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Figure 1: The four main aspects (study setup, ML/AI models, interactions, and results) of human-centered evaluations in human-centered
machine learning and their related dimensions. The assigned colors are used as a structuring visual element throughout this survey.

Abstract

Visual analytics systems integrate interactive visualizations and machine learning to enable expert users to solve complex
analysis tasks. Applications combine techniques from various fields of research and are consequently not trivial to evaluate.
The result is a lack of structure and comparability between evaluations. In this survey, we provide a comprehensive overview
of evaluations in the field of human-centered machine learning. We particularly focus on human-related factors that influence
trust, interpretability, and explainability. We analyze the evaluations presented in papers from top conferences and journals in
information visualization and human-computer interaction to provide a systematic review of their setup and findings. From this
survey, we distill design dimensions for structured evaluations, identify evaluation gaps, and derive future research opportunities.

1. Introduction

Recent advances in artificial intelligence (AI) and machine learn-
ing (ML), have led to numerous breakthroughs across many appli-
cation domains. Often, complex systems are developed by combin-
ing the latest innovations from ML, interactive systems, visual ana-
lytics, and many other fields. The emerging research area human-
centered machine learning (HCML) takes a holistic view on the
ML process, placing particular focus on human input, interactions,
and collaboration, and the involvement of different stakeholders in
the ML process [SSSE20] to enact the iterative context-sensitive
checking characteristic of the human brain [Seg19]. HCML com-
bines research in Al and ML with research in visualization (VIS)
and human-computer interaction (HCI) and has become a core topic
of visual analytics research over the last years, as indicated in Fig-
ure 2. HCML is closely linked to current research efforts in eXplain-
able Al (XAI) [Gun17], and the intelligibility of machine learning
models [WB19].

A challenge of current HCML research is the ability to provide
nuanced evaluations of systems, given their complexity and mul-
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tifaceted nature. Most papers provided small-scale evaluations of
simplified and encapsulated tasks [BBL18]. The well-established
methodology for ML evaluation (e.g., accuracy, F-score, squared er-
ror) only covers some result-oriented aspects of human work, such
as their impact on model quality. To holistically evaluate HCML
processes, human factors like trust and effort also need to be eval-
uated. Due to the field’s novelty, there is no established, general
methodology for evaluations of HCML systems yet. Such an estab-
lished methodology would benefit current HCML research efforts
in making evaluations replicable and more comparable.

In this State-of-the-Art-Report (STAR), we present the first fo-
cused review of human-centered evaluations (HCE) of human-
centered machine learning (HCML), providing a grouping of pa-
pers by HCML task. We discuss the particular challenges and evalu-
ation designs that are frequently used in different domains and dis-
till our findings into a checklist to provide guidance for the design
of HCML evaluations, advancing towards a structured evaluation
methodology for HCML. The aspects and dimensions we use to
group papers and structure this STAR are shown in Figure 1. They
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Figure 2: HCEs per Year & Venue: We see a trend in more human-
centered evaluations over the past years, particularly, since 2017.

are derived from a visual analytics perspective, considering three
main concepts: the system as well as its (machine learning) models,
the user, and interactions between them. Rather than focusing on in-
dividual machine learning tasks, such as clustering or classification
(already surveyed in [ERT*17]), we consider aspects of models and
explanations that are particularly important for a successful human-
machine interaction, such as trust. These aspects go beyond simple
interactions like providing relevance feedback or weighting dimen-
sions and are more difficult to tackle.

Our STAR has four major contributions: (1) a survey of human-
centered evaluations of HCML systems, (2) dimensions for the struc-
tured and comparable evaluation of such systems that are derived
from the results of a comprehensive survey, (3) a checklist as guid-
ance for the design of HCML evaluations and a template for report-
ing HCE findings, and (4) an overview of underexplored and infre-
quently evaluated dimensions as a starting point for future research.

For an interactive overview of our results, see the survey browser
at https://human-centered-evaluations-star.dbvis.de.

We structure our paper as follows: in Section 2 we synthesize a
definition of HCML from previous work, compile the main chal-
lenges in HCML, and discuss problems of current evaluations. In
Section 3, we introduce our survey’s methodology, including our
iterative coding process and paper selection criteria. Then, in Sec-
tion 4, we introduce the dimensions of analysis, including evaluation
setup, model properties, and interaction and guidance techniques. In
Section 5, we discuss the evaluation of technical contributions of
HCML, and in Section 6, we cover application-specific evaluations
in the domains of bio-medicine, machine learning, and linguistics.
In Section 7, we summarize our findings, discuss limitations of our
survey, and present opportunities for future research which emerge
from our survey.

2. Background

While there is no unified definition of HCML, there is a consensus
that HCML considers factors pertaining to human involvement in
machine learning pipelines, whether as users or as teachers [FG18].
Below, we provide several perspectives that build on each other
before providing a unified definition that will be used in this survey.

2.1. Definition of HCML

In 2014, Amershi et al. [ACKK14] defined interactive machine
learning as a form of machine learning that directly includes an
end-user into the loop to enable rapid feedback and model develop-
ment. They contrast this approach with applied machine learning,

in which domain experts rely on ML practitioners to train models in
slow, asynchronous loops. Consequently, they find that “interactive
machine learning can facilitate the democratization of applied ma-
chine learning, empowering end-users to create machine-learning-
based systems for their own needs and purposes.” [ACKK14]

In visual analytics, Endert et al. called for a paradigm shift
from human in the loop to what they called “the human is the
loop” [EHR*14], making a first step from interactive machine learn-
ing towards human-centered machine learning. According to their vi-
sion, systems should facilitate sensemaking tasks by seamlessly inte-
grating analysis capabilities into existing workflows without disrupt-
ing users. Amongst others, this includes enabling more expressive
forms of user feedback and the use of spatialization to define com-
mon ground between humans and machines. Dimensionality reduc-
tion algorithms are particularly suitable to generate spatializations
as they are typically unsupervised. Further, they can benefit from
user interaction to monitor errors and reduce reduction losses, as
surveyed by Nonato and Aupetit [NA19] and Sacha et al. [SZS*17].

More recently, Fiebrink et al. state that HCML should consider
both the human work and the “human contexts” [FG18] in machine
learning workflows. Such human work comes in many forms, such
as collecting and annotating training data, deriving machine learn-
ing pipelines, interacting with intelligent systems to derive knowl-
edge [SSS*14] and fine-tuning them. Understanding how humans
interact in such situations can help to not only make the systems
more usable but also discover new areas in which machine learning
could be helpful [FG18]. Sacha et al. [SSZ*17] highlight how in-
teraction offers considerable potential for improved support of ML
with respect to interpretability, understandability, evaluation, and
refinement. They also advocate for the integration of a multidisci-
plinary perspective as a contributor to bridge the gaps between auto-
mated ML methods and human reasoning.

Gilles et al. see the potential for HCML to lead to “new ways of
framing learning computationally” [GFT*16]. According to their
perspective, HCML includes “exploring the co-adaptation of hu-
mans and systems” [GFT*16]. In the visual analytics context, such
co-adaptation can facilitate knowledge generation and is particularly
applicable in the context of guidance. There, Sperrle et al. [SIB*20]
have recently proposed to view co-adaptive guidance from the per-
spective of simultaneous learning and teaching processes.

Going beyond co-adaptive human-machine collaboration, human-
centered Al “is a perspective on Al and ML that intelligent systems
must be designed with an awareness that they are part of a larger
system consisting of human stakeholders, such as users, operators,
clients, and other people in close proximity” [Riel9]. This view
does not only include user perspectives into ML and Al systems but
aims to provide a holistic, systemic perspective. Shneiderman aims
to operationalize human-centered Al by providing a framework that
clarifies how to (1) design for high levels of human control and high
levels of computer automation so as to increase human performance,
(2) understand the situations in which full human control or full
computer control are necessary, and (3) avoid the dangers of exces-
sive human control or excessive computer control [Shn20].

More generally, recent research in explainable artificial intelli-
gence (see [CPC19; Mil19; Riel9] for an overview) has focused on
measuring and improving algorithm transparency, trustworthiness,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.


https://human-centered-evaluations-star.dbvis.de

Sperrle et al. / Human-Centered Evaluations in Human-Centered Machine Learning 545

and intelligibility. Wortman Vaughan and Wallach postulate that de-
pending on the different stakeholders in the Al process, rather than
model intelligibility, the intelligibility of “datasets, training algo-
rithms or performance metrics” [WW21] could be more critical.

Building on this previous work, we define human-centered machine
learning as follows:

Human-centered machine learning is a field of research
that considers humans and machines as equally impor-
tant actors in the design, training, and evaluation of co-
adaptive machine learning scenarios.

All surveyed resources advocate the need to not only include humans
in machine learning pipelines but also comprehensively consider hu-
man factors. While earlier approaches like interactive machine learn-
ing were primarily concerned with increased efficiency and agency,
more recent work bridges the gap to psychology and sociology and
emphasizes that humans are deeply embedded into HCML work-
flows. Consequently, evaluations should also be human-centered.

2.2. Surveys of HCML Methods

As a result of its interdisciplinary nature, HCML relies on a multi-
tude of techniques and methods for designing and implementing ma-
chine learning processes that address the challenges outlined above.
Here, we focus on related surveys from the visual analytics domain
that summarize existing approaches. Endert et al. [ERT*17] survey
the integration of machine learning techniques into visual analytics
applications. They note a particular increase in the tight coupling
of bespoke visualization systems and steerable machine learning al-
gorithms. The resulting systems place equal importance on visual-
ization, machine learning algorithms, and interaction affordances to
balance human and machine effort and increase user trust and model
interpretability. Chatzimparmpas et al. [CMJ*20] specifically survey
methods to increase trust in machine learning through visualizations
and collect a large set of techniques and methods for different do-
mains and tasks. Hohman et al. provide a human-centered survey of
visual analytics for deep learning that, amongst others, aims to iden-
tify “types of people and users that would use and stand to benefit
from visualizing deep learning” [HKPC19], in which circumstances
deep learning visualization is typically used. However, in contrast
to this paper, those works do not focus on whether and how the pre-
sented approaches were evaluated. Yuan et al. [YCY*20] provide the
most recent survey of visual analytics for machine learning. They dis-
tinguish techniques that are employed before, during, or after model
training and that enable human involvement at the respective stage.

2.3. Challenges in HCML

Here, we outline common challenges in the research of HCML, syn-
thesized from related work and the papers surveyed in this STAR.
These challenges manifest in challenges for human-centered evalua-
tion that will be introduced in Section 7.2.

HCML-C1: Interdisciplinarity. Human-centered machine learn-
ing unites various fields like machine learning, explainable artificial
intelligence, human-computer interaction, and psychology. Conse-
quently, successful work in this area must bridge the gaps between
domains and encourage interdisciplinary collaboration [SSZ*17].
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HCML-C2: Complexity. As HCML systems should be designed
“in full recognition of the agency and complexity of human
users” [FG18] they tend to be sophisticated, bespoke solutions to a
given problem. Due to the systems’ integrated nature, suboptimal
(design) choices can hamper overall success. For instance, neglect-
ing the underlying machine learning algorithms could lead to sys-
tems with great usability but weak performance. In contrast, well-
performing machine learning models might not be used to their po-
tential when embedded in poorly designed systems. Hence, some or
all of their parts might not be intelligible to stakeholders, necessitat-
ing appropriate trust calibration methods. Furthermore, biased per-
ceptions due to novelty effects [SCG09] and participant response bi-
ases [DVM*12] complicate effective evaluation and rapid iteration.

HCML-C3: Co-Adaptation. Many HCML systems observe user
interactions and adapt their models to specific users, changing
their characteristics over time (e.g., [CVL*18; SSKE19]). At the
same time, users observe system responses and adapt their work-
flows [SIB*20]. In this process, systems might learn false or even-
tually outdated information. Consequently, they must offer interac-
tion sequences that allow reverting previous adaptations. Further, co-
adaptation can become a source of frustration for users when they are
implicitly expected to participate in the system training. Moreover,
the user becoming a teacher may make the system vulnerable to user
biases. In addition to raising challenges during system design and
use, co-adaptation also complicates the design of replicable studies.

HCML-C4: Stakeholder Diversity. Multiplicity of stakeholders
poses a challenge to the assessment of validity and result generaliz-
ability. User segmentation is confounded by factors including cul-
tural and educational background, age, gender, expertise, moral, and
social contexts [BBL18]. In the context of HCML, all these factors
coupled with subtle differences like personality traits can influence
how an action is perceived, reacted to, and executed. Similar to co-
adaptation, stakeholder diversity may hinder result replicability.

2.4. Evaluation of HCML

Due to the complexity and interdisciplinary challenges of HCML
systems discussed above, their evaluation is typically complex given
the many different factors that can be considered. Boukhelifa et
al. distinguish between human-centered evaluations that focus on
the interaction quality and algorithm-centered evaluations aiming
to assess the robustness of the deployed algorithms [BBL18]. It is
important to note that HCML systems can be successfully evaluated
using both approaches. However, in this STAR, we focus on the first
group, human-centered evaluations, to emphasize the role of the
human in the interactive machine learning process. With increasing
complexity of systems, many designs account for “issues of fairness,
accountability, interpretability, and transparency” [Riel19]. These
factors, often inspired by recent research in explainable artificial
intelligence, inherently require a human perspective for evaluation.

Algorithm-Centered Evaluations — As algorithm-centered eval-
uations are frequently used in machine learning and artificial intel-
ligence research, there are established methodologies that can be
applied. They typically rely on quantitative analysis and report on
model properties performance. Clear cut metrics (e.g., accuracy and
F-score) exist to evaluate supervised ML techniques. Evaluation of
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Figure 3: Survey Methodology: We first compiled a set of seed papers to derive initial coding dimensions. Based on these results, we updated
the dimensions and strengthened the human-centric focus of the survey. We finally code 71 papers in 42 dimensions using an iterative process.

unsupervised learning is more complex with metrics commonly sep-
arated into the two categories internal validation and external vali-
dation [Pal19]. The lack of ground truth in unsupervised ML tech-
niques makes user knowledge about data core to several evaluations
that comparatively validate models against user expectations. In this
context, interaction plays a central role [NA19] for lack of estab-
lished metrics that could replace ground-truth data.

