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Figure 1: VEHICLE is a web-based tool to validate and explore the integration of conflict event data that was recorded by different institutes.
It allows analyzing parameter influence as well as spatial, temporal, and hierarchical distributions.

Abstract
The exploration of large-scale conflicts, as well as their causes and effects, is an important aspect of socio-political analysis.
Since event data related to major conflicts are usually obtained from different sources, researchers developed a semi-automatic
matching algorithm to integrate event data of different origins into one comprehensive dataset using hierarchical taxonomies.
The validity of the corresponding integration results is not easy to assess since the results depend on user-defined input param-
eters and the relationships between the original data sources. However, only rudimentary visualization techniques have been
used so far to analyze the results, allowing no trustworthy validation or exploration of how the final dataset is composed.
To overcome this problem, we developed VEHICLE, a web-based tool to validate and explore the results of the hierarchical
integration. For the design, we collaborated with a domain expert to identify the underlying domain problems and derive a task
and workflow description. The tool combines both traditional and novel visual analysis techniques, employing statistical and
map-based depictions as well as advanced interaction techniques. We showed the usefulness of VEHICLE in two case studies
and by conducting an evaluation together with conflict researchers, confirming domain hypotheses and generating new insights.

CCS Concepts
• Human-centered computing → Information visualization; Geographic visualization; Visualization toolkits;

1. Introduction

The study of violent and non-violent conflicts is an active research
area in the socio-political context. Over the last decades, an in-
creasing number of datasets have been produced that encode the
emergence and progression of conflicts. Conflict phenomena are

recorded as point-based events in relation to space and time. Pre-
viously, the data used for analysis was often confined to a sin-
gle dataset. However, for a holistic view on the course of events
and, hence, a better understanding of their interdependency, it is re-
quired to consider the information from more than one dataset. The
different datasets, however, are not all recorded using the same cod-
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ing scheme. Institutes collect information from different sources
like newswire or newspaper articles to extract the event recordings
for their datasets. Therefore, it is possible for recordings from dif-
ferent datasets to represent the same original incident while con-
taining different information, as depicted on the left in Figure 1.

To solve this issue, experts recently started to integrate the in-
formation from different datasets to receive one holistic set. The
most prominent method to do so is the semi-automatic method
MELTT [DDM∗19]. It is parameter-dependent and relies on hier-
archical taxonomies to classify the events. However, validating the
plausibility of the outputs and understanding their composition is
vital as the resulting dataset is the foundation for all further anal-
ysis and inference. Despite that, only basic techniques have been
employed in the validation process so far.

Therefore, we present VEHICLE, a web-based tool to analyze
the results of hierarchically integrated conflict event data. We de-
signed it according to Munzner’s Nested Design Model [Mun09] in
collaboration with a domain expert. It allows the inspection of the
influence of input parameters as well as the characteristics and sim-
ilarities among the integrated data. For this purpose, we use multi-
ple linked interactive visualizations, such as map-based depictions
and radial glyph-based layouts, see Figure 1, right. We demonstrate
the effectiveness of the tool by presenting two case studies and a
qualitative and quantitative evaluation together with five domain
experts. In summary, we make the following contributions:

• A characterization of the integrated conflict event data and the
associated domain problems regarding the validation and explo-
ration of its composition.
• A task and workflow abstraction to translate the problems into

the field of interactive visualization.
• A tool design and implementation following the derived work-

flow to solve the identified tasks.

2. Background on Conflict Data

In this section, we give a brief overview of how conflict data has
been analyzed in the field of social sciences thus far.

Analysis of Conflict Data. The quantitative study of political
conflict has a long tradition in the social sciences. In line with the
seminal work of Richardson [Ric48], it had initially focused on the
study of large-scale interstate wars. More recently, the focus has
shifted to intrastate wars, including civil war and terrorism. The
main catalyst for this have been a number of large-scale institu-
tional data collection initiatives that systematically collect data on
constituent conflict events, e.g., individual attacks. These conflict
events are geocoded, time-stamped, and annotated with contex-
tual variables that describe the actors involved and the event type.
The leading datasets in this area are the Armed Conflict Location
and Event Data (ACLED) [RLHK10], the Uppsala Conflict Data
Project–Georeferenced Event Data (GED) [SM13], the Global Ter-
rorism Database (GTD) [GTD13], and the Social Conflict Analysis
Database (SCAD) [SHH∗12]. These data have been used by so-
cial science researchers to analyze a wide range of policy-relevant
topics, e.g., the motivations for individual attacks, deliberate tar-
geting of civilians, or the relationship between inequality and vio-
lence [DGB14]. The focus so far has been on the statistical analysis
of conflict patterns and deriving causal relationships between con-
textual or behavioral covariates and the observed conflict patterns.

