of the motion, and is able to achieve a stable stance despite the
terrain slope. Additional motions on irregular terrain can be found
in the supplementary video.
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Figure 6: Showing the character getting up on flat terrain (top) and sloped terrain (bottom) using feature curves that were extracted from
reference motion clips. The agent is able to adapt to a more challenging environment and produce a similar get-up style.
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Figure 7: Trajectories from a reference motion for sit-up and roll-over styles are edited to rise sooner (left) and later (right). Adjustments to
the curves can be performed interactively, and the resulting motion is immediately shown to the user.

6.2. Authoring Curves

Using our framework, it is simple to modify existing get-up
motions in order to change the duration and form of the motion. For
instance, Figure 7 shows the results of a sit-up and roll-over style of
motion that has been changed to cause the character to rise sooner
and later. This change requires small adjustments to the height and
torso curves.

In addition to synthesizing get-up motions that resemble
reference motions, our framework can also synthesize unique get-
up motions by authoring of the input curves. For the purpose
of better understanding the feature curves and how they effect
the style of get-up motion, we manually classified each of the
13 reference motions from the LAFAN1 dataset according to the
strategies identified by Bohannon and Lusardi [BL04]. The mean
and standard deviation of the curves for each class of get-up motion
is shown in Figure 8. Using these plots as guidance, and the spline
editing tool described in Section 4.3, we authored several different
styles of get-up motion highlighted in the biomechanics literature.
Figure 9 shows a sit-up and roll over, side sit to kneel pivot motion
authored with our method.

The supplementary video also shows examples of editing the
feature curves interactively, both on flat and irregular terrain. The
motions are synthesized in real-time using our framework and the

Overall Flat Easy Medium Hard
90% 100% 99% 95% 77%

Table 1: The success rate for learned control policies on all terrain
types. The agent can get-up on almost any flat, easy and medium
type terrain. The agent is less successful with hard terrains, but is
still able to get-up in most cases.

user is provided immediate feedback about the changes and how
they affect key characteristics of the motion.

6.3. Robustness Evaluation

We evaluate the robustness of the trained policy by starting from
100 different terrain locations and tracking the success of the agent.
A success is counted when the agent is able to remain standing after
getting-up from the given position. We observe good performance
on flat, easy, and medium terrains. The agent can almost always get-
up on these types of terrain. However, the agent sometimes fails
to stand on hard terrains, which is often caused by the agent not
finding suitable positioning of the feet and hands. Nevertheless, the
agent is able to succeed in most cases. Table 1 presents statistics of
the success-failure analysis for the different terrain types.
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Figure 8: The mean and standard deviation of feature curves extracted from reference motion clips and classified according to the strategies
in Bohannon and Lusardi [BL04]. We distinguish between starting from a supine and prone posture for the quadruped push-up style. These
plots provide a useful guide for authoring specific styles of get-up motion.
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Figure 9: Authored curves produce sit-up and roll (left) and side-sit to kneel-pivot (right) styles.

0 2 4 6 8 10

Steps #10 7

0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 r
et

ur
n 

ra
te

Ours
Standard pose VAE
No pose VAE
No terrain curriculum

Figure 10: An ablation comparison of our training methodology.
Ours: the agent learns to get-up and stand on almost any terrain.
Standard pose VAE: The agent is successful on flat and some
irregular terrains. No terrain curriculum: The agent makes slow
yet steady progress, but fails to get-up for some curve and terrain
combinations. No pose VAE: Synthesized motions are unnatural.

6.4. Ablation Study

Several ablation experiments were conducted to compare
the effectiveness of our training methodology. The ablation
experiments were conducted using 100M steps per experiment. The

terrain difficulty was increased using a fixed schedule of every
20 million simulation steps, which roughly corresponds to the
curriculum progression we observed during training.

Performance is measured as the average return rate, which
is computed as the cumulative task reward divided by the total
number of simulation steps required to perform the get-up and
standing phases for all the curves and terrain positions in the
training ensemble. This metric is used to compare the different
training configurations since simply using the reward return is
biased by the early termination, and we found that using the
average return rate gives a clearer idea of how the agent performs.
Figure 10 shows the performance using this metric for each
training configuration we tested. Sudden drops in the average return
rate indicate moments when the terrain difficulty is increased. A
qualitative evaluation can also be found in the supplementary video,
which is helpful for comparing the naturalness of motions. Each
ablation experiment is further discussed below.

Standard pose VAE: We trained a pose VAE using the approach
by Yin et al. [YYVDPY21] and use it in place of the C-VAE. The
character is often able to follow the curve trajectories and produce
several different motion styles, but often fails to reach a stable
standing configuration. The agent shows good progress early-on,
but that performance decreases after training advances to irregular
and sloped terrains. The agent begins to succeed more frequently at
standing toward the end of the training. However, we observed that
some motions appear awkward and unnatural. Unlike the C-VAE,
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the postures chosen may be less appropriate in certain phases of the
movement.