Human-Centered Evaluations — In contrast, a comprehensive
overview for human-centered evaluations is currently missing. Here
it is important to note that human-centered evaluations can be both
qualitative and quantitative, as these two dimensions are orthogonal.
In our selection, 90% of papers report qualitative evaluations, while
37% report quantitative, human-centered measurements. Human-
centered evaluations of HCML systems must consider methods that
adequately evaluate all aspects of the human machine partnership.
For instance, testing only interface usability may miss out on the
system’s ability to interpret user input to create more accurate mod-
els. Similarly, only measuring model accuracy misses out on evalu-
ating the user experience. Ideally, HCE should evaluate both cogni-
tive and emotional elements involved in human-machine interaction
aspects, such as co-adaptation and co-creation, pushing the bound-
ary beyond the assessment of usability and user experience.

2.5. Surveys of Evaluations

Boukhelifa et al. [BBL18] discuss challenges in the evaluation of in-
teractive machine learning systems and base their insights on previ-
ous experience in the field, as well as a survey of recent works. They
consider all types of evaluations and find that “current evaluations
tend to focus on single isolated components such as the robustness
of the algorithm, or the utility of the interface” [BBL18]. In con-
trast to their survey, we focus on human-centered evaluations. As a
result, we report on more focused coding dimensions and follow dif-
ferent paper selection and exclusion criteria (see Section 3.2). While
the survey of evaluations in information visualization by Borgo et
al. [BMB*18] is not directly related to HCML, it provides detailed
dimensions for reporting study designs and participant characteris-
tics. As these dimensions are equally important in evaluations of
HCML, we report on them as well.

3. Methodology

As described above, the focus of this survey is on human-centered
evaluations of human-machine interaction in the fields of visual data
analysis and machine learning. Thus, we collected papers from the
following high-quality journals and conferences in that domain:

e IEEE Transactions on Visualization and Computer Graphics

(TVCQG, including IEEE InfoVis and IEEE VAST proceedings)
e Computer Graphics Forum (CGF, including EuroVis proceedings)
e Proceedings of ACM Computer Human Interaction (CHI)

For all venues, we considered the years 2012 to 2020 to focus on
recent developments. We do not consider short papers or workshop
papers as they do not typically provide extensive evaluations.

3.1. Iterative Coding Methodology

Our methodology is split into two distinct phases that are outlined
in Figure 3. In the initial pilot phase, we performed a keyword
search for machine learning, interactive machine learning, trust,
interpretable, interpretability, explanation, and explainability on the
titles, abstracts, as well as contents of published works, retrieving
an initial set of potentially relevant papers. We manually screened
all papers and excluded those that did not deal with some form of
machine learning or artificial intelligence or that did not perform
user-based evaluations. Further, we excluded all papers describing
systems that did not afford user-model interactions, leaving us with
54 papers at this stage. The final paper selection and exclusion
criteria and examples of excluded papers will be presented below.

Starting with eight papers randomly selected among the collected
54, we began an exploratory coding phase in which we extracted all
potentially relevant dimensions and distilled them into coding guide-
lines. Next, we refined the guidelines until an agreement between
all coders was reached. This left us with 32 dimensions in 5 aspects,
focusing on user characteristics, XAl properties, model properties,
tasks and environment, and study setup. When discussing the ini-
tial coding results, it became clear that the survey was too focused
on properties of (X)AI models and explanations and did not suffi-
ciently cover the effects and timings of various interaction options.

© 2021 The Author(s)
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Venue #Collected #Coded #Experiments
IEEE Transactions on Visualization 64 41 44

and Computer Graphics

IEEE Conference on Visual Analytics 7 5 5
Science and Technology (VAST)

Computer Graphics Forum 9 6 6
Conference on Human Factors in 41 15 16
Computing Systems (CHI)

Total 121 67 71

Table 1: Publications per Venue: We collected 121 papers; out of
which 67 met our selection criteria and where coded. Four papers
report on two relevant evaluations, leading to 71 coded experiments.

As aresult, we added the following keywords to our search terms:
human-centered machine learning, mixed-initiative, human-in-the-
loop, and intelligible, and entered the survey phase: We started a
recalibration process and derived new dimensions in four aspects:
study setup, ML/AI model, interactions, and results.

We then assigned 12 selected papers to all six authors, such that
each paper was coded by two annotators. Further, we selected two
papers that were coded by all authors. Through a discussion, we
then used the obtained results to both refine our coding guidelines
and calibrate our annotations to ensure inter-annotator agreement.
Further, we derived initial criteria to decide whether to code or
exclude a paper. From there, we entered an iterative coding cycle
in which we collected a total of 121 papers. Table 1 provides an
overview of the publication venues of the 67 papers that we coded as
relevant. We used weekly annotator meetings to discuss the obtained
results and ensure continued inter-annotator agreement. In this phase,
we removed six dimensions that were not reported in any of the
coded papers and fine-tuned our paper exclusion criteria.

When coding papers, we did not attempt to resolve potential
conflicts, ambiguities, or overlaps between concept definitions (e.g.,
transparency, intelligibility) but captured them as presented by the
authors. Instead, we present short definitions of all dimensions in
Section 4. Refining these concepts and converging on a common
vocabulary presents an opportunity for future research.

3.2. Paper Selection and Exclusion Criteria

We manually evaluated all potential papers of interest and excluded
those that did not deal with some form of interactive machine learn-
ing or artificial intelligence or that do not provide a user-based eval-
uation. We focus on systems that afford direct or indirect interac-
tions with the underlying models. As a result, we exclude papers
that do not include interactivity related to the analysis task. In par-
ticular, papers matching any of the following criteria are excluded:
e Papers that provide use cases or usage scenarios developed by the
authors without the inclusion of expert feedback, or case studies
that do not consider human factors pertaining to the expert (e.g.,
[GWGVW19; KTC*19; LILH19; PLM*17; SJIS*18; WPB*20]).
This was the most frequent reason for exclusion.

e Papers that describe applications that do not allow user interac-
tion with the model beyond filtering of data points (i.e., purely
exploratory systems in which the user can neither influence the
model behavior during the analysis session nor optimize towards
a specific model output) (e.g., [JVW20; LLT*20; XXL*20]).
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e Papers not describing system evaluations but research agen-
das (e.g., [AVW*18]), or workshops (e.g., [AW18; BCP*19]).

e Papers that provide quantitative evaluations of results not gener-
ated by participants in a study setting (e.g., [BZL*18; YDP19]).

We recognize that these criteria exclude a significant number of
(HC)ML papers at the intersection between machine learning, visu-
alization, and human-computer interaction. However, the focus of
this STAR is on human-centered evaluations; several recent surveys
on visual analytics and machine learning without this focus exist.

4. Dimensions of Analysis

Following our methodology, we iteratively refined the dimensions
coded in our review. They are summarized in Table 2. Below, we
introduce all dimensions, provide definitions where necessary, and
present summary statistics. For an overview of all annotation results
and definitions of all coding values, see the supplementary material.

4.1. Evaluation Setup

This aspect captures properties of the study setup, the participants,
and the analysis tasks and data types used in the study. It is funda-
mental to assessing a study’s internal validity, as the level of preci-
sion in reporting each dimension supports evaluating the strengths
and truthfulness of inferences regarding cause-effect or causalities.

4.1.1. Study Setup

The first category of the evaluation setup is the study setup. This de-
scribes study protocols and methodologies for data collection, analy-
sis of results, and forms of participant training when included. Study
setup dimensions are interlinked with the Participants dimensions,
with the method chosen in the Learning Phase dimension being cor-
related with the required expertise level of the participants.

Study Type

Definition: The study type defines how the study was designed
and carried out.

Values: Observation Study, Pair Analytics, Lab Experiment,
Crowdsourcing.

Across the 71 experiments surveyed, 37% each were lab studies (e.g.,
[CHH*19; LLL*19; MQB19]), 42% observational studies (e.g.,
[BHZ*18; BSP20; PNKC20]), and 13% pair analytics studies in
which visual analytics experts support participants with the technical
challenges raised by complex systems (e.g., [KAS*20; SKB*18]).
Four of the analyzed papers presented results from multiple studies,
and one relies on multiple study types by combining a pair analyt-
ics and a lab study [BAL*15]. Only two studies used long term an-
alytics [KPN16; MP13] while six evaluations used crowdsourcing
[CVL*18; CWZ*19; SFB*20; SMD*16; WSW*18; YGLR20] .

Result Processing

Definition: The result processing defines the type of data collected
within a study, such as qualitative and/or quantitative.

Values: Qualitative, Quantitative, Both.