Analysis of Integration Results. The analysis of integrated data
is of critical relevance for the quantitative study of conflict, given
the incomplete and often complementary coverage of individual
datasets [DDM∗19]. The hierarchical integration of event data
from different sources according to Donnay et al. [DDM∗19] re-
quires at least two hierarchical taxonomies describing different as-
pects of the data. The assumption is then that, the deeper in the dif-
ferent taxonomies two different event recordings fall into the same
categories, the more likely it is that they represent the same orig-
inal incident. Based on that idea, duplicate recordings are elimi-
nated when integrating multiple datasets. This automatic strategy
is more efficient and replicable than attempting manual integra-
tion. Yet, it cannot be precluded that potential biases from a single
dataset might carry over into the integrated dataset [Wei15]. This
opens up to a more general problem, that is, that studies in con-
flict research typically rely on techniques to analyze the outcome
of the integration that are not fully suited to capture its whole com-
plexity. For example, prior work has considered mainly time series
visualizations and corresponding statistical analyses, or static maps
aggregated over fixed time windows [DF14, Wei16, DDM∗19].

3. Related Work

In this work, we analyze geospatial event data with point spatial
footprint and instant duration. Moreover, the events are subject to
a hierarchical structure. We structured the related work accord-
ingly. For the development of our tool, the fundamental book of
Andrienko and Andrienko on the exploratory analysis of spatio-
temporal data [AA06] provided us with structured guidance to
identify principles, tasks, and techniques to apply in our design.

3.1. Visualization and Analysis of Event-based Data with
Geospatial and Temporal Context

For data with a spatial context, map displays are suitable to allow
the preservation of the spatial structure [AA06]. Maps can be used
to perform exploratory data analysis, generate hypotheses, and con-
struct knowledge [FG05]. They also support the identification and
comparison of specific patterns as well as the estimation of val-
ues [Mac82, Mac95]. In general, three types of spatial encoding
can be used to display data on a map: point, line, and area informa-
tion [SMKH99, KPS03].

Point. To represent phenomena at a specific point, glyphs can be
used, where their properties, such as shape, size, and color, are var-
ied [DBBCM04, AAA∗16]. Such maps facilitate qualitative analy-
sis. However, depending on the number of events, this variant can
cause visual clutter. To cope with this, one can change the appear-
ance of the glyphs, distort them spatially, or animate them over
time [KH98, ED07]. When combining spatial point information
with a temporal dimension, the 3D Space-Time Cube is a common
example of visualization [Kra03, GAA04]. Aside from construct-
ing a 3D view, there is a variety of operations to derive visualiza-
tions from the Space-Time Cube model, which Bach et al. summa-
rized in a descriptive framework [BDA∗17]. However, the number
of points and different event categories that can be displayed mean-
ingfully in such views is limited and does not scale well with the
number of events in applications such as ours. When, instead, de-
picting events as 2D point marks, the temporal information can be
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displayed using a separate view [AAB∗13, LSB∗16], Small Mul-
tiples [Tuf01] like by Li et al. [LCZ∗19], or animation [AA06].
However, this usually hinders the perception of the spatio-temporal
context as a whole.

Line. Encoding events as lines is only applicable if they are asso-
ciated with network or movement data [Guo09, AA13, AAFW17].
However, conflict event data have static locations, so this encoding
could only be used to display the relation between matched events.

Area. To reduce visual complexity, information can be mapped
to area. To do so, events need to be aggregated over space us-
ing administrative boundaries such as cities or counties [Tob73]
or artificial boundaries like grids [AA06,CSC∗18]. The aggregates
can also be determined using techniques like clustering [Yu06,
IP14, RPP∗17]. Appropriate visualizations for spatially aggre-
gated data include the use of Choropleth Maps [Tob73], special
glyphs [AAB∗13, AAFW17, CSC∗18], or, more general, spatially
embedded charts [AA06]. The appropriateness of aggregation de-
pends on the spatial resolution.

