
Eurographics Symposium on Rendering (2022), pp. 1–1
A. Ghosh and L.-Y. Wei (Guest Editors)

Controlling Material Appearance by Examples — Supplemental
Material

Figure 1: Practically, we should numerically evalute discrete CDF
of P and Q from their samples and compute the integral of their
difference (orange regions).

1. Sliced Cramér Loss

In our main paper, we introduce a resampling method to com-
pute the Sliced Wasserstein loss between different number of sam-
ples. However, this loss can be accurately computed without re-
sampling. We propose a sliced Cramér loss based on 1D Cramér
distance [Cra28]. Given two distributions P and Q over R, their Cu-
mulative Distribution Functions (CDFs) are respectively FP and FQ.
The p-Cramér distance between P and Q is defined as :

lp(P,Q) =
(∫ +∞

−∞
(FP(x)−FQ(x))

p dx
) 1

p
(1)

when p = 1, the Cramér distance is equivalent to the first order
Wasserstein distance. Practically, we have sample points drawn
from P and Q (pixels on labeled regions in our case). We need
to construct their empirical CDFs and numerically compute
the integral shown in Fig. 1. In Listing 1, we show a Pytorch
implementation, based on sorting with a time complexity of
O((M + N)log(M + N)) where M and N are numbers of sample
points for P and Q respectively. The implementation supports
auto-differentiation with batch training.

Theoretically, a sliced Cramér loss should be a more precise
comparison of two distributions than resampled Sliced Wasser-
stein. However, while evaluating the Cramér loss, we do not
observe significant improvement over our resampling strategy. As
the Cramér loss requires an additional sorting operation (line 10

in Listing 1), its evaluation is slightly slower. In Fig. 2, we show
a few results generated using the sliced Wasserstein loss with
resampling and the sliced Cramér loss respectively.

1 import torch as T
2

3 def cramer_loss(u, v):
4 # u is an array with shape [B, M] and v is an

array with shape [B, N];
5 # B is batch size, M and N are number of

sample points
6

7 # compute empirical CDFs of u and v
8 u_ = T.sort(u, dim=1)
9 v_ = T.sort(v, dim=1)

10 w = T.cat((u, v), dim=1).sort(dim=1)
11 u_cdf = T.searchsorted(u_, w[:, :-1], right=

True)
12 v_cdf = T.searchsorted(v_, w[:, :-1], right=

True)
13 u_cdf = u_cdf / u.shape[1]
14 v_cdf = v_cdf / v.shape[1]
15

16 # compute delta
17 deltas = torch.diff(w, dim=1)
18

19 # compute integral
20 return ((u_cdf - v_cdf) * deltas).abs().sum(

dim=1).mean()

Listing 1: Implementation of 1D Cramér loss

References
[Cra28] CRAMÉR H.: On the composition of elementary errors: Statisti-

cal applications. Almqvist and Wiksell, 1928. 1

submitted to Eurographics Symposium on Rendering (2022)



2 / Controlling Material Appearance by Examples — Supplemental Material

Target(s) Albedo Normal Roughness Specular Rendered

In
pu

t
Sl

ic
ed

C
ra

m
ér

lo
ss

Sl
ic

ed
W

as
se

rs
te

in
lo

ss
In

pu
t

Sl
ic

ed
C

ra
m

ér
lo

ss
Sl

ic
ed

W
as

se
rs

te
in

lo
ss

Figure 2: We compare material transfer results generated using the Sliced Cramér loss and resampled Sliced wasserstein loss. As mentioned,
despite a theoretically better behaved formulation we do not observe significant benefit of the Sliced Cramér loss over the resampled Sliced
Wasserstein loss.

submitted to Eurographics Symposium on Rendering (2022)