Qualitative research appears to be the favored approach, with 65% of
the studies focusing on gathering qualitative feedback in the form of
interviews, surveys, and observations, often leveraging think-aloud
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Dimension Proposed Values and Annotation Results
Study Type pair analytics [EKC*20; ESD*19; ESKC18; ESS*18; GLC*19; KAS*20; KBJ*20; SKB*18; SSSE20], observation study [ARO*17; BSP20; CYL*20; DSKE20; DVH*19;
EKSK18; GZL*20; HHC*19; HKBE12; JSR*19; KAKC18; KEV*18; KPN16; LGM*20; LLS*18; LPH*20; LSC*18; LSL*17; LXL*18; MCZ*17; MLMP18; MP13; PNKC20;
SSKE19; WGSY19; WGYS18; XCK*20], lab experiment [BAL*15; BHZ*18; CD19; CHH*19; CMQ20; CRH*19; DLW*17; dSBD*12; GLC*19; HOW*19; KAY*19; LLL*19;
MQB19; MXC*20; MXLM20; PZDD19; RAL*17; SDMT16; SLC*20; SSBC19; WBL*20; WMIJ*19; XXM*19; ZWLC19], crowdsourcing [CVL*18; CWZ*19; SFB*20; SMD*16;
= WSW#18; YGLR20]
3 Result qualitative [ARO*17; BSP20; CHH*19; CMQ20; CYL*20; DSKE20; DVH*19; EKSK18; ESD*19; ESKC18; GZL*20; HHC*19; HOW*19; JSR*19; KAKC18; KAS*20; KBJ*20;
“E‘ Processing KEV#18; KPN16; LGM*20; LLL*19; LLS*18; LSC*18; LSL*17; MCZ*17; MLMP18; MP13; MXC*20; MXLM20; PNKC20; SDMT16; SKB*18; SMD*16; SSBC19; SSKE19;
@ SSSE20; WBL#*20; WGYS18; WSW*18; XMT#20; XXM*19], quantitative [BHZ*18; CWZ*19; DLW*17; GLC*19; SLC*20; WMJ*19; XCK*20], both [BAL*15; CD19;
CRH*19; CVL*18; dSBD*12; EKC*20; ESS*18; GLC*19; HKBE12; KAY*19; LPH*20; LXL*18; MQB19; PZDD19; RAL*17; SFB*20; WGSY19; YGLR20; ZWLC19]
Learning Phase unguided exploration [BAL*15; DSKE20; GZL*20; LLL*19; MQB19; PNKC20; SDMT16; XMT*20], training [BSP20; CD19; CVL*18; DVH*19; EKSK18; LPH*20; RAL*17;
SMD#*16; XXM*19], walkthrough [BAL*15; BHZ*18; BSP20; CHH*19; CMQ20; CRH*19; DSKE20; EKC*20; ESKC18; ESS*18; GLC*19; HHC*19; HOW*19; KAKC18;
KAY*19; LLL*19; MQB19; MXC*20; MXLM20; PZDD19; SLC*20; SSBC19; SSKE19; SSSE20; WBL*20; WGYS18; WMI*19; ZWLC19], none [ARO*17; CWZ*19; CYL*20;
dSBD*12; ESD*19; HKBE12; JSR*19; KAS*20; KBJ*20; KEV*18; KPN16; LGM*20; LLS*18; LSL*17; SFB*20; SKB*18; WSW*18; XCK*20]
Time Needed min = 20, max = 43200, ¢ = 7870.90383664717, avg = 1547.96666666667, med = 56, |[N/A| = 38
Domain/Dataset low [BHZ*18; BSP20; DLW*17; MQB19; SLC*20], mid [CD19; CMQ20; GLC*19; HKBE12; MLMP18; XCK*20], high [ARO*17; BSP20; CHH*19; CRH*19; CVL*18; CYL*20;
Expertise DSKE20; DVH*19; EKC*20; ESD*19; ESS*18; GZL*20; JSR*19; KAKC18; KBJ*20; KEV*18; KPN16; LGM*20; LLL*19; LPH*20; LSC*18; LSL*17; MP13; MXC*20;
SKB*18; SSBC19; SSKE19; XMT*20; XXM*19], study condition [ESKC18; SMD*16], N/A
2 ML/AL low [BSP20; DLW*17; KAY*19; SDMT16; SLC*20], mid [BAL*15; BHZ*18; CMQ20; DSKE20; HHC*19; MQB19; RAL*17; SDMT16; WMJ*19; YGLR20; ZWLC19],
g Expertise high [BSP20; CYL*20; GZL*20; KAKC18; KEV*18; KPN16; LLS*18; LSC*18; LSL*17; LXL*18; MCZ*17; MLMP18; MXC*20; MXLM20; WBL*20; WGSY19; WGYS18;
3 WGZ*19; WSW*18; XXM*19], study condition [CWZ*19; ESKC18; ESS*18; LLL*19; PNKC20; SSSE20], N/A
E Background free text, N/A
Age Minimum age: min = 10, max = 32, 6 = 5.06, avg = 22, med = 22, [N/A| = 54
Maximum age: min = 13, max = 74, ¢ = 15.36, avg = 46, med = 48, [N/A| = 55
Gender Male: 56.63%, Female: 42.90%, NB: 0.47%
# Participants ~ min = 1, max = 199, 6 = 33.21, avg = 15.99, med = 6, |[N/A| = 4
Analysis Task  Explore [BSP20; CD19; CHH*19; CMQ20; DSKE20; DVH*19; ESKC18; GZL*20; JSR*19; KAKC18; KPN16; LLL*19; LXL*18; MCZ*17; PZDD19; SDMT16; SSBC19;
WGSY19; WGYS18; WSW*18; XCK*20; XMT*20; XXM*19; YGLR20], Use [ARO*17; BHZ*18; BSP20; CVL*18; DLW*17; DVH*19; ESKC18; GLC*19; GZL*20; HKBEI2;
KAS#20; KEV*#18; LGM*20; LPH*20; SDMT16; SLC*20; SMD*16; SSBC19; SSKE19; XMT*20], Understand [BAL*15; BSP20; CWZ*19; CYL*20; DVH*19; EKSK18;
- ESKC18; GZL*20; HHC*19; JSR*19; KAKC18; KAS*20; KPN16; LSC*18; LSL*17; MCZ*17; MQB19; PNKC20; RAL*17; SSSE20; WGSY19; WGZ*19; WMI*19; WSW*18;
S XCK*20; YGLR20; ZWLC19], Diagnose [BAL*15; BSP20; CRH*19; dSBD*12; GZL*20; KAKC18; KPN16; LGM*20; LLS*18; LSC*18; MCZ*17; MXLM20; PNKC20; SFB*20;
'E SSSE20; WBL*20; XMT#20; ZWLC19], Refine [BAL*15; CRH*19; CVL*18; DLW*17; DVH*19; EKC*20; ESD*19; ESS*18; GZL*20; HHC*19; HOW*19; JSR*19; KBJ*20;
z LSC*18; LSL*17; LXL*18; MLMP18; MXC*20; PNKC20; SFB*20; SSBC19; SSSE20; WGYS18; WMJ*19], Hypothesize/Simulate [CRH*19; DSKE20; HHC*19; KAY*19;
é MP13; MQB19; WGSY19], Compare [BAL*15; BSP20; CHH*19; DLW*17; ESKC18; KEV*18; MLMP18; MXC*20; SDMT16; WGSY19; WMJ*19; XCK*20; YGLR20],
Justify [HHC*19; KAY*19; KEV*18; LPH*20; SKB*18; WGZ*19; ZWLC19], Train [CHH*19; ESKC18; HKBE12; LPH*20]
Data Types Text Data [ARO*17; BAL*15; CVL*18; EKC*20; ESD*19; ESKC18; ESS*18; HKBE12; JSR*19; LLL*19; MCZ*17; MXC*20; SFB*20; SKB*18; SSBC19; SSKE19],
Geo [PZDD19], Images [CRH*19; CYL*20; KBJ*20; LLS*18; LSC*18; LSL*17; SSSE20; WGSY19; WGYS18; WGZ*19; XCK*20; XXM*19], Video [GLC*19; KAY*19;
SMD#*16], Multivariate Data [BHZ*18; BSP20; CD19; CMQ20; CWZ*19; DLW*17; dSBD*12; DSKE20; DVH*19; EKSK18; GZL*20; HHC*19; HOW*19; KAKC18; KAS*20;
KEV#18; KPN16; LGM*20; LPH*20; LXL*18; MLMP18; MP13; MQB19; MXLM20; PNKC20; RAL*17; SDMT16; SLC*20; WBL*20; WMJ*19; WSW*18; XMT*20; YGLR20;
ZWLCI19], N/A
Quality N/A, measured [BAL*15; BHZ*18; DLW*17; EKC*20; ESKC18; ESS*18; GLC*19; LPH*20; LSC*18; LXL*18; PNKC20; PZDD19], study condition [RAL*17], measured
condition [dSBD*12; HKBE12], motivated [GZL*20; KAKC18; MCZ*17; SKB*18; SLC*20; SSKE19; WGSY19; WGYS18]
«» Observed N/A, measured [DLW*17; ESD*19; PNKC20; PZDD19; RAL*17], study condition [dSBD*12], measured condition [CVL*18; ESKC18; HKBE12; MLMP18; SMD*16],
g '% Quality motivated [ESS*18; GZL*20; KAS*20; KEV*18; LPH*20; ZWLC19]
-8 qé« Transparency N/A, measured [GLC*19], study condition, measured condition [KAS*20], motivated [CRH*19; CWZ*19; DSKE20; EKSK18; ESD*19; ESS*18; GZL*20; MQB19; PNKC20;
E & WMI*19; WSW*18; XCK*20; ZWLC19]
g‘ Eo) Trustworthiness N/A, measured [CRH*19; CWZ*19; DLW*17; HHC*19; HKBE12; SFB*20; SSBC19], study dition, measured dition [CVL*18], motivated [ESD*19; ESKC18; ESS*18;
s = KAKC18; KAS*20; KBJ*20; LSL*17; MCZ*17; MQB19; WBL*20; WMJ*19; XCK*20]
§ Interpretability  N/A, measured [CWZ*19; DLW*17; DSKE20; EKSK18; GLC*19; HHC*19; SFB*20; XCK*20], study condition [ESKC18; KAS*20], measured condition [CVL*18; YGLR20],
-g motivated [BAL*15; BSP20; CHH*19; CRH*19; CYL*20; EKC*20; ESS*18; GZL*20; JSR*19; KAKC18; KEV*18; KPN16; LLL*19; MCZ*17; MQB19; SLC*20; WGSY19;
2 WGYS18; WSW*18; XMT*20; ZWLC19]
E Controllability ~ N/A, measured [DSKE20; WGSY 19], study condition [ESKC18; SFB*20], measured condition [SEH*18], motivated [BSP20; CHH*19; CRH*19; EKC*20; ESD*19; GZL*20;
g HKBE12; JSR*19; KEV*18; LPH*20; PNKC20; SLC*20; WBL*20; WMJ*19]
s 2 Transparency N/A, measured [DLW*17; EKSK18], study condition, measured condition, motivated [BSP20; GZL*20]
% Trustworthiness N/A, measured [BAL*15; DLW*17; EKSK18; HHC*19], study condition, measured condition [CVL*18], motivated [ESKC18; LPH*20]
E Effectiveness N/A, measured [CWZ*19; ESKC18; GLC*19; KAY*19; SKB*18; WSW*18], study condition, measured condition [CVL*18; SFB*20], motivated [BSP20; CHH*19; DVH*19;
£ EKSK18; GZL*20; PNKC20]
& Fidelity N/A, measured, study condition, measured condition [CVL*18], motivated [BSP20; MQB19]
S | Direct / Indirect  direct [BSP20; CMQ20; CVL*18; dSBD*12; DVH*19; EKC*20; ESD*19; ESKC18; GLC*19; GZL*20; HKBE12; HOW*19; KAKC18; KAS*20; KBJ*20; KPN16; LLL*19;
- LPH*20; LSL*17; MCZ*17; MP13; MXC*20; MXLM20; PZDD19; SDMT16; SFB*20; SKB*18; SMD*16; SSBC19; WBL*20; XMT*20; YGLR20; ZWLC19], indirect [ARO*17;
= CHH*19; CWZ*19; DLW*17; EKSK18; ESS*18; JSR*19; KEV*18; LGM*20; LSC*18; LXL*18; MLMP18; MQB19; PNKC20; WMJ*19; WSW*18; XCK*20; XXM*19],
s both [BAL*15; BHZ*18; CRH*19; CYL*20; DSKE20; HHC*19; KAY*19; SLC*20; SSKE19; WGSY19; WGYS18], N/A
g Interaction Type free text, N/A
< | Impact free text, N/A
Time/Phase data selection [WBL*20; YGLR20], data preprocessing [BHZ*18; SMD*16; WBL*20], training [ARO*17; BAL*15; CHH*19; CRH*19; DSKE20; EKC*20; ESD*19; ESKC18;
ESS*18; GLC*19; HOW*19; JSR*19; KAS*20; KBJ*20; KEV*18; LPH*20; MP13; MXC*20; PNKC20; SKB*18; SLC*20; WGSY 19; WMI*19], post-training [BAL*15; CHH*19;
k CMQ20; CVL*18; CWZ*19; CYL*20; DLW*17; dSBD*12; EKSK18; GZL*20; HHC*19; HKBE12; JSR*19; KAKC18; KAY*19; KPN16; LGM*20; LLL*19; LLS*18; LSC*18;
i LSL*17; LXL*18; MCZ*17; MLMP18; MQB19; MXLM20; PZDD19; RAL*17; SDMT16; SFB*20; SSBC19; SSKE19; SSSE20; WGSY19; WGYS18; WGZ*19; WSW*18;
© XCK*20; XMT*20; XXM*19; ZWLC19]
Frequency througt d d, N/A
Degree orienting [BHZ*18; BSP20; CVL*18; CYL*20; DVH*19; ESD*19; GZL*20; JSR*19; KAKC18; SKB*18; SSKE19; WMJ*19; XCK*20; YGLR20], directing [CVL*18; DSKE20;
KEV*18; LGM*20; MLMP18; SMD*16; YGLR20], prescribing [EKC*20; GLC*19], N/A
© Knowledge Gap data [BHZ*18; BSP20; CVL*18; CYL*20; DSKE20; GZL*20; KAKC18; KEV*18; SKB*18; SMD*16; XCK*20], task [EKC*20; ESD*19; GLC*19; JSR*19; MLMP18; SKB*18;
o SSKE19; YGLR20], VA method [BSP20; DVH*19; ESKC18; SKB*18], user, infrastructure, N/A
Adaptation content [CVL*18; DSKE20; GLC*19; GZL*20; SMD*16; SSKE19], context [JSR*19; SKB*18], both, N/A

Main HCML Finding free text (see Table 3), N/A
UI Feedback
Interaction Feedback free text (see Table 5), N/A

free text (see Table 4), N/A

Table 2: The Surveyed Dimensions, their values, and coding results: For all non-free-text dimensions we summarize our results by listing
corresponding references. N/A values and free text comments are not included; any other value without reference indicates that it was not found.
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protocols (e.g. [BSP20; CD19; HHC*19; SDMT16; XXL*20]. No
significant change in trend across the years has been detected with
quantitative data collection representing only 9% (e.g. [BHZ*18;
CWZ*19; DLW*17; SEH*18]) overall. Studies using a mix of quali-
tative and quantitative data gathering protocols represent the remain-
ing 26% (e.g. [BAL*15; CD19; HKBE12; LXL*18; RAL*17]). No
significant difference was found between evaluation supervised ver-
sus unsupervised methods, with both favoring qualitative approaches
over quantitative ones.

Definition: The learning phase identifies the type and amount
of training provided to participants before they interact with the
system being evaluated.

Values: Unguided Exploration, Structured Training, Walkthrough,

None.
The aim of a learning phase in human-centered evaluation is to re-
duce the chance that participant interaction with the experimental
setup might be influenced by confounding effects such as lack of
clarity of task requirements and task execution, insufficient famil-
iarity with the study interface, or other elements pertinent to study
infrastructure. HCML approaches are interested in investigating un-
derstanding and interpretation. Thus training phases need to balance
the amount of information provided to participants against the poten-
tial introduction of bias towards a system, technique, or model. Our
survey highlighted walkthrough as the preferred training method
overall (38%). When participants had prior knowledge in either do-
main, dataset, or ML, structured training was used (14%) [CVL*18;
EKSK18; LPH*20]. Unguided exploration was employed as an al-
ternative to a walkthrough for those cases where participants had
high levels of competencies and familiarity with core aspects of the
study (13%) [GZL*20; PNKC20; XMT*20]. A large number of
studies did not report training information 35%.

Definition: Total time needed to complete a study. Time can be
average study completion time, average time per task, or fixed
when allocated as part of the study design.

Values: Free text, format: min, hr, etc.

Completion time clustered between two ranges with the majority of
studies taking between 30 min to 1 hr (e.g., [EKC*20; SDMT16;
SSBC19]), followed by studies lasting between 90 min to 3 hrs (e.g.,
[MXLM20; WBL*20; XXM*19]). Studies with a total completion
time of less than 30 min were crowdsourced studies (e.g. [SFB*20]).
Two studies lasted for 24 hrs [CHH*19; CWZ*19] and one for four
months [KPN16], with the former being a lab study and the latter a
long term observation study.

4.1.2. Participants

A core factor in human-centered evaluation is the clear profiling of
participants. In human-centered machine learning, the depth of such
profiling is even more complex. Elements belonging to the user’s
personal, private, and social spheres are likely to influence interac-
tion with the model. Among others, these include the propensity to
trust, differences between trust in humans and machines, prejudice
built from previous experience, confidence, and self-esteem. In our
survey, we did not find studies that performed any considerable eval-
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uation of such traits. Participant profiling remains limited, focusing
mainly on skills and knowledge. We have also found limited report-
ing of details related to reducing bias and balancing diversity in di-
mensions such as gender and age.

Definition: This dimension distinguishes between participant ex-
pertise and familiarity with the problem domain and/or dataset
used during evaluation.

Values: Low, Mid, High, Study Condition, N/A.

Our analysis revealed a clear distinction between Domain versus
Dataset expertise. The former implies knowl-

edge and understanding of the essential as- g Iow|5

pects of a specific field, the latter, in the con- % [

text of HCML, implies knowledge and famil- £ med °7

iarity with the specific dataset(s) under in- .§ highl -
vestigation. The majority of studies (62%) % |

reported values for this dimension detail- § sc 2

ing expertise levels (e.g. [KPN16; LSL*17; = |~
MLMP18; MXC*20]) and distribution across #Studies

levels (e.g., [CVL*18; SMD*16]). Few pa-
pers use this dimension as controlled study condition, comparing
results across participants’ expertise levels (e.g., [ESKC18]).

Definition: This dimension reports participant expertise with re-
spect to machine learning models and/or their development.

Values: Low, Mid, High, Study Condition, N/A.

Technical expertise of the participant was reported both at the level
of expertise with respect to ML models, their
development, as well as with respect to ML in-
teractive systems and framework development.
Similar to the case for Domain & Dataset ex-
pertise, this dimension was reported in the ma- R,
jority of studies (62%). The dimension often Studies
appeared as a study condition (e.g., [CWZ*19; ESS*18; LLL*19]),
or as criteria used for participant segmentation together with Do-
main & Dataset expertise [CYL*20; KAKC18; KEV*18].