Aggregation may also be performed along the temporal dimen-
sion to receive time series. Those can be analyzed w.r.t. the oc-
currence of anomalies [CTB∗12, IP14, CLZ∗18] or characteristic
patterns [AAM∗10, AAB∗13, LSB∗16, RPP∗17, LCZ∗19], again,
depending on the resolution. Two works [RPP∗17, LSB∗16] stand
out as some of the few approaches to analyze conflict data with
advanced visualization support. While Robinson et al. [RPP∗17]
only extract patterns of interest from event data streams belong-
ing to a single dataset, the work by Lu et al. [LSB∗16] is more
closely related to our approach. Like us, they make use of multi-
ple datasets to understand certain behaviors. However, they do not
create a holistic dataset but, instead, use a secondary dataset to un-
derstand the potential causes for a change in behaviors in a primary
dataset. Here, only specific points in time are of high relevance,
identified by an automated model. Overall, the techniques in this
paragraph are rather suitable for investigations with specific goals
than to create a general understanding of the integration process.

3.2. Visualization of Hierarchical Data

Hierarchical data captures relationships between sub- and super-
ordinate components. They can be visualized explicitly or implic-
itly [SS06]. The most common explicit representation are node-link
diagrams [RT81] where nodes are connected by edges to express
hierarchical relations between them. Implicit techniques are more
space-efficient as they use alignment instead of edges to encode
the relationship [SHS10]. This way, they provide a space-filling
view [SS06]. The visual entities of subordinate levels can be ar-
ranged side by side to their parent entity or inside of it. One exam-
ple of the side-by-side arrangement are Icicle Plots [KL83], where
the hierarchy of rectangular shapes is expressed by stacking them.
Extending that idea, the Sunburst Visualization [SZ00] allows to
better convey structure and hierarchy by using radial arc segments
instead of rectangles. In contrast, to display child entities inside of
their parents, a self-containing arrangement of the visual entities
is required. The most well-known representatives of this class are
Treemaps [JS91]. They express the hierarchy through recursively
nested rectangles. Enhancements of the visual representation in-
clude Cushion Treemaps [VV99] and Voronoi Treemaps [BD05].
Despite improvements, arrangements based on self-containment

Figure 2: An extract from the taxonomy for the attribute “event
type” and corresponding terminology [DDM∗19] is depicted.

make it difficult to compare individual elements of a hierarchy if
they are not placed close to each other. In addition, it is difficult
to trace paths through the hierarchy. Hence, we rely primarily on
explicit node-link diagrams in our hierarchical visualizations.

4. Characterization of the Data

The integrated datasets that we analyze in VEHICLE come from
the projects ACLED [RLHK10], GED [SM13], GTD [GTD13],
and SCAD [SHH∗12]. We consider the events which took place
in Africa between 1997 and 2016, a total of 197,502 events. Out
of these, 140,738 belong to the dataset ACLED, 25,788 to UDP-
GED, 16,928 to GTD, and 14,048 to SCAD. In the following, we
define terminology to introduce the integration procedure and to
classify the resulting data. We plan to release the integrated data on
the same website as VEHICLE (www.meltt.net).

4.1. Definitions

In the following, the actual occurrence of an event in the real world
is referred to as an incident, while the recording of an incident in a
dataset is referred to as an event. This differentiation is made since
a single incident may be represented by multiple events. The set
of attributes of an event depends on whether it is encoded in one
of the original datasets prior to the integration or in the context of
the integrated data. In the original datasets, events have continuous
attributes, namely the location, i.e., longitude and latitude, and the
date of occurrence. In addition, they have categorical attributes to
describe the event type (e.g., strategic development or riots), the
main actor, and how precise the recorded location is.

For the integration of conflict datasets, hierarchical taxonomies
were introduced by Donnay et al. [DDM∗19]. Accordingly, one
taxonomy exists for each of the attributes: “event type" (type), “pri-
mary actor" (actor), and “geographic coding precision" (precision).
Each of these taxonomies has multiple levels, grouping the values
of the corresponding attribute from the original datasets into over-
arching categories. An example of how an event can be encoded
in a taxonomy is given in Figure 2. The actor taxonomy consists
of three levels and 21 categories, the type taxonomy of four lev-
els and 28 categories, and the precision taxonomy consists of four
levels and 19 categories. When an attribute value of an event from
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one of the original datasets is classified in the corresponding tax-
onomy, the value is assigned to one path of the taxonomy. A path
is a sequence of categories visited when traveling from a category
at a higher level to a category at a subordinate level. The higher the
level is in the tree, the lower is the corresponding level number. The
depth of a taxonomy is defined as its number of levels which also
corresponds to its maximum possible path length.