No pose VAE: The get-up policy is trained to directly produce
PD servo target angles, rather than outputting the latent vector
and pose offsets. Additionally, the naturalness reward rnatural

t term
is removed from Equation 2, and thus only the task reward is
used. The agent struggles to get-up, and typically cannot attain a
standing posture. As can be seen in the supplementary video, the
best strategy it learns is to raise the neck and torso while lying on
the ground. Furthermore, the animations appear unnatural.

No terrain curriculum: The character is sometimes able to
get-up and stand without the terrain curriculum learning. However,
the final average return rate is lower than our proposed method,
as shown in Figure 10. The agent fails to perform certain types
of motion because of a lack of early training only using the flat
terrain. We interpret that this is due to the number of successful
get-up styles being reduced by the omission of prior training on the
flat ground.

6.5. Discussion

Here we discussion some additional observations about our
framework, as well as its limitations.

Curve Authoring. Creating the authored curves involves first
analyzing real motion data and gaining insight about typical curve
trajectories (see Figure 8, and then reproducing similar shapes
using the spline tool. During preliminary experiments, we tried
creating motions with just the height and front torso orientation
curve, but the agent often failed to produce the desired motion. An
additional torso direction was added and this allowed the agent
to reproduce the styles of the reference motions more reliably.
Situating the torso directions at two different segments of the torso
also gives the agent some flexibility to succeed, which renders
the authoring task less difficult. Unfortunately, the curves provide
little control over the character’s global forward facing direction
since torso orientations are measured relative to the global vertical
direction only. This choice was made so that curves were not
dependent on the initial configuration of the character.

Initial torso orientation. The controller is less robust to states
where the orientation curves do not match the initial pose of the
character. The agent sometimes succeeds in tracking the curves by
quickly correcting its orientation, but the character often struggles
to track the desired get-up style.

Steep Terrain. Getting up on steep and complex terrain is
challenging. However, as shown in the supplementary video, the
character is able to successfully get-up on a wide range of terrain
types, including terrain with a 30◦ slope. We sometimes observe
slipping between the feet and ground on the steepest terrains in the
training environment.

Standard pose VAE vs C-VAE. In preliminary experiments, the
PD servos used by our character model had high torque limits,
and in this case the standard pose VAE seemed to perform well
in synthesizing get-up motions. However, the torque limits were
reduced in order to improve the naturalness of the motions, and this
resulted in the agent struggling to learn. By learning a latent motion

prior that is conditioned on the torso height and orientations, the
overall learning and quality of the motions was improved.

Generative adversarial learning methods. Our framework
uses a pose VAE that is conditioned on the height and orientation
of the torso to produce natural poses. Alternatively, generative
adversarial imitation learning has also been shown to synthesize
a variety of natural and diverse behaviors for complex control tasks
involving physics-based characters. Notably, Peng et al. [PMA∗21]
recently proposed AMP for synthesizing stylized motion, and a
diversity of get-up motions is demonstrated in their results. The
goal of their approach is to temporally composite a variety of
skills to perform different behaviors, whereas our work focuses on
synthesizing natural get-up motions using only a small number of
controllable signals that guide the style of the get-up motion. We
found that it is sufficient to simply restrict the agent to explore
actions in a natural pose space without also embedding the pose
transitions. Furthermore, since transitions are not part of the latent
model, the policy is able to synthesize novel transitions that are not
contained in the original motion database, which may be important
for curve authoring applications.

7. Conclusion

We propose a method to learn controllers allowing physics-based
characters to get-up on different terrains in a variety of different
ways from arbitrary fallen states. Robustness to terrain variation is
achieved by a curriculum training approach. The style of motion
is controllable using only a few key features, which may be
authored using spline curves or extracted from reference motions.
The synthesized motions are natural, which is achieved using a pose
VAE trained on a motion capture database and conditioned on the
signals that guide the get-up motion. This not only improves the
quality of the motion, but also improves training performance.

In the future, it would be interesting to further explore the use of
feature curves to guide the synthesize of other types of motions,
particularly for tasks where humans are capable of using many
different modes or styles to accomplish the same task. We are
especially interested by contact-rich motions, such as dexterous
manipulation. Our interactive editing tool could also be applied for
authoring novel motions in these cases. Extending our approach
to non-humanoid characters may also be possible. However, our
framework requires a pose prior constructed from a database of
reference motions, and this introduces additional challenges if
motion data is unavailable. Finally, while we primarily focus on
creating rich get-up motions, it would be interesting to synthesize
variations that consider additional objectives, such as holding an
object or avoiding the use of an injured limb. However, this requires
additional reward shaping and changes to the pose VAE training,
since the space of natural and useful motions may change.
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