12

ML/AI Expertise
=
=)
>

Definition: The participants’ age range or average age.

Values: Tuple (min, max), single numerical value, N/A.

Only 20% of the surveyed studies reported participant age ranges,
with some including standard deviation (e.g. [WMJ*19]). Age range
and distribution represent important information to explore data and
feedback related to the perception of Model specific categories such
as Explanations and Model Properties.

Definition: This dimension reports summary statistics about the
gender of participants.

Values: Free text, N/A

In the context of machine learning, bias can be introduced by lack
of representation of demographic categories. In our surveys only
31% of the total studies reported gender distribution, with 3 studies
reporting equal distribution of male and female participants (e.g.,
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[CD19; EKSK18; GLC*19]), and 2 studies reporting non-binary or
unspecified gender participants (e.g. [GLC*19; SFB*20]).

Definition: Total number of participants who completed a study
and who were accounted for in the study analysis.

Values: Numerical value.
All surveyed studies reported the total number of participants. Where
applicable, studies also differentiated between the total number
of recruited participants versus the total number of participants
considered for eventual analysis. In those cases, authors reported
details on exclusion criteria that were applied to filter out participants
(e.g., [CVL*18; CWZ*19; SFB*20; SMD*16]).

4.1.3. Tasks and Data

The task and data dimensions represent characteristics of HCML ap-
proaches and their evaluations. Based on the analysis tasks and data
types, we can directly compare different systems and paper contri-
butions. Hence, we use these two dimensions in the next two sec-
tions to discuss techniques and application domains. Section 5 de-
scribes technique-focused evaluations in relation to identified tasks.
Section 6 describes application-centered evaluations in relation to
the data types considered.

Definition: The main analysis task(s) participants worked on dur-
ing the evaluation.

Values: Understand, Diagnose, Refine, Compare, Explore, Use,
Hypothesize, Justify.

HCML approaches usually target one or more tasks from the data
and visual analytics pipelines, ranging from configuring and training
a machine learning model to using it, comparing it to other models,
or justifying its decisions. Thus, we surveyed the reported tasks in
our paper set and grouped them into the values described above.
Specifically, we focused on the tasks that were performed during
the evaluation described. For instance, if a tool is motivated to help
users refine a model, but the evaluation only tested the comparison
of a model, it is categorized under compare. If tools were evaluated
for multiple tasks, each of these tasks was coded. While several
task taxonomies for information visualization exist (e.g., [BM13;
vLFB*14]), they do not appropriately capture several typical HCML
tasks. The tasks listed here build on work by Liu et al. [LSL*17]
and were iteratively compiled during paper coding.

Following the data and visual analytics pipelines, we start
with tasks performed during train-

|

ing, where models get iteratively HypoTes:_ze[ ;
refined (c.g. [EKC*20; ESS*18; o0 1
KBJ#20]);  diagnosed  (e.g., Diagnose | -
[LLS*18; MXLM20; WBL*20]); % vee | 3
and compared (e.g., [CHH*19; © g 26
DLW*17; MLMP18]). Followed Refine | 28
by tasks performed post training, Understand | 29
where model results are explored (l) 10 20 30

#Studies

(e.g., [BSP20; CMQ20; KAKC18]);
understood (e.g., [CWZ*19; MQB19; XCK*20]); and used (e.g.,
[DSKE20; HHC*19; HKBE12]). Another task after training is the

refinement of results (e.g., [BAL*15]). In some cases, participants
were asked to hypothesize (e.g., [DSKE20; KAY*19]) and provide
justifications (e.g., [SKB*18]). We did not find many HCEs in
our paper collection that tackled tasks in the data selection or pre-
processing phases. The most prominent tasks we have found during
coding are use, explore, and understand.

Definition: The main data type(s) the system is designed to use.

Values: Multivariate Data, Text, Images, Video, Geographic Data.

The data type(s) used in each system is another relevant dimension

for comparing human-centered \
Geo Data | 1

evaluations. The predominant g e

data types are multivariate 2> VIdEos‘4

data (e.g., [PNKC20; WMJ*19; § 'mwees M
o

XMT#*20]); text (e.g., [ARO*17; Text Data 16

ESD*19; LLL*19]); and images  “tvriate 37

(e.g., [CRH*19; LSL*17; SSSE20]). 0 #éfudiég 30 40
Only very few papers use other data

types like videos (e.g., [KAY*19]) or geo data (e.g., [PZDD19]).

4.2. Model Properties and Explanations

Visual analytics and HCML are characterized by the integration of
human intuition within automated machine learning and artificial
intelligence. However, increasingly powerful models easily become
infamous “black boxes” and novel research fields like XAI have
been developed that aim to explain model decisions in support of
the user’s analytical and decision-making process. We were inter-
ested in studying how previous evaluations of HCML systems have
dealt with different properties of models and explanations, how they
correlated, and, in particular, if and how they were evaluated.

In addition to statistics, we provide short definitions for all dimen-
sions. One of our findings is that there does not seem to be a standard-
ized definition used systematically across different studies. The fol-
lowing section thus draws from existing literature on ML/XAI and
aims to provide unified definitions from the perspective of HCML
researchers, although agreed-upon definitions used consistently
throughout the community remain challenges for future work. All di-
mensions are coded along four values: measured and study condition
are used for dependent and controlled variables, respectively. Some
studies evaluate a participant’s perception of controlled variables;
these cases are coded as measured conditions. More frequently, di-
mensions are motivated throughout the paper, but not evaluated.

4.2.1. Model Properties

This set of dimensions focuses on properties of the models them-
selves. The emphasis is on what aspects or properties are shown or
explained to users. Additionally, the result of visual analytic tools
showing these to users is often motivated by specific outcomes (e.g.,
trustworthiness, interpretability, etc.) described in this section.
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Quality

Definition: Model quality is typically represented by accuracy or
F-score and determines the correctness of the model at performing
the task it was trained for.

Values: N/A, Measured, Study Condition, Measured Condition,
Motivated.

This dimension aims to characterize the actual quality of a model.

This is also commonly referred to as correctness. Although a high
accuracy is often desired of machine learning models, the focus of
many HCML papers is on explaining a model or creating models that
respond to user preferences instead of emphasizing model quality.
We thus found that only 18% of studies measured the accuracy
of the model(s) (e.g., [EKC*20; LXL*18; PZDD19]). Of these,
the measure of accuracy is often studied and derived from direct
comparison to ground truth data [BAL*15], or varied among study
conditions [DLW*17]. This can be either benchmark datasets or
datasets where experts provide data labels.

Perceived Quality

Definition: Perceived quality describes the model quality that
users can observe. Notably, in the context of a study, it can be
manipulated to differ from the actual model quality.

Values: N/A, Measured, Study Condition, Measured Condition,

Motivated.
This dimension captures the extent to which the quality of the model
is exposed and observable to users. Examples include directly show-
ing quality or allowing users to interactively explore aspects of mod-
els that allow implicit assumptions about model quality to be made
(e.g., [HKBEI12; KAS*20; LPH*20]). However, when interactiv-
ity is involved, this can lead to situations where the ground truth is
based on domain-relevant information as opposed to verified labels
(e.g., [DXG*20]). Overall, we found that only 7% of studies con-
sidered observable quality as a measured condition (e.g., [CVL*18;
ESKC18; HKBE12; MLMP18; SMD*16]).

Transparency

Definition: A model is transparent when all its inner workings
and decision-making processes can be observed and understood
by users.

Values: N/A, Measured, Study Condition, Measured Condition,

Motivated.
This dimension focuses on how the transparency of models was
specifically communicated and evaluated in a system or study. This
is a common focus of HCML papers, and often consists of show-
ing the mechanisms of the models themselves (e.g., [KAS*20;
LPH*20]). While early work in (X)AI equated model transparency
with the presence of an explanation, later work found that trans-
parency might be overwhelming [PGH*21]. We found that while
many tools were motivated to improve the transparency of the
underlying model (e.g., [GZL*20; WMJ*19]), only two studies
(from the same paper) measure the transparency of the proposed
tools [GLC*19].
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Interpretability

Definition: A system is interpretable when users can understand
why it behaves in a given way under given circumstances.

Values: N/A, Measured, Study Condition, Measured Condition,

Motivated.
According to our definition, interpretability can be considered an
inductive process, where users first create a mental model of the sys-
tem and then verify whether the system is consistent with that men-
tal model, making it interpretable. Lipton [Lip18] has previously
surveyed interpretability and suggests “that interpretability is not a
monolithic concept, but in fact reflects several distinct ideas.” Im-
proving the interpretability of models was a common motivation for
papers included in this survey (e.g., [CHH*19; EKC*20; MCZ*17]).
However, only 14% of papers in this survey measured whether in-
terpretability was achieved. Studies that evaluate interpretability of-
ten test how well people can communicate their internalized under-
standing of how models make decisions (e.g., [HHC*19; KAS*20;
SLC*20]), often through qualitative responses from participants.

Trustworthiness
Definition: A model can be considered trustworthy when users
believe it is correct.

Values: N/A, Measured, Study Condition, Measured Condition,

Motivated.
This dimension captures to what extent users subjectively trust the
outputs or decisions made by the models that are used in the tools.
Improving user trust is another common motivation for many pa-
pers in this survey (e.g., [ESS*18; KBJ*20; WBL*20]). However,
only seven studies (10%) measured whether and how the proposed
tools affect user trust. Methods that have been used to capture this
dimension include participant self reports Likert scales [CRH*19;
CWZ*19; DLW*17; HKBE12; SFB*20], think-alouds [HHC*19],
and interviews [SSBC19]. Likert scales are a particularly common
method adopted across multiple papers. This suggests potential for
a consistent evaluation methodology for measuring model trustwor-
thiness in future studies and can contribute to the comparability of
user trust across multiple studies.

Controllability

Definition: A system is controllable when it affords interactions
that allow users to manipulate it such that they can correct deci-
sions or modify its behavior so that it matches their expectations.

Values: N/A, Measured, Study Condition, Measured Condition,

Motivated.
This dimension focuses on the extent to which users are able to con-
trol and provide feedback to the models. Although 20% of studies
were motivated to provide controllability for users, only two stud-
ies measured whether controllability was achieved. Both papers re-
ported qualitative responses from participants [DSKE20; WGSY19].
The ability for domain experts to control and correct model out-
comes or processes is often motivated by use cases where the deci-
sions being made are critical and can have detrimental outcomes if
not seriously considered (e.g., healthcare [CRH*19] and fraud de-
tection [SLC*20]).

4.2.2. Explanations
The four explanation dimensions—transparency, trustworthiness, ef-
fectiveness, fidelity—focus on the properties of explanations gener-
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ated for an ML model to describe its decision-making process to
the users. Overall, these dimensions are usually included in a paper
to motivate the proposed work. The evaluation of explanations in
HCML has been relatively limited; encouragingly, there seems to be
a rise of interest in evaluation in recent years [EKSK18; SFB*20].

Transparency

Definition: The condition of an explanation being generated such
that it is easy for users to examine the process.

Values: N/A, Measured, Study Condition, Measured Condition,
Motivated.

In contrast to model transparency defined above, this dimension char-
acterizes whether explanations of the model are transparently gener-
ated and easily examinable for users. Four papers considered this di-
mension. Improving the transparency matrix reordering algorithms
was the major motivation for a system supporting users in investigat-
ing the expressiveness and usefulness of such algorithms [BSP20].
Similarly, Gou et al. [GZL*20] motivate the need for a visual analyt-
ics system to help assess deep learning-based object detectors, going
beyond aggregated metrics that fail to capture important context that
could affect user understanding. Only two of the surveyed papers
measured the transparency of explanations [DLW*17; EKSK18].
Eslami et al. [EKSK18] investigated and measured how communi-
cating parts of the algorithm process of selecting relevant advertise-
ments could affect users’ perception towards ads, while Dasgupta et
al. [DLW*17] measured analysts’ “levels of trust” in visualizations
that could lead to more transparent analysis processes. Both papers
report the perceived explanation transparency through qualitative
feedback and participant’s quotes. Dasgupta et al. [DLW*17] also
discussed transparency as an important design criterion to increase
explanation trustworthiness.

Trustworthiness

Definition: The ability for the explanation to be believed in or ac-
cepted by the user as an honest representation or correct descrip-
tion.

Values: N/A, Measured, Study Condition, Measured Condition,
Motivated.
This dimension considers to what extent a user would accept an ex-
planation as a faithful representation of the model’s decision-making
process. Note that this dimension is different from the trustworthi-
ness of the model itself: consider how a model that performs poorly
may be considered untrustworthy, but an explanation of that model
may still be highly accurate and considered trustworthy. Thus, we
report on the trustworthiness of models and explanations separately.
In our survey, we found only four studies (6%) that measured user
trust in the system explanation. Dasgupta et al. [DLW*17] discussed
design criteria to increase user trust of a visual analytics system and
evaluated user trust on a Likert scale. In contrast, three studies eval-
uated user trust qualitatively through participant feedback regard-
ing the explanations they received [BAL*15; EKSK18; HHC*19].
In particular, Hohman et al. included an insightful discussion on
user trust of model explanations. They observed that “participants
were eager to rationalize explanations without first questioning
the correctness of the explanation itself [...] this could be trouble-
some when participants trust explanations without healthy skepti-
cism” [HHC*19]. Only one paper included trustworthiness as a mea-

sured condition by enabling and disabling an explanatory visualiza-
tion [CVL*18].

Effectiveness
Definition: The degree to which the explanation is successfully
conveying the decision-making process of the model.

Values: N/A, Measured, Study Condition, Measured Condition,

Motivated.
Among the four Explanation dimensions, effectiveness was included
by the highest number of papers, fifteen in total. The effectiveness di-
mension characterizes how well an explanation conveys the model’s
decision-making process. While many papers were motivated to
improve explanation effectiveness [CHH*19; DVH*19; EKSK18;
GZL*20; PNKC20], only six papers went to measure whether ex-
planation effectiveness was achieved [CWZ*19; ESKC18; GLC*19;
KAY*19; SKB*18; WSW*18].