The taxonomies are used to integrate the events from the origi-
nal datasets, as explained in more detail in Section 4.2. As a result,
events are either identified as matches or uniques. A match is a
tuple of events from different datasets that were identified to repre-
sent the same incident. A unique is an event that was found to be
the only one out of all the events to be covering a certain incident.

In two views of VEHICLE, a taxonomy of primary interest can
be selected for the investigation, e.g., “type”. It is then referred to
as the primary attribute and the categories at its highest level as the
primary values, e.g., “violent events” and “non-violent events”.

4.2. Matching Procedure

For the application in this paper, we adopted the matching proce-
dure and the underlying taxonomies from the MELTT algorithm
[DDM∗19]. It has two primary input parameters: ∆s and ∆t. These
parameters control how far two different events may occur apart
from each other w.r.t. time (∆t) and space (∆s) to still be consid-
ered as candidates for a match.

For the events proximate to each other based on these con-
straints, the algorithm identifies the pairwise similarity between
each of them. This similarity of two events, called match score,
depends on how deep into each of the different taxonomy trees the
two events have their deepest common parent node. The deeper the
first common parent, the more similar are the events. The score pro-
duces values between 0 and 1, while a smaller score corresponds
to higher similarity. Finally, based on the pairwise similarities, the
events which are most similar are identified as matches by solving
a stable marriage problem [GS62].

After bringing the original datasets to a uniform shape, we used
this algorithm to add the matching information to the data (140MB
in total). It took about three hours on a standard desktop computer.

4.3. Classification of the Data

For the data abstraction (according to Munzner [Mun09]), we
adopt the taxonomy for time-oriented data proposed by Aigner et
al. [AMST11]. Since the data covers a sequence of consecutive
years, it is ordinal, point-based, and linear. As multiple events can
be recorded on the same day, it has multiple perspectives and since
the dates are expressed in a calendar system, the data has multi-
ple granularity. The time primitives are instant and determinate.
Additionally, the data is both quantitative due to the continuous
attributes and qualitative due to the categorical attributes and, con-
sequently, also multivariate. The frame of reference is spatial. The
internal time of the events is non-temporal, as for each event only
one precise timestamp is given and the external time is dynamic.

The data is graph-based due to the hierarchical information from
the taxonomies and the information which events form matches
together. It can be both large-scale with almost 200k events and
small-scale, depending on the size of the inspected subsets.

5. Task Abstraction

In the following, we present our domain problem characterization
in line with Munzner’s Nested Design Model [Mun09]. Together
with a domain expert, we identified five domain problems that oc-
cur when analyzing the hierarchical integration of conflict event
data. They consist of validating the algorithm outcome, searching
for potential malfunctions, determining an appropriate set of input
parameters, getting a first understanding of the patterns in the data,
and exporting a subset of the data for further personalized investiga-
tion. From these problems, we distilled the overall domain-specific
analytical tasks that may arise when trying to solve the problems.

T1: Understand the influence of the parameters ∆s and ∆t
on the matching result. An appropriate choice of ∆s and ∆t is not
known in advance, only ranges of reasonable values can be formu-
lated which, in our case, reach from ∆s = 0km to ∆s = 250km and
∆t = 0d to ∆t = 2d. As the choice of the parameters influences
the number and the quality of the matches, it is important to see
how these two characteristics change over the different outcomes.
In addition, it is useful to provide means to assess how strongly
the algorithm outcomes differ from each other. This allows deter-
mining which parameter changes lead to the largest variation of the
outcome and are, thus, interesting for closer inspection.

T2: Understand whether the number and structure of the
identified matches are reasonable. To assess the credibility of
the matching result, the analysts need to understand the underly-
ing structure and rules of when and where matches occur. For that,
they need to solve the following two subtasks.

T2a: Analyze and compare the distribution of matched and
unique events. A multitude of questions may arise when investigat-
ing the character of matched and unique events. The analysts need
to get an understanding of the circumstances under which matches
are identified. When are they found? Where? For what kinds of
events? In contrast, are there regions where multiple events occur
in close spatio-temporal proximity but barely any matches are iden-
tified? And what is the reason for that? To answer such questions,
analysts need to be able to approach their investigations from var-
ious angles. In addition, it would be helpful to determine what the
most striking differences between matched and unique events are.

T2b: Determine where in the taxonomies the events are
matched with which frequency. For the analysts, it is necessary
to grasp the distribution of the matches across the categories of the
different taxonomies as well as to compare the frequencies of in-
dividual categories to identify both overall patterns and outliers.
This way, it becomes clear in which subtrees of the taxonomies the
datasets overlap and for which categories this is not the case.