Fidelity

Definition: The faithfulness, thoroughness, and degree of exact-
ness with which the explanation represents the model’s decision-
making process.

Values: N/A, Measured, Study Condition, Measured Condition,

Motivated.
This dimension characterizes the explanation’s faithfulness in repre-
senting the model’s decision-making process. None of the papers in
our survey measured or evaluated explanation fidelity in their stud-
ies. However, three papers considered this dimension in their moti-
vations and study design. RuleMatrix [MQB19] was motivated by
the benefit of using a simpler rule-based surrogate model instead of
a high-fidelity (but likely unintelligible) representation of a “black
box” model. GUIRO [BSP20] used approximate 2D projections of
a matrix to help users understand matrix patterns and different ma-
trix reordering algorithms. Coppers et al. [CVL*18] reduced their
Intellingo system’s fidelity to create a “simple” version by disabling
an explanatory visualization component.

4.3. Interactions and Guidance

Interactions and guidance are key elements in HCML, as they en-
able and drive this co-adaptive process. However, as the results be-
low show, the impact of interactions tends to be evaluated more qual-
itatively than other areas of the HCML process.

4.3.1. Model Manipulation

Interaction techniques provide a means for users to manipulate and
obtain further information about the model. This section character-
izes the different types of interaction techniques we came across in
papers, as well as the impact of the interactions (if discussed).

Definition: This dimension characterizes whether direct manip-
ulation or indirect manipulation of the model is available in the
HCML system/interface.

Values: Direct, Indirect.

We found a good distribution of both direct and indirect manipu-
lation in the papers we surveyed, with most systems using only of
both types. Direct manipulation is often used for selecting and filter-
ing data instances (e.g., [CYL*20; KAKC18; KBJ*20; MXLM?20;

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



Sperrle et al. / Human-Centered Evaluations in Human-Centered Machine Learning 553

WGYS18]), while indirect manipulation techniques tend to be used
for data labeling (e.g., [BHZ*18; XXM*19]) or model specifica-
tion and hyperparameter tuning (e.g., [CHH*19; DLW*17; JSR*19;
KEV#*18; PNKC20; SLC*20; XXM*19]). These tasks are not ex-
clusive to each interaction manipulation technique. For example,
there were cases where filtering was done using indirect manipula-
tion (e.g., [MQB19; PNKC20]). Direct and indirect manipulation
techniques provide different affordances and outcomes [Shn97], and
a number of systems used a combination of both direct and indirect
manipulation techniques (e.g., [CRH*19; DSKE20]). The impact of
using different manipulation techniques has not been studied in the
context of HCML and represents an avenue of potential future work.

Definition: The different ways users can interact with a system to
affect the model.

Values: Free response, e.g. “drag and drop to merge clusters”

While papers describe interactions at varying levels of detail, a
few common interaction types emerged in our analysis, includ-
ing selection (e.g., [KBJ*20; WBL*20]), filtering (e.g., [LGM*20;
PNKC20]), zooming (e.g., [LPH*20; LSC*18]), tuning weights/hy-
perparameters (e.g., [DSKE20; SLC*20]), and annotation/label-
ing (e.g., [SSKE19; XXM*19]). Multiple of these interaction types
tend to be combined in a single system, for example when users first
select a set of data instances before labeling them (e.g., [BHZ*18;
ZWLC19]). Less frequently, we also observed more complex com-
binations of interactions to enable application-specific operations
such as cropping an image to the area of interest [CRH*19], aligning
video frames [KAY*19], or placing game level elements[GLC*19].
In several cases, these are observed by systems and used as implicit
feedback towards an underlying model.

Definition: The extent to which the achieved results of the model
can be attributed to changes made via interaction.

Values: Free response, e.g. “improved model quality shown in
independent ranking study”

While some studies evaluate the impact of interactions on system
outcomes, most do not. Studies that evaluate interaction impact tend
to focus on usability, reporting qualitative user feedback about the
interactions implemented (e.g., [CRH*19; KEV*18; WSW*18]). A
small number of papers also evaluate interaction as a study condi-
tion, comparing interactive explanations with static explanations.
One such paper by Cheng et al. [CWZ*19] found that “Interactive
interfaces increased both objective understanding and self-reported
understanding of the algorithm.” This suggests that interactions
play a crucial role in the design of HCML. However, further eval-
uation will be necessary to understand how interactions should be
designed and the magnitude of their impact on HCML systems.

4.3.2. Timing

Interactions can be designed for different phases of the machine
learning process. Some systems require constant input from the
users, others only provide further information on demand. In this
section, we provide details about when interactions are exchanged
between users and systems and how much user input is required.
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Definition: This indicates the machine learning phase during
which interactions are provided to the user.

Values: Data Selection, Data Preprocessing, Training, Post-

Training.
Machine learning is an iterative multi-step process from data se-
lection and data preprocessing to training and post-training. Most
of the papers we surveyed were situated during the training and
post-training phases of the process. This makes sense since this is
when the machine learning model is introduced. Only four papers
focus on the data selection and preprocessing steps (see Section 5.1).
Wang et al. [WBL*20] allow users to diagnose when the informa-
tion of groups of users are at risk of exposure from inference attacks.
Bernard et al. [BHZ*18] provide a system for users to label data in-
stances in a visually interactive way. Finally, Yan et al. [YGLR20]
implement Silva, a system that helps users explore and understand
biases in their data sets and machine learning models.

Definition: This indicates how often users interact with the system.

Values: Throughout, On-Demand, N/A.

Different systems require different amounts of input from the user.
In systems where the user input drives the work of the system or the
machine learning model, user interaction will be required throughout
the functioning of the system (e.g., [CHH*19; SKB*18]). Other
systems occupy a more informational role. Thus users only need
to interact with the interface on-demand when they require specific
information from the system (e.g., [CYL*20; KAS*20]).

4.3.3. Guidance

Guidance is a complex, co-adaptive process that aims to optimize
the collaboration between machine and human [SJIB*20]. As many
novel guidance approaches are adaptive and learn from the user over
time, they are a core component of HCML systems [CGM19]. How-
ever, the effect of guidance in general, and that of adaptive guid-
ance in particular, is difficult to evaluate for a multitude of reasons:
guidance is typically only used in complex, non-trivial scenarios
that are not easily replicated in study environments and aims to
close a knowledge gap of a specific user. Consequently, between-
subject studies are difficult, as independent problems of the same
complexity to a given user are required [BM18]. 33% of evaluations
mentioned the guidance provided by the system. However, none
of the evaluations specifically aimed to evaluate guidance and typi-
cally captured participant feedback in qualitative comments instead.

Definition: Ceneda et al. [CGM*17] describe the knowledge gap
in terms of information that the user is missing in order to make
progress during the analysis.

Values: Data, Task, Visual Analytics Methods, User, Infrastruc-
ture, N/A.

We observed only three of the knowledge gaps (data, task, visual an-
alytics methods) proposed by Ceneda et al. [CGM*17] being tackled
by systems. Independent of the knowledge gaps, the provided guid-
ance is typically validated through qualitative feedback. To bridge
the data knowledge gap, 55% of systems that provided guidance
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(e.g., [KAKC18; KEV*18]) propose automatically identified sub-
sets or features based on a definition of interestingness [CGM*17].
Das et al. [DSKE20] evaluate the guidance provided by their system
for iterative clustering by highlighting the interpretability of recom-
mended clusters and report that users were uncertain why they were
shown certain suggestions. Task-driven guidance supports users by
“hinting at what to do next” [CGM*17]. Evaluations of this guid-
ance consider its “usefulness” [EKC*20], interestingness [SKB*18],
and highlight the potential to unsettle experts whenever recommen-
dations do not align with their mental model [SSKE19].

Definition: Ceneda et al. [CGM*17] state that the “guidance
degree specifies the extent to which guidance is required and
actually provided” and characterize it in terms of three values.

Values: Orienting, Directing, Prescribing, N/A.

69% of papers that mentioned guidance in their evaluation de-
scribed systems with orienting guidance (e.g., [ESD*19; SSKE19;
WMIJ*19]) and 18% and 9% report insights into directing [KEV*18;
LGM#20; SMD*16] and prescribing guidance [EKC*20; GLC*19],
respectively. As guidance is not typically evaluated in-depth, we ob-
served no difference between the qualitative feedback for different
guidance degrees. Gou et al. [GZL*20] present a system for the iter-
ative refinement of image classifiers, providing orienting guidance
to users using semantic representations of the data space. Their qual-
itative domain expert feedback reveals that “they found the tool’s
capability to aid them in targeting weak spots is ‘specifically use-
ful’, and visual summary was ‘the most useful feature™ [GZL*20].
Bernard et al. [BHZ*18] provide an extensive, quantitative compar-
ison of visualization techniques for providing orienting guidance
in interactive labeling. Using a within-subjects design, each partici-
pant evaluated four design alternatives and provided feedback on a
five-point Likert scale. None of the surveyed papers provide a com-
parative evaluation between different guidance degrees.

Definition: Adaptation describes how, if at all, the guidance con-
siders implicit or explicit user feedback to improve the relevance
of the provided suggestions over time.

Values: Content, Context, Both, None, N/A.

Out of the 23 studies evaluating guidance, seven systems adapt in
terms of content (e.g, [CVL*18; DSKE20; GLC*19; GZL*20]) and
two in terms of analysis contexts in which guidance is provided
[JSR*19; SKB*18]. None of the papers provide both types of adap-
tation simultaneously. Guzdial el al. [GLC*19] quantitatively inves-
tigate whether participants notice adapting guidance agents in game
level design, and whether they prefer the adapted or original ver-
sion. Their findings suggest that participants do notice and prefer
adaptation. In the context of argumentation annotation, Sperrle et
al. [SSKE19] suggest fragments of text for annotation that are simi-
lar to existing annotations. Their evaluation reveals that participants
were aware of this adaptation, and only start to trust the learned sug-
gestions late in the annotation process.

4.4. Results

Many evaluations provide primarily qualitative feedback that is dif-
ficult to categorize in fixed dimensions. To capture as much informa-
tion as possible, we also included three free-text dimensions for each
paper to document the feedback in three areas: human-centered ana-
lytics, user interface feedback, and interaction feedback. When cod-
ing these dimensions, we aimed to include quotes from the respec-
tive papers whenever concise descriptions were available. When this
was not the case, we paraphrased the paper to obtain clear summaries.
Below, we report topic modeling results for all three dimensions. We
use the Incremental Hierarchical Topic Model IHTM) [ESD*19]
as it does not require a pre-determined number of topics and allows
the integration of domain knowledge in the form of a topic back-
bone (see supplementary material). Providing a backbone primes
the model to expect certain topics but does not force their creation
to prevent model manipulation. The IHTM hierarchically clusters
documents based on their cosine similarity, directly assigning the
most probable topic to each document. In our case, a document con-
sists of one finding or comment from a paper. As a result, papers are
typically represented by multiple documents that can be assigned to
different topics. Hence, semantically diverse annotations can accu-
rately be represented by assigning papers to multiple topics. Before
running the topic model, we process all documents, keeping only
nouns, proper nouns, adjectives, and verbs. The inclusion of adjec-
tives and verbs enables the model to capture frequent descriptions of
participant actions during evaluations. Furthermore, we remove com-
mon English stopwords, as well as the words system, help, perform,
allow, support, design and expert that are ubiquitous in our dataset.

Definition: The main finding(s) in HCML reported in a paper, e.g.,
in terms of result quality, user satisfaction, or model intelligibility.

Values: Quotes where concise descriptions were present, other-
wise summarized findings.

Main findings cover a broad range of topics summarized in Table 3.
It is interesting to note how the emerging topics relate to core tasks
in HCML, including understanding, interpreting, and explain. Top-
ics we identified as dimensions of either model properties or ex-
planations that were not mentioned as part of the main findings in-
clude, amongst others, verifiability, transparency, fidelity, and con-
trol. Overall, topics emerging in main findings are not straightfor-
ward to interpret. Nevertheless, it provides a useful exercise to high-
light those themes of interest to HCML research that still remained
unexplored.

Definition: Any participant feedback concerning the interface
design or usability.

Values: Quotes where concise descriptions were present, other-
wise summarized findings.

In this category, we grouped topics related to feedback provided with
respect to the system/model interface. Topics are summarized in
Table 4. Analysis showed overlap with main findings as well as two
emerging topics: Findings and Actionability. Both topics highlight
user-expected behavior from an interface. It is interesting to note
that actionability in several cases implied actionable communication
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Topic Keywords Papers

Workflow
retrieval, personal, exploit, reflect typical workflow

workflow, explore, reflect, attack, algorithm designer, typical, framework, [BSP20; CD19; JSR*19; MXLM20; PZDD19]

Quality cluster, quality, user, intelligibility, available, data, suggestion, statistical, [BAL*15; BHZ*18; CD19; CRH*19; CVL*18; DSKE20; EKC*20; ESD*19; ESS*18; GLC*19; GZL*20;

useful, sampling, actionable insight, feel excited, meaningful

HOW*19; KAS*20; KEV*18; PZDD19; RAL*17; SDMT16; SKB*18; SSBC19; WSW*18]

Debugging debugging, training process, suggestion, visual, nn training, ad, aspect, [EKSK18; LSL*17; SSKE19]
communicate, perception, curation, algorithmic, speed
Refinement machine learn, refinement, interactive, agree optimize model, automl, tune, [ESKC18; SLC*20; SSSE20; WMIJ*19]

search, practical, sense, diagnoses, give groundtruth structure

Under il under

pable, visual analytic, ml, diagnose, text, able, demonstrate

, improve, understand, human, children, representation, ca- [ARO*17; CWZ*19; GLC*19; GZL*20; HOW*19; KAS*20; KAY*19; KPN16; LGM*20; LSC*18; MCZ*17;
WBL*20; WGSY19; XMT*20]

Interpretability interpret, achieve, predictive, interpretability, performance, science, similar, [HKBEI12; KPN16; LLL*19; LXL*18; MXC*20; WGYS18]

evaluate, boost, nlg, scientist a:

s interpretability

Explainability explain, explanation, explainable, visualization, frustration, decision, de- [CYL*20; HHC*19; KAKC18; MQB19; SFB*20; XCK*20; YGLR20; ZWLC19]

velop, get, path, role, capability

Trust trust, prefer, feedback, increase, improvement, level, substantial, expect, [CD19; CVL*18; CWZ*19; DLW*17; LPH*20; RAL*17; SFB*20; SMD*16]

perceive, compare, comfort-zone, convey, acceptance reduce explanation

Table 3: Topics based on Main HCML Findings: IHTM results on a collection of sentences from the reported finding sections in our paper
collection. Each paper can be attributed to multiple topics. The descriptive topic titles where manually assigned based on the provided keywords.