T3: Inspect and export subsets of interest. As already touched
on in T2a, analysts need to narrow down the set of events or
matches to inspect subsets in more detail. In doing so, the analysts
should be able to inspect the events both on a large scale but also
on a small scale of only a few events to investigate overall trends
as well as small anomalies. At that, resetting to previous views is
important to minimize the consequences of operating errors and to
compare and refine subsets of interest. Moreover, for subsequent
personalized investigation, experts need to be able to export identi-
fied subsets of interest.

Refining the taxonomy or core aspects of the matching algorithm
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aside from the input parameters are domain problems outside the
scope of our tool. This would substantially increase the complexity
of the tool while it showed that not all users would want to analyze
the results that deeply. For instance, the original datasets have 8452
types of actors in total. Hence, when modifying the actor taxonomy,
large numbers of original actor classes might have to be reassigned,
requiring dedicated solutions. We also do not aim for providing
techniques for in-depth analysis of the integrated dataset such as
identifying causal effects. The techniques applied for such tasks
vary strongly in the field of conflict research and would cause the
tool to become too complex.

6. The Design of VEHICLE

The visual interface of VEHICLE comprises multiple linked com-
ponents to handle the multi-faceted integration data. We followed
Munzner’s Nested Design Model [Mun09] when developing our
tool in an iterative process using prototypes [LD11]. In this sec-
tion, we describe our contributions w.r.t. Operation and Data Type
Abstraction and Visual Encoding and Interaction Design [Mun09].
The different components of VEHICLE are embedded in an abstract
workflow which we present before discussing their design in detail.

6.1. Workflow

Based on the analytical tasks from Section 5, we designed a work-
flow, including applicable subtasks according to Andrienko and
Andrienko [AA06]. We also reference the sections describing how
we implemented the different aspects of the workflow.

(A) Overview of Parameter Influence. To get an overview of
the algorithm outcomes (T1), the analysts first inspect the matching
results for different parameter combinations at a higher level (Sec-
tion 6.2.1). To do so, they look up and compare the overall quality
of the identified matches and the similarity of the different out-
comes. They characterize the overall behaviors and their relations
created by varying the parameters. This way, the analysts identify
the parameter combination which is of most interest for a more de-
tailed analysis. During this analysis, the analysts may come back to
the overview to compare the identified patterns to the ones occur-
ring for other parameter combinations.

(B) Analysis of All Events. For a specific matching result, the
analysts characterize, compare, and relate the patterns describ-
ing the distributions of the events across the different attributes
(T2a, T3). This includes the selection and comparison of subsets of
events w.r.t. space, time (Section 6.2.2), and categorical attributes
(Section 6.2.3). Additionally, they determine what the most striking
differences between certain subgroups are. Throughout the investi-
gation, they select the level of detail at which to display the tax-
onomy information. To avoid getting lost in abstract visualizations,
they refer to a map-based view depicting the current selection. Fol-
lowing the above steps, the analysts also gain an impression of the
extent to which the datasets overlap for the different categories. To
analyze the match information in more detail, the analysts alternate
between (B) and (C).

(C) In-depth Analysis of the Match Distribution. For the se-
lected parameter combination, the analysts look up and compare

Figure 3: The ParaMultiples summarize the matching outcomes in
histograms. They depend on spatial (horizontal axis) and temporal
(vertical axis) constraints. In addition, the dissimilarities between
match distributions of adjacent outcomes are depicted as bars.

where and when the matches occur (Section 6.2.2) as well as how
they are distributed across the taxonomies (Section 6.2.4) to gain
an understanding of the underlying patterns (T2b). Again, a map-
based view serves as a reference frame of the current selection.
Aside from gaining an overview of the match distribution, the an-
alysts search for and investigate subsets of matches (T3). Interest-
ing subsets are usually determined by categories with an unexpect-
edly high or low number of matches. The analysts may also inves-
tigate how the matched events of the selected subset compare to the
unique events. In addition, they analyze the relationships between
the categories to understand what determining factors for certain
kinds of matches are, e.g., for those with a good matching score.

6.2. Visual Design and Implementation

The design of VEHICLE follows the workflow above. The view
from (A) is always visible. Once a parameter combination is se-
lected, the further analysis scope can be specified in the bottom bar
in Figure 3. The scope can either be selected as “All Events” (B) or
“Matches Only” (C). Both subviews replace each other, while each
of them contains a version of the spatio-temporal reference. If the
scope is set to “All Events”, a primary attribute has to be selected in
addition. Any performed filtering can be undone and redone. Ad-
ditionally, the data of the current view can be exported via “Export
Data” in the bottom bar in Figure 3 (T3). Moreover, all components
provide a help button to explain their key functionality. We allowed
direct user interaction [Shn97] wherever possible.