Topic Keywords Papers

Findings meaningful, relation, pattern, find, utility, seem, [KAS*20; KAY*19; WGSY19;
think, explore, educational, effective WSW#18]

Explanations reassuring, explanation, case, way, ecosystem, [HHC*19; KAY*19; KEV*18;
output, reassure, ai, provide, annoying XCK*20]

Interpretations information, interpretation, blast, sufficient, [BAL*15; WGYS18]
overwhelming, enlightening, dataset, know

Actionability observation, action, react, straightforward, ac- [CVL*18; ESKC18; GZL*20;
curacy, sanity, fix, improvement strategy aim, HHC*19; KAY*19; MQBI19;
understand, feature, model, require, visualiza- SKB*18; WGSY19; WSW*18;
tion, split, graph, important, improve XCK*20; XMT*20; ZWLC19]

Table 4: Topics based on Interface Findings: IHTM results based
on the reported findings related to the interface design or usability.

representative of active engagement in the interaction process for
which the interface is the primary mediator.

Definition: Any participant feedback concerning the interaction
design or system workflow.

Values: Quotes where concise descriptions were present, other-
wise summarized findings.

We intentionally separated feedback related to interaction from
feedback related to the interface. Topics are summarized in Table 5.
All topics emerging in this dimension have no overlap with previous
dimensions. It is worth noting how controllability, a dimension of
model properties, is reported as part of interaction feedback. Lack
of ways to provide inputs to model training was explicitly reported
as a limitation of the system by at least one paper [KAS*20].

This section has introduced the dimensions in our methodology
and observations about how they have been evaluated, focusing on
individual aspects of evaluations. In Section 5 and Section 6, we
highlight evaluations from the perspectives of task-specific tech-
niques and domain-specific characteristics, respectively.

5. Evaluating the Technique Contributions of HCML

Application papers focus on domain-specific challenges and provide
solutions to expert users from their respective fields. As a result,
there are different expectations of success, making application pa-
pers more difficult to compare across domains. Technique papers, on
the other hand, focus on providing solutions to general analysis tasks,
such as exploration, efficient filtering, or model refinement. Where
possible, these techniques are expected to be applicable across dif-
ferent application domains or even data types. As a result, we expect
the findings from evaluations of systems employing these techniques
to be transferable to other domains. In this section, we survey eval-
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Topic Keywords Papers
Interactivity interactivity, process, play, select, create filter, [CHH*19; HHC*19; LGM*20;
feature, learn, appreciate, element SSBC19; YGLR20]
Customization custom collapsible unit, define custom, specify, [CRH*19; DSKE20; EKC*20;
manipulation, construct, compare, find, com- HHC*19; LLL*19; SDMT16;
plex exploration, model, experiment WSW#18; YGLR20]
Controllability focus, control, feedback, important, go, click, [DSKE20; EKSK18; KAS*20;
think, menu, time, relate, input, provide SFB*20; XCK*20]
Comprehension comprehend, put, understanding, reduce, re- [SDMT16; XCK*20]
main, physician, black, visualization pipeline

Table 5: Topics based on Interaction Feedback: Identified from the
reported findings related on interaction design or system workflow.

uations that do not rely on domain-specific knowledge. Following
the approach by Yuan et al. [YCY*20], we group the works by the
stages of the machine learning process, and their respective tasks.

5.1. Pre-Training

Only a few collected papers provide evaluations that fall into this
phase: two approaches for efficient data labeling and two approaches
for analyzing inferences between attributes. We observe no differ-
ences between supervised and unsupervised machine learning.

Data Labeling — In a within-subjects study, Bernard et al. [BHZ*18]
compared active learning (AL) with visual interactive labeling (VIL)
across different support techniques, dataset complexities, and dat-
apoint selection strategies. For their three-part study, they provide
detailed descriptions of the setup and dependent and independent
variables for all experiments. They conclude their study with inter-
views to obtain subjective feedback on the usefulness and prefer-
ences for different support techniques. They find that VIL was com-
petitive with AL and that class coloring and convex hulls were most
useful at supporting users during labeling. Sarkar et al. [SMD*16]
let users rank sets of videos to obtain a relative scoring in a within-
subjects design with two conditions. To minimize learning effects,
they keep a minimum of three days between conditions for each par-
ticipant. Upon completion of a condition, participants fill out NASA
TLX forms, as well as open-ended questions.

Inference Analysis — Two systems aimed to assess potential in-
ferences in training data: one from the perspective of algorithmic
fairness [YGLR20], and one to prevent privacy leaks [WBL*20].
Yan et al. [YGLR20] compared their system for assessing fairness
against an existing industry solution in a controlled user study. They
reported that participants found their system to be more useful (self-
report on Likert scale) and that they made more true-positive dis-
coveries. In addition, they provide qualitative comments collected
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after the study. Wang et al. [WBL*20] conducted an expert review,
including an interactive system demo from which they report brief,
qualitative feedback.

5.2. During Training

The primary user task during model training is refinement. While our
coding results show that further tasks like diagnosis or comparison
(e.g., [BAL*15; MXC*20; WGSY19]) are performed during model
training, they are not explicitly evaluated.

Refine — During the training phase, refinement is typically per-
formed through iterative model optimizations. We observe a distinc-
tion between the refinement of supervised and unsupervised models
in the evaluation methodologies. Working with unsupervised mod-
els a series of three related papers by El-Assady et al. [EKC*20;
ESD*19; ESS*18] presented human-centered approaches for topic
modeling explainability and refinement. All three papers used simi-
lar evaluation methodologies based on the same document corpus.
The evaluations all consisted of two stages. First, a pair-analytics
study in which three groups of experts from different domains used
the respective visual analytics approaches to refine topic models. In
the second stage, an annotation study, the obtained model refine-
ments were scrutinized by independent annotators to confirm their
quality. The empirical results from the first stage, such as perceived
model transparency or controllability of the process, were presented
as qualitative feedback, while the second stage used the intuition
and understanding of independent annotators to provide quantita-
tive results. In the context of our survey, this series of papers show-
cases a unique example of comparable study setups. Additionally,
all three papers set the users’ expertise as a study condition to under-
stand the influence of the users’ backgrounds on the topic modeling
refinement results.

Krueger et al. [KBJ*20] presented a tool for semi-automatic
phenotype analysis, where a human in the loop drove the analysis
and steered both clustering and classification models. While they
relied primarily on case studies to evaluate their approach, they
highlighted expert requests for direct access to the raw data to build
trust during the refinement process. Similarly, Ming et al. [MXC*20]
reported that experts felt that the interactivity of the system made it
easier to interpret model results.

Use — In a less common form of HCML, users interact with a
system without explicit training intent, aiming to perform a domain-
specific task like designing a game level [GLC*19] or annotating text
fragments [SSKE19]. The respective systems gathered all interaction
data and utilized it to learn the users’ preferences and adapt future
guidance suggestions. Both evaluations reported that participants
were able to observe the adaption over time. However, from the
users’ perspective, this refinement was a side effect and not the
primary analysis goal.

5.3. Post-Training

The majority of evaluations identified in our survey cover analysis
tasks in the post-training phase.

Explore — Exploration is the task most frequently referenced in eval-
uation descriptions. Many papers primarily focused on case studies
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Figure 4: Graphical representation of the study methodology used
by Ren et al. [RAL*17].

(e.g, [XXM*19]), use cases (e.g., [CMQ20; LLL*19]) and ques-
tionnaires (e.g., [WSW#*18]). Stahnke et al. introduced probing as
“a general interaction approach for information visualization that is
aimed at both exploring the data as well as examining its represen-
tation” [SDMT16]. They developed a prototype application that en-
abled exploration of embedding spaces and the errors introduced dur-
ing dimensionality reduction. They evaluated their system using a
lab experiment and found that participants had difficulties in reading
errors introduced by distortion and interpreting data point positions.

Understand — Ren et al. [RAL*17] run a controlled, within-subjects
lab experiment to evaluate at what speed users can assess the qual-
ity of multi-class classifiers. As one of few papers, they summarize
their experiment design in a figure (see Figure 4): first, they com-
pare their system against an interactive confusion matrix and mea-
sure task completion time across three locating tasks and measure
task completion times. They find that participants are not only sig-
nificantly faster using their tool but also strongly prefer the tool and
find it more helpful than the confusion matrix.

Hohman et al [HHC*19] run a lab study to explore how partici-
pants investigate and understand ML models. Rather than prescrib-
ing a dataset to be used during the study, they let each participant se-
lect a dataset of their preference. They find that “participants were
eager to rationalize explanations without first questioning the cor-
rectness of the explanation itself” [HHC*19] and that system in-
teractivity was fundamental to the participant’s model understand-
ing. Hitron et al. [HOW*19] study how children can learn the basic
building blocks of machine learning and find that repeated blocks of
data labeling and evaluation were essential to constructing an accu-
rate understanding.

Ming et al. [MQB19] developed RuleMatrix, a visualization sys-
tem that explains classification models through rule induction. In a
user study testing how well participants understood the model, one
participant expressly commented that he liked how the system sup-
ported hypothesis testing. An open question for explaining classifi-
cation models with rules is the fidelity of the rules generated. The
authors discuss the “trade-off between the fidelity and complexity”,
where more rules are required to explain a machine learning model
with higher fidelity. However, visualizing more rules would also
affect the interpretability of the system. As such, more work is re-
quired to improve the scalability of rule induction techniques for
explaining classification models.

Diagnose — Several systems have been proposed to diagnose various
machine learning models [LDM*18; LGM*20; LLS*18; LSC*18;
MXLM?20]. Zhao et al. developed iForest, an interactive visual
analytics system that helps “users interpret random forest models
from various perspectives” [ZWLC19]. In particular, visualizing
the decision paths helped participants explain the predictions for

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



Sperrle et al. / Human-Centered Evaluations in Human-Centered Machine Learning 557

certain data instances. iForest enables users to tweak feature values
to ask what if questions and explore “how feature values affect
predictions” [ZWLC19]. Participants’ qualitative feedback about
this interaction was not reported in the paper. However, the ability
for users to ask “what-if”” questions remains an interesting feature
that can be further developed in HCML systems.

Refine — Smith-Renner et al. [SFB*20] conducted an extensive
crowdsourced experiment to investigate the relationship between
explainability and interactivity in machine learning. They found that,
for low-quality models, the availability of explanations increased
frustration, while support for feedback reduced it. Further, “trust
and acceptance were reduced by explanations and increased by
feedback” [SFB*20]. Participants in conditions that allowed for user
feedback expected stronger model improvements than those that
did not provide feedback. However, interestingly, they found that
some participants were under the impression that the model was
learning from their feedback, while this was not possible in the study
setup. In a second study with a higher-quality model, they found
no significant effects between user feedback, explanations, and
frustration. To summarize, they report that “participants felt strongly
that the opportunity to provide feedback was important” [SFB*20]
and that explanations and user feedback complement each other.

6. Application-Specific Evaluations

Most HCML papers apply their proposed techniques to tackle prob-
lems and challenges from specific application domains. Hence, in
addition to evaluating a technique contribution, their evaluations of-
ten reflect the suitability of the approaches to specific users, tasks,
and data. In this section, we report on the predominant clusters of
application-specific evaluations in our paper collection. These high-
light trends in recent research efforts, as well as open gaps for fu-
ture work. This section showcases the most dominant application
domains, as well as the prevailing data types.

6.1. Bio-Medical Applications

One of the largest clusters of human-centered evaluations in our pa-
per collection are eight papers reporting on biomedical applications.
These typically present approaches where human involvement and
trust are critical for utilization. As a result, several papers report be-
spoke, complex evaluation methodologies that go beyond more tradi-
tional pair analytics [KBJ*20] and observational studies [CYL*20;
DSKE20; LPH*20] that are also used.

Dasgupta et al. [DLW*17] report on a controlled lab experiment
that aims to evaluate how much users trust a bespoke analysis tool
versus a traditional data analysis tool of their choice (like R or Excel).
To avoid learning effects commonly observed during expert evalua-
tions, they opt for a between-subjects design. They find no signifi-
cant difference in trust when participants perform retrieval tasks. For
two out of four complex interpretation tasks, the bespoke tool leads
to significantly higher trust levels. Further tests including participant
experience revealed significant differences in trust levels only for
participants with little experience, favoring the visual analytics tool.

Cancer Image Analysis — In the domain of medical image analysis,

Cai et al. [CRH*19] present a tool for interactive image retrieval

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

based on user-refined concepts. To evaluate the end-user experience
while using the system, they run a counterbalanced within-subject
lab study, comparing their tool to a prototypical system used in
cancer image analysis. Aiming to analyze the effects of imperfect
algorithms on user perception, they report results from six Likert-
scale questions, as well as empirical feedback collected during
participant tool usage. To ensure realistic task complexity, they
select images that have received conflicting diagnosis labels from
pathologists prior to the study.

Radiology — To enable physicians to understand automatic X-ray
image analysis through artificial intelligence, Xie et al [XCK*20]
present CheXplain. The authors follow a human-centered design
process and first elicited current analysis practices from 77 medical
practitioners through questionnaires before iteratively co-designing
the tool with three physicians. Finally, they evaluate the tool in a re-
mote observational study through video calls in which participants
are asked to describe “their understanding of why Al arrived at cer-
tain results of the case” [ XCK*20]. The obtained qualitative com-
ments are transcribed and iteratively tagged before they are indepen-
dently reviewed and conflicts are resolved through discussion.