6.2.1. ParaMultiples

The first component provides an overview of the influence of the
spatial and temporal parameters ∆s and ∆t on the matching re-
sults, see Figure 3. The analysts can compare how the matches
are distributed for pre-defined parameter selections in Small Mul-
tiple [Tuf01] histograms, the ParaMultiples. Each histogram corre-
sponds to one parameter combination and depicts the relative fre-
quency of the corresponding matching scores (mapped to the y-
value) and the total number of matches (mapped to the fill color).
Mapping the absolute counts to the y-values would be inappropri-
ate as the number of matches varies strongly between the parameter
combinations, resulting in very small bar heights for certain results.
In addition, the absolute counts are displayed when hovering over
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the histograms. This way, analysts can look up and compare the
overall match quality for different input parameters and their im-
pact on the number of matches (T1). We selected histograms as
they are particularly well-suited for those tasks [AA06].

Dissimilarity Score. Adjacent histograms are connected by bars
representing the dissimilarity of the match distributions for the cor-
responding parameter combinations. For the dissimilarity measure,
we considered that for every matching result, each taxonomy in-
duces a weighted tree. In this tree, the categories are the nodes
and the node weights are the relative number of matches identi-
fied in each category. Existing tree similarity scores [BBY03,Bil05,
YKT05] are not suitable, as they focus on a more general compar-
ison of trees where the trees are of inherently different structure.
Hence, we created a score tailored for comparing two trees of iden-
tical structure where sub-trees can be considered similar even if
their weights are not distributed exactly across the same nodes.

To calculate the dissimilarity between two weighted trees of the
same taxonomy, first, an accumulated version of each tree is cre-
ated. Starting at the deepest level, for each node, half of its weight
is added to its parent node’s weight. This is done recursively until
level 1 of the taxonomy is reached. This way, the weights of the
nodes at the deeper levels of the tree influence the weights on the
higher levels, but for each level higher up, the influence is halved re-
cursively. Eventually, the weights of the two accumulated trees are
subtracted node-wise and the absolute values of the node-wise re-
sults are summed up. To receive the dissimilarity between the trees,
the sum is normalized by dividing by the maximum possible value
that can be reached for two trees of the given structure. This way,
the resulting score has a value between 0 and 1, with 1 correspond-
ing to the highest possible dissimilarity. Since for each matching
result, there are three taxonomy trees, corresponding to type, ac-
tor, and precision, we receive three separate dissimilarity values
when comparing two matching results, one for each tree. To de-
termine the overall dissimilarity between two matching results, we
form the average of the three separate dissimilarity values, yielding
values between 0 and 1. To provide as much contrast as possible,
the scale for the width of the dissimilarity bars goes from 0 to the
maximum dissimilarity present in the view.

With this score, two kinds of similarity are measured (T1).
Firstly, a vertical similarity, measuring if the matches are identi-
fied in similar depths of the trees. This reflects whether the matches
have similar scores as the scores improve if the matches are iden-
tified at deeper levels of a taxonomy. Secondly, a horizontal simi-
larity, measuring whether the matches are distributed across simi-
lar subtrees of the taxonomy trees. In the example in Figure 2, this
refers to, e.g., whether both trees cover a similar number of matches
of violent events in general as compared to non-violent events.

6.2.2. TempMap

In this view, the spatio-temporal distribution of the events is dis-
played in a comprehensive way (T2a, T3), see Figure 4. The loca-
tion of each event is encoded on a map. In addition, the temporal
information is mapped to a radial stacked histogram that is wrapped
around the map. Aggregation of time-dependent events into his-
tograms is a common visualization technique [AWR∗07]. If a pri-
mary attribute is selected in the “All Events” mode, the bars of each
stack correspond to the different values of the primary attribute. If

Figure 4: The TempMap shows the spatio-temporal distribution of
events. Hovering over a country (left) or a temporal bin (right)
highlights the contained events. Hovering over the map also dis-
plays the longitude and latitude of the mouse cursor position.

“Matches Only” are analyzed, each stack contains only one bar. To
assess which events took place at what time, each event location
is connected by a semi-transparent line to the corresponding point
on the outer timeline. Thus, by inspecting in which direction the
lines leave the event locations, the dates of the events can be esti-
mated. The technique is inspired by the TimeWheel [TAS04] and
the RingMap [ZFH08]. It was implemented similarly by Tomin-
ski and Schumann [TS20], improving the version of Tominski et
al. [TSAA12].