Diabetes — Kwon et al. [KAS*20] describe results from a long
term collaboration with clinical researchers. Over the period of one
year, they held four quarterly workshops in four locations. During
each workshop session, they performed pair-analytics to analyze
progression trajectories of type 1 diabetes. Over this time, they
elicited relevant clinician tasks and adapted the system accordingly.
After all workshops were complete, they conducted unstructured
interviews with nine participants and collected qualitative feedback.
Similarly, Krause et al. [KPN16] performed a long-term case study
with five domain experts aiming to predict diabetes from patient
records. Over four months, they held bi-weekly meetings to co-
design the system and ensure that it met the experts’ requirements.

6.2. Machine Learning Applications

All HCML algorithms are machine learning applications by defini-
tion. In this section, we cover tools and systems that are designed
to support researchers and practitioners in machine learning in un-
derstanding, diagnosing or refining their models. Across domains

and data types, a num- Use Metrics as Expl in Diag 000000
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evaluated using observa-  Reference the Origin of Explainers O0@@000
tional studies [KAKCIS; smummmisemenons 6066000
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studies that combine domain-

specific findings with feed- Figure 5: Glyph table based qual-
back interviews [LSC*18; irative feedback coding [SSSE20)].
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wrapfigures next to the text (see the extracted example in Figure 5).

AutoML - With ATMSeer, Wang et al. [WMJ*19] provided the first
visual analytics approach for controlling AutoML processes. They
state that the lack of existing systems for comparison made it difficult
to establish a “fair” baseline model that was not drastically inferior.
Consequently, they instead deem it “more interesting and important
to investigate user behavior under the characterized workflow with
ATMSeer” [WMJ*19]. In an observational study with thirteen partic-
ipants, they evaluate their workflows through the system and what
functionality is used or ignored. Eight small proxy tasks requiring
participants to locate some information in the system are used as a
proxy for system usability. From participant feedback, they also find
that nine participants (69%) would consider a familiar model over a
better-performing, unknown one. Park et al. deploy their AutoML
system HyperTendril internally at an Al research company and col-
lect usage data for four months [PNKC20]. They then invite the
three most active users in that period to interview sessions in which
they revisit their previous AutoML refinements completed with the
system. The interview reveals that the integration of human domain
knowledge can lead to higher-quality models in a shorter time.

Adversarial ML - Liu et al. [LSC*18] analyze the noise robustness
of image classification networks and evaluate their system using
an expert-driven case study, revealing mostly domain insights. Ma
et al. [MXLM?20] focus on explanations of vulnerabilities that are
evaluated through a group expert interview following a case study.
While the system receives positive feedback, they also find that its
complexity causes long learning times.

6.3. Linguistics Applications

A number of approaches address questions related to linguistic ap-
plication and text analysis. In the following, we describe some of the
works with respect to their presented human-centered evaluations.
Applications range from analyzing discourses through annotating
argumentation structures [SSKE19] and untangling and reconstruct-
ing threaded conversations [ESKC18], to analyzing and comparing
prosodic patterns in different languages [SKB*18]. Besides a clearly
structured quantitative evaluation that tackles model intelligibility
in machine translation by Coppers et al. [CVL*18], most linguistic
application papers in our collection are related to the thematic anal-
ysis of text data, as described in the remainder of this section.

Information Retrieval — Heimerl et al. [HKBE12] compare three
methods for classifier creation to retrieve documents. Their study
comprised multiple phases in which the twelve participants were in-
troduced to the models and then got to use two of them for fulfilling
the analysis task. This evaluation is particularly interesting as it is
one of few studies in our data set that directly compares more than
one analysis alternative. In another information retrieval application,
Ji et al. [JSR*19] introduced a system for exploring neural docu-
ment embedding based on semantic features. The system is evalu-
ated by presenting use cases that are based on expert feedback. Ex-
perts were required to configure document maps, specify clustering
parameters, and analyze dimension correlations. This evaluation re-
lies on a close collaboration with selected experts. Similarly, Abdul-
Rahman et al. [ARO*17] rely on a long-term collaboration with do-
main experts, who were involved in providing system feedback dur-

ing the development process and in the observational study they con-
ducted for evaluation. Their approach, ViTA, is a system for visual
text similarity detection based on constructive text alignment. Such
evaluations provide unique insights into the specialized applicabil-
ity of the presented tools and describe their benefit for expert users.

Text Classification — Brooks et al. [BAL*15] developed Featureln-
sight, a system to help users ideate features for text classification.
The system is evaluated using a controlled, within-subjects study
with four treatments. Participants ideate four different feature sets
and complete a questionnaire about enjoyment and satisfaction af-
ter each condition. The resulting features are used to train classifiers
that are compared based on precision-recall curves, finding signifi-
cant differences between some conditions.

Topic Model Refinement — Applying topic modeling algorithms
to analyze the content of text corpora is a prevalent task in the hu-
manities and social sciences. However, as the results of these unsu-
pervised algorithms are typically subjective and domain-dependent,
there is no single ground truth that could be used to optimize such
models. Hence, refining these models has relied on humans exter-
nalizing their knowledge to adapt the results to their domain under-
standing. To tackle this challenge, El-Assady et al. proposed three
different workflow and interface designs, each tailored to a differ-
ent user group. For domain experts, they apply a machine teaching
paradigm to capture the experts’ knowledge [EKC*20]. Data scien-
tists can use a progressive learning approach [ESS*18], and machine
learning experts can look into the model [ESD*19] and see the im-
pact of their interactions before applying them using speculative exe-
cution [SBS*18]. As described in Section 5.2, these three related pa-
pers were presented as a consecutive series using comparable study
designs. To remedy the lack of ground-truth data, all papers were
evaluated in two stages; first, a pair analytics study, followed by an
annotation study where independent coders blindly rated their per-
ceived quality of the refined and unrefined topic modeling results.

6.4. Others

Lastly, besides the more prominent domain clusters presented above,
we also encountered other diverse application fields in our data set.
This section describes a selection of papers that are particularly
interesting from the point of view of human-centered evaluations.

Game Design — Guzdial et al. [GLC*19] present multiple iterations
of a system for cooperative Super Mario Bros. level design between
a human and an Al agent. The first prototype builds on simple, ex-
isting models from related work: To build a level, the agent and the
user take turns adding (or removing) blocks to a level. In a compara-
tive study, 84 participants interact with two different agents to build
two levels. Afterward, they rank which agent was more fun, frustrat-
ing, challenging, helpful, or surprising and which one they would
like to use again. Furthermore, they provide qualitative comments.
Using the gathered interaction data from this study, the authors train
a new agent that adapts through implicit feedback: it receives penal-
ties when users delete its blocks and a bonus otherwise. In the sec-
ond study, 24 participants design two levels using this agent, experi-
encing continuous adaptation. In addition to the five questions from
the first study, the second study aims to evaluate to what extent par-
ticipants felt that the agents were adapting, collaborating with them
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and whether participants would have preferred to use the system
without agent support. The study finds that the agents adapt to par-
ticipants and that the adaptation is noticeable to participants.

Video Analysis — Kittley et al. [KAY*19] aimed to investigate the
intelligibility of different processing steps throughout the computer
vision pipeline. They task study participants of their controlled lab
study with designing a stop-motion video, as this task can be sup-
ported through explainable keyframe matching and is “not obvious
to participants” [KAY*19]. Each participant completes four tasks
that are designed to showcase the system (1), reveal algorithm fail-
ure conditions (2), and assess user understanding (3+4). Finally, par-
ticipants complete a semi-structured interview. Their answers are
coded by three independent annotators and analyzed in detail ac-
cording to predefined research questions. Additional quantitative
analysis reveals significant differences between the perceived under-
standability of the four different study conditions.

Fraud Detection — In cooperation with a bank, Leite et
al. [LGM*20] develop an environment to explore fraudulent be-
havior and state that “trustability, reputation, security and qual-
ity are the main concerns for public and private financial institu-
tions” [LGM*20]. They derive four design requirements with col-
laborating experts and evaluate the success of the system using four
tasks, each targeting one requirement. Rather than focusing on trust-
aspects motivated early on in the paper, the evaluation considers
comparisons to other systems (like Excel or Tableau), insights, and
potential improvements. To measure insights, they annotated differ-
ent interaction patterns and counted their occurrences as insights.
The motivation of human-centered aspects that are not explicitly
evaluated is a common pattern that appears in many papers. Sun et
al. [SLC*20] evaluate their system for fraud detection with both ex-
pert and novice users. An expert interview reveals that experts have
higher confidence in their diagnosis when using the system but does
not elaborate on the baseline.

7. Survey Insights and the Next Frontiers

To put our findings in a broader context, we summarize all lessons
learned, insights, and challenges that we uncovered by surveying
human-centered evaluations in HCML. We, further, deduce a set of
guidelines and best practices, and report on research gaps and oppor-
tunities. We conclude with a call to action to the research community.

Summary - This survey provides three different perspectives on
the body of existing work, as it is intended to serve various readers
with their diverse questions. In Section 4, we describe evaluation di-
mensions that can both serve as structuring elements to researchers
planning evaluations, as well as a concise resource to identify gaps
in current evaluations. In Section 5, we summarize which analysis
tasks are evaluated throughout the machine learning pipeline, fo-
cusing on the evaluation of technique contributions. Finally, in Sec-
tion 6, we provide a domain-specific view on evaluations, identify-
ing differences and similarities between domains and data types.

Limitations — Our survey only considered human-centered evalua-
tions of HCML. This particular focus on the human in both systems
design and evaluations limits the number of papers considered in
this survey, as many approaches to HCML that were evaluated with
use cases or algorithm-centered approaches were excluded. While
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these works are equally relevant in the field of HCML, this survey re-
veals the complexity of human-centered evaluations that draw from
different methodologies of various fields like machine learning, ex-
plainable artificial intelligence, human-computer interaction, and
psychology. Future work should extend this survey to non-human-
centered evaluations to obtain a complete picture. Further, this sur-
vey only includes papers that could be found in the respective digi-
tal libraries, as described in Section 3. In particular, we use a prede-
fined keyword list and do not consider papers that were published
before 2012. While both the nomenclature and scope of the field
have evolved over time, there is a significant body of work on adap-
tive systems that we had to exclude. Charting the field’s evolution
over time represents another challenge for future work.

7.1. Findings and Observations

Overall, we found that the surveyed papers tend to focus on differ-
ent aspects of HCML systems. Some papers focus on the tools’ im-
plementation, some on their design, and some on user studies and
evaluations. Our observations do not suggest that authors had not
considered all aspects when they developed their systems. Rather,
we believe the different emphases during reporting of evaluations
was a main factor that created challenges when comparing research
findings or contributions across papers.

Evaluation Methodologies and Procedures — In general, we did
not observe a standardized methodology throughout the surveyed
papers. Most evaluations were diverse in their format, as well as
their content. Hence, it was challenging to converge to a meaning-
ful coding structure that was able to capture these diverse method-
ologies, as is evident from Figure 3. In addition, due to HCML sys-
tems’ complexity, we observed that in several instances, papers are
motivated using factors that should influence the analysis but do not
consider them in the subsequent evaluation that happens at a differ-
ent level on Munzner’s nested model [Mun09]. Most papers evalu-
ate the systems they represent by conducting user studies in the lab.
There are few longitudinal or in-the-wild studies. In addition, most
evaluations were conducted with a low number of experts, which
may limit the generalizability of findings to real-world usage.

In addition to evaluating the system and ML/AI performance,
in HCML, human factors are, by definition, of central importance.
In our surveyed paper corpus, we did not find many evaluations
with a nuanced consideration of human factors. We thus derive that
there is a need for interdisciplinary collaboration with fields, such
as psychology and social sciences, to derive insightful results on the
diversity of human impact on such collaborative systems.

Evaluation Reporting — Overall, we have not identified a general
reporting structure among the surveyed works. We have observed
incomplete descriptions in some cases. For example, in some papers,
it was not entirely clear who the study participants were, what
instructions or tasks they were given, or what the study intended to
measure. In addition, the majority of papers reported more than one
evaluation, with frequent combinations including case studies and
expert interviews, as well as algorithm-centered and human-centered
feedback. 86% of papers report qualitative results, while only 37%
report quantitative values. Lastly, there was a small number of papers
that did present use cases as case studies or case studies as use cases.
Based on these observations, in Section 7.3, we derive a number
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of guidelines and best practices in an attempt to help future paper
authors avoid common pitfalls.

Supervised and Unsupervised Models— We observed similar num-
bers of qualitative and quantitative studies across evaluations of both
supervised and unsupervised ML, with a predominance of quali-
tative (63%) or mixed (26%) evaluations. Notably, several papers
belonging to areas of unsupervised learning did not qualify for the
present survey as they lacked human centred evaluations. In par-
ticular, our survey contains few examples of dimensionality reduc-
tion [dSBD*12], and even less with comprehensive human-centered
evaluations [SDMT16]. While the inherent complexity of dimension-
ality reduction might be a reason, other unsupervised model classes
like topic modeling are successfully evaluated using human-centered
approaches. In general, we observe a tendency for evaluations of un-
supervised HCML to focus on quality metrics related to the model
or user interaction with the system (e.g., through parameter selec-
tion or output exploration). User interactions directly influencing the
underlying machine learning models are evaluated less frequently.

7.2. Challenges in Human-Centered Evaluations

In Section 2.3, we have collected a list of challenges in HCML. This
section presents how these are manifested in associated challenges
for human-centered evaluations.

HCE-C1: Exploratory Analysis. A typical challenge in interac-
tive machine learning is the lack of ground truth data [BBL18].
In HCML, many systems are explicitly designed to promote per-
sonalized results that match a user’s requirements. Such person-
alization makes the comparison with a gold standard—if available—
complicated or even irrelevant. Several papers provide multi-stage
evaluations to tackle this problem, as described in Section 6.3, by
collecting the results obtained during an expert study and passing
them on to other participants to evaluate, rank, or validate them. This
downstream, outside perspective is either obtained using the evalu-
ated system itself or externally to mitigate several possible issues
like, for example, novelty effect that can bias qualitative feedback.

HCE-C2: Participants. Expert-level systems typically cannot be
evaluated at the same scale as non-expert systems due to the limited
availability of participants. Non-expert systems can and should be
evaluated at scale — for each approach, it has to be determined where
it falls on the scale and what an appropriate evaluation is. When-
ever few participants are available, combinations with case studies
and quantitative evaluations are common. In some cases, it might be
possible to extract parts of the system that can be evaluated without
the integration of experts — however, careful assessment of the re-
sults is needed to avoid overgeneralizing any findings back to expert-
level users. While expertise is the factor most commonly considered
(domain expertise: 43/71 papers, ML/AI expertise: 43/71 papers),
other factors like personality can also be influential. Personal char-
acteristics of interest include, among others, the propensity to trust,
differences between trust in humans and machines, prejudice built
from previous experience, confidence, or self-esteem. However, we
did not observe studies that performed a considerable evaluation
here. This is related to HCML-C3 (Co-Adaptation) and HCML-C4
(Stakeholder Diversity).

HCE-C3: Evaluation Focus. To effectively evaluate a HCML sys-

tem, researchers must consider methods that adequately test di-
verse aspects of these systems (HCML-C1 (Interdisciplinarity) and
HCML-C2 (Complexity)). For instance, testing only the usability
of the interface may miss out on the ability of the system to interpret
user input to create more accurate models. Similarly, only measuring
model accuracy misses out on evaluating the user experience. The
challenge lies in finding the right balance between human-centered
and algorithm-centered evaluation. A large number of papers sur-
veyed in this STAR tackle this issue by providing both types of eval-
uations. However, as the number of excluded papers shows, there is
still a bias towards algorithm-centered evaluation. We encourage re-
searchers to be creative and investigate methodologies that can pro-
vide human-centered insight without sacrificing algorithm-centered
or domain-specific insights, for example, using repeated study de-
signs or evaluations combining several smaller, focused studies.
Large, multi-faceted projects built on collaborative efforts across
disciplines (e.g., HCI, visualization, ML, and humanities) can also
benefit from a series of tailored publications, each evaluating a dif-
ferent perspective in detail, rather than providing only superficial in-
sight in one overly complex paper. While novel HCI aspects can be
evaluated using a large-scale user study, complex domain-specific
workflows might require case studies with lower participant counts.

7.3. Guidelines for Human-Centered Evaluations

As HCML systems are becoming increasingly complex, it is typi-
cally infeasible or even impossible to evaluate all aspects in detail.
From the papers we surveyed, it was often difficult to extract what
the main findings with respect to HCML were. Rather than provid-
ing generic expert feedback, we encourage authors to select specific
areas to be evaluated and clearly state which aspects are not evalu-
ated. To provide a more actionable plan for researchers preparing
and conducting human-centered evaluations, as well as reporting
their results, in this section, we describe guidelines and best prac-
tices based on our observations from the current state-of-the-art for
human-centered evaluations in HCML.

Guidelines for Conducting HCE Studies — To assist researchers
in planning out their evaluations, in Table 6, we have collected
guiding questions. These are structured in the form of a seven-point
checklist that covers all aspects that can help shape the studies
to be successfully conducted. We expect such a “cheat sheet” to
be especially helpful in supporting junior researchers to cover all
aspects for preparing their evaluations. In particular, for evaluations
that rely on qualitative feedback, we highlight the importance to
clearly define the main hypotheses and research questions. To that
end, researchers also have to decide which parts of the system
might be better evaluated with an algorithm-centered evaluation, as
opposed to a human-centered one, or a combination of both.

Best Practices for Study Reporting — As there is currently no
accepted default structure for reporting results of human-centered
evaluations, study descriptions are difficult to compare and do not
always include all necessary information. The machine learning
community has recently suggested model cards for model report-
ing [MWZ*19] and datasheets for datasets [GMV*20] to summa-
rize the respective most important aspects. For the InfoVis commu-
nity, Borgo et al. have generated a template form to “be filled in
and provided as supplementary material to adequately report all the
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details of an InfoVis crowdourcing experiment” [BMB*18]. Build-
ing on this idea, we provide a femplate for the reporting of human-
centered evaluation results in Table 7.

While it is not our goal to prescribe that every evaluation must
consider specific properties, we encourage authors to use the tem-
plate to help them in systematically capturing all aspects worth con-
sidering and reporting. Further, using the dimensions introduced
by this STAR will ensure that new human-centered evaluations are
comparable to the ones studied here. In the following, we directly
address future authors, and recommend a set of aspects to help im-
prove the clarity of the reported results:

1. Clearly state the research questions that you are aiming to
investigate (e.g., [BHZ*18; HHC*19; LGM*20]).

2. Structure the evaluation section to support readability,
e.g., [HHC*19; SFB*20]. Highlight key findings.

3. If applicable, represent a study’s phases as a figure, such as
provided by Ren et al. [RAL*17] (depicted in Figure 4).

4. Identify and report what properties or aspects are being eval-
uated, and how, e.g., usability, learning, knowledge generation,
user satisfaction, interaction design, workflow, etc.

5. Provide definitions for abstract concepts like trustworthiness or
intelligibility.

6. Consider providing statistics about participants, e.g., age and

1) Hypotheses and Main Questions to Investigate

O Are the research questions defined?

O Human-centered vs. algorithm-centered evaluation?

2) Study Setup

O Which study type is most appropriate?

O How are results processed? Qualitative or quantitative?
O Which analysis or coding methods are applied?

3) Tasks and Dataset

O What tasks do participants perform?

O What can be measured through those tasks?

O Which dataset will you use?

O Do participants need training? How can it be provided?
O How do you verify that participants understand tasks?
4) Data Collection

O What data (screen, audio, interactions, ...) will be collected?
O How will it be stored in a privacy-preserving way?

O Do you have to ensure GDPR-compliant data handling?
5) Ethical Clearance

O Does the study require ethical approval?

O How will participant consent be collected?

6) Participants

O How can the required expertise be ensured?

O Has diversity in backgrounds been considered?

O Screening: inclusion and exclusion criteria

O Are participants compensated? If yes, how?

7) Reproducibility and Open Sourcing

O How can reproducibility of results be ensured?
O Will the results of the study be publicly available?

Table 6: Checklist of factors to consider when planning a human-
centered evaluation, ensuring all relevant information is captured.
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gender. They are relevant to scope potential replication studies.

7. Describe the background of participants (where were they born,

raised?; where do they live?), as many human-centered aspects
depend on cultural backgrounds.

8. Be precise in describing the expertise levels that you report,

especially considering the two dimensions of domain/dataset and
ML/ALI expertise.

7.4. Research Opportunities for Human-Centered Evaluations

We believe an exciting research direction is for the community to de-
velop a structured evaluation framework, which will improve many
HCE facets, including synergizing HCE with algorithm-centric eval-
uations and increasing research reproducibility and accessibility.

Structured Evaluation Framework — To advance and mature the
field of HCML, a structured evaluation framework that enables com-
parable evaluations is needed. Our STAR can serve as a first step
in this direction, providing an overview of current human-centered
evaluation practices. In order to converge towards a complete evalu-
ation framework, algorithm-centered evaluations must also be sur-
veyed, and guidelines developed on how to balance both integral
aspects of HCML. The surge of interest among major companies
in understanding the best practices in human-Al interaction (e.g.,
from Apple [App19], Google [Goo19], Microsoft [AWV*19], and
summarized and compared by Wright et al. [WWP#*20]), provides
fertile common ground for researchers to collaborate with industry
practitioners to make advances on all fronts.

Shared Vocabulary — As a foundation for a common evaluation
framework, convergence on a shared vocabulary is needed. In this
paper, we have coded terms like trustworthiness and transparency
as mentioned by the respective authors. However, it is not clear
whether all authors have the same definition of these abstract terms.
As a result, this STAR can not provide unifying definitions, instead
highlighting them as challenges that remain for future work. Future
HCE evaluations should consider providing definitions for evaluated
terms and concepts or reference existing definitions.

Open Access and Reproducible Studies — We call on all authors to
“open-source” their evaluations, to help advance the reproducibility
of research results, and to help the community more easily access
high-quality evaluation approaches, and to contribute to improving
them. Indeed, open-sourcing evaluation aligns well with the ongoing
practices of open-sourcing code repositories in the machine learning
and Al communities (e.g., top venues typically strongly encourage
researchers to do so for their submitted work), and the increasing
encouragement of posting final preprint versions of accepted articles
to open access repositories (e.g., at IEEE VIS). Specifically, we
encourage researchers and authors to make publicly available all the
evaluation materials, such as the protocol transcripts of evaluation
sessions. Even better would be to also open-source such materials
so that other researchers can contribute to extending and improving
them (similar to how contributions are made to code repositories,
say, on GitHub). We believe a structured evaluation framework will
accelerate the open-sourcing efforts and vastly increase the amount
of evaluation results that can be compared, because the structure
provides a common ground that naturally facilitates comparison
and invites collaborative development; independent research teams
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Study Setup Study Type: O Observational Study O Pair Analytics O Lab Experiment O Field Study O Crowdsourcing Study
Study Design: O Between-Subjects O Within-Subjects O Mixed-Design
Study Conditions & Controls: 1. 2. 3.
Study Duration: O One Session O Multiple Sessions O Long Term |  Session Duration: mins
Research Research Questions: 1. 2. 3. .
Objectives Application Domain: Evaluation Goals: O Interface Design O Interaction Design
& Hypothesis O General Usability O Model Performance O Domain Insight O Interaction Impact O Technique O Other:
ML Properties: O Quality O Transparency O Trustworthiness O Interpretability O Controllability O Other:
Explanation Properties: O Transparency O Trustworthiness O Effectiveness O Fidelity O Other:
Interface Feedback on: | Interaction Feedback on: | Guidance Feedback on:
Methodology = Learning Phase: O Training O Walkthrough O Unguided Exploration | Learning Phase Duration: mins
& Procedure Study Phases (Duration): 1. (__mins) 2. (__mins) 3. (__ mins)
Structure (per Phase): O Structured O Unstructured O Semi-Structured | Study Leadership:
Tasks Main Task: O Refine O Diagnose O Compare O Explore O Understand O Use O Hypothesize O Justify
Domain-Specific Task Description: 1. 2. 3.

Data Description:

Data Type: O Multivariate Data O Text O Images O Videos O Geographic Data O Other:
Availability: O Open Source O Upon Request O Restricted |

O Cleaned O Processed OLabeled O Contains Ground Truth

Source:

Participants Number of Participants: ___ | Demographics: Age (min:_ max:— mean:— SD:__) Gender (#f:__ #m:__ #o0:_)
Background: | Education: | Culture: | Other:
O Domain Expertise: | Distribution: (—% Low, % Mid, __% High )
O Dataset Expertise: | Distribution: (—% Low, —% Mid, —_% High )
O ML/AI Expertise: | Distribution: (—% Low, 9% Mid, % High )
Analysis Data Collection: Recordings (O Screen, O Video, O Audio) O Tracking O Questionnaire O Protocol O Sketches & Notes
& Reporting Analytical Methods: O Summarizing Observations O Statistical Measures O Grounded Theory O Others:
Result Processing: O Qualitative O Quantitative Result Presentation: O Tables O Text Description O Figures
Study Data Availability: O Raw Data O Processed/Aggregated Data | O Open Source O Upon Request O Restricted
Findings OHCML Findings: 1. 2. 3.
O Interaction Findings: 1. 2. 3.
O Interface Findings: 1. 2. 3.

Table 7: Template for reporting the results of human-centered evaluations, based on Borgo et al. [BMB*18]. Enhancing the reproducibility of
study designs, this form can serve both, as a guide to structure evaluation reporting within papers, as well as a paper’s supplementary material.

could selectively adopt and extend specific parts that are relevant to
them and contribute their extensions back to the “source” repository
and to the community at large. For instance, open-sourcing the
evaluation materials that focus on recruiting experts as participants
could help researchers more easily extend it to also recruit novices by
leveraging much of the structure of the existing study protocol, and
focus mainly on modifying the parts that are critical to change (e.g.,
how participants are recruited and trained, develop simpler tasks).

To further increase the likelihood for evaluation results to be re-
produced and compared, we encourage researchers to adopt repeat-
able methods like grounded theory [Dey99; IZCCO08] to code tran-
scribed qualitative feedback. We also believe that it will also be ben-
eficial for evaluations to consider factors like personality character-
istics or traits of the participants (which have not been considerably
evaluated by the surveyed papers), such as their propensity to trust,
confidence in interacting with technologies, and prior belief about
machine learning; all of which could have an impact on how partici-
pants interact with a machine learning system.

7.5. Calls for Action

Lastly, we conclude our reflection with four calls for action (CFA)
aimed at both authors and the scientific community.

CFA for Authors — (1) Try to make the aspects that were evalu-
ated clear as HCML papers are becoming very complex, and it is
infeasible to evaluate all of the dynamics at hand. Also, clearly state
which aspects you did not evaluate. (2) Be clear on limitations of
study results, including factors limiting generalization of findings
and clearly distinguishing between statements supported by evi-
dence and statements seeding future research directions.

CFA for the Community — (1) Consider splitting papers; do not ex-
pect complex HCML systems to be evaluated within the remit of a
single paper; create a venue for HCML evaluations; value replica-
tion studies. (2) Value candid, realistic reporting of study results, es-
pecially with respect to limitations. The complexity of the human
factors is exacerbated in HCML; we need to learn to accept small
and perhaps constrained but sound steps pushing research forward.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.
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8. Conclusion

This paper presents a comprehensive survey of evaluations of HCML
techniques in visual analytics. For an interactive overview of our re-
sults, see the survey browser at https://human-centered-evaluations-
star.dbvis.de. Evaluating these tools is complex, as there are human-
focused aspects such as usability and utility in terms of task per-
formance, as well as model performance metrics to measure model
quality. This survey focuses on factors of the evaluation that may in-
fluence trust, interpretability, and explainability. Through systematic
analysis of the evaluations performed in papers from relevant confer-
ences and journals, we came up with a series of design dimensions
to describe structured evaluations. Finally, we discuss gaps in evalua-
tion methodologies and future opportunities to advance the research.
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