Line Design. As large numbers of events need to be displayed,
visual clutter would be caused by representing each event with a
simple point and line glyph. To avoid this, we adjust the opacity of
the glyphs depending on the number of events displayed [ED07].
With x representing the number of events in the current set, the for-
mula to calculate the alpha values is α(x) = c+m(x+ b)−k. We
determined the parameters by manually adjusting the alpha values
for event subsets of various sizes and fitting the function to the mea-
sured values. At that, we made a trade-off between preserving the
glyph visibility for small sets and reducing visual clutter for large
sets. In addition, we imposed a lower and upper limit for α(x). For
the exact parameter values, please refer to the supplemental ma-
terial. To further reduce clutter, the lines fade to 20% of the α(x)
value at their midpoint, meaning they are most visible at the end-
points. The analysts also have the option to adjust the opacity to
improve the visibility or to hide the lines entirely, keeping only
the point marks. Moreover, a highlighting functionality is avail-
able when hovering over individual countries or temporal bins to
quickly focus on the related events, see Figure 4.

Layout. We use a radial layout similar to other applica-
tions [ZFH08,TAS04]. It facilitates the search for spatio-temporally
dense regions and the look-up of when individual events have oc-
curred via the line glyphs. Moreover, smoothly integrating closely-
related aspects of the data into a single context can facilitate the
perception of the combined information as a whole [CCF95]. Thus,
we support a quicker and more holistic assessment of the data by
allowing to grasp the spatio-temporal context comprehensively. To
prevent the temporal information from being interpreted as having
a cyclic context due to the circular layout, the timeline is not closed
as a ring but left open in the area where a minimap is placed. The
minimap provides an overview when filtering and zooming into the
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Figure 5: The EventCharts display the distribution of the events
across the categorical attributes. The results of filtering (1) and
subsequent drilling into the actor taxonomy (2) are shown. In ad-
dition, the hierarchical information is depicted in (2).

data spatially or temporally, as it maintains the initial view while
indicating the zoomed regions. To filter and zoom spatially, the an-
alysts can either use a rectangular brush or click on a country to
focus only on events within it. To filter and zoom temporally, they
can either select the interval by brushing in the region of the tempo-
ral labels, see Figure 1, or by entering precise begin and end dates.

Alternative Techniques. We did not implement spatial aggrega-
tion techniques to reduce the visual complexity since events should
be distinguishable even in small regions. This would require a
high aggregation resolution, making it ineffective. Moreover, we
do not use an additional line encoding to express which events were
matched. As most matched events naturally occur in close proxim-
ity, the resulting possible insights are too small to justify the asso-
ciated increase in visual complexity. Another option would be to
arrange the stacks of the histograms next to each other instead of
on top. This would improve the separability of the corresponding
lines but distort the temporal ordering. However, we want to faith-
fully assess the proximity of events, so temporal distortion is not an
option. The same holds for spatial distortion.

6.2.3. EventCharts

To analyze how the events are distributed across the categorical
attributes, the EventCharts use hierarchical stacked barcharts, see
Figure 5, as barcharts are effective for lookup and comparison
tasks [AA06]. The view is available when analyzing “All Events”.
For a selection of categories from the taxonomies, bar stacks are
displayed. Moreover, the information in which original dataset each
event was recorded is displayed as an additional attribute as well as
whether it was matched or not. As for the TempMap, the bars of
each stack correspond to the primary values. For each category, we
map the number of events classified as belonging to that category or
to one of its subordinate categories to the width of the correspond-
ing bar. The bar height depends on the level of the category in the
taxonomy: the deeper, the smaller. The axes for the attributes are
aligned parallel with the primary attribute in the left-most position.

Interaction. The baseline for the bar stacks can be adjusted to
improve their comparability. Additionally, events can be filtered
based on their attribute values (T3). The filtering is linked with the
events displayed in the TempMap. The hierarchical aspect of the
data is revealed when drilling into the taxonomies. The analysts

can either Drill Down or Drill Up. When hovering over a bar stack
in Drill Down mode, the bar stacks corresponding to the underlying
child categories one level deeper in the taxonomy are displayed as a
preview. When clicking, the child categories replace the parent cat-
egory. At that, all bar heights in the corresponding attribute axis are
updated such that the bar heights for categories from a certain level
are half of the bar height of the categories from one level higher.
This way, the hierarchy of the displayed section of the taxonomy
can be perceived by the analysts. Additionally, it can be visualized
as explicit nodes and links by toggling “Hide Hierarchy Informa-
tion”. The perception conveyed by bars corresponding to categories
of different levels could be misleading if the analysts interpreted the
area of the bars as the counts instead of their width. As a remedy,
the number of events represented by each bar can be retrieved in
the Info mode when hovering over the bar. The Drill Up mode al-
lows the analysts to hover over bar stacks and display which other
categories are siblings to the corresponding category in the taxon-
omy by enframing them. By clicking, the enframed categories are
removed and their parent category is displayed.

Separability of Primary Values. The analysts can automati-
cally rearrange the attribute axes of the barchart according to how
well they allow to separate the primary values. This can be used to
determine which attribute provides the best separability of matched
and unique events or what the most striking differences are be-
tween, e.g., violent and non-violent events (T2a). To calculate how
well each attribute allows to separate the primary values in the
present view, a binary classification is assumed for each of the cate-
gories. That means, for each stack of bars corresponding to a single
category, the count of the largest bar is considered as the number of
events that can be correctly classified for that category. This way,
for each displayed category of an attribute, the maximum count of
a single bar is determined and all the maximum counts are summed
up. Finally, the sum is divided by the total number of events that are
currently displayed to yield the attribute’s separability score. The
scores of the attributes are used to determine the new axis order,
arranged from highest score to lowest. Using only the present cat-
egories of each taxonomy to calculate the score allows the analysts
to adjust the granularity for the calculation by drilling down or up.

Alternative Techniques. For the given task, more space-
filling hierarchical visualizations such as Treemaps [JS91], Icicle
Plots [KL83], or Parallel Sets [BKH05] could be used. However, it
showed that the analysts do not need to see all categories at once.
Hence, our solution is more suitable as it displays the hierarchi-
cal information without overloading the screen like space-filling
techniques can tend to do. Moreover, it makes it easier to compare
categories from different levels with each other.

6.2.4. MatchTree

The MatchTree uses a radial tree layout to visualize the distribu-
tion of the matches across the categorical attributes, see Figure 6.
All categories can be inspected at the same time. It is available
when analyzing “Matches Only”. Besides the actor, the event type,
and the precision, additional information is displayed. It covers the
number of events participating at each match (size), the match-
ing score (score) discretized into four equally-sized bins, and the
datasets that participate in each match (dataset).

Glyphs. Each category is represented by a circular glyph indi-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

7



Mayer et al. / VEHICLE: Validation and Exploration of the Hierarchical Integration of Conflict Event Data

Figure 6: The MatchTree displays the distribution of the matches
across the categories. As the mouse hovers over a category, a level
indicator ring is displayed and the induced sub-tree is highlighted.

cating how many matches were identified in that category, see Fig-
ure 7. The hierarchy of the taxonomies is conveyed by connecting
the glyphs of sub-/superordinate categories with lines. The glyphs
map the number of matches to both the fill color and the length of
their surrounding arc. The encoding via the color channel allows
quick identification of categories with a high number of matches.
Combined with the more precise encoding via the arc length and
displaying the exact count when hovering over a node, categories
of interest can be identified easily (T2b). The maximum domain
value of the color scale and the arc length scale corresponds to
the maximum match count across all nodes. When hovering over
a node, a dashed circle spanning all the trees is displayed, indicat-
ing its level for better comparison with other nodes, see Figure 6.
Moreover, the sub-tree induced by the hovered node is highlighted.

Filtering. The filtering, designed to be consistent with the
EventCharts, can be performed by (de-)selecting the desired cat-
egories in the “Filter” mode. In synchrony with the TempMap, this
filters out all matches identified in any of the deselected categories.
If the count of a node changes due to filtering, its arc is split up
into colored sections to express the difference to the previous state,
see Figure 7. This supports the user to track the changes across all
nodes (T3). For instance, this is interesting when filtering out the
matches with low matching scores to see which datasets primarily
participated in these rather bad matches, or for what types of events
they were identified. If the count of a node increases after filtering,
the corresponding arc section (gain arc) is colored in dark green. If
the count decreases, the lost section of the arc (loss arc) is colored
in bright red. The remaining arc section (neutral arc) is colored in
dark grey. Since the gain arc is part of the current count while the
loss arc is not, the luminosity of the neutral arc was selected to re-
semble the gain arc more than the loss arc. If the length of the loss
arc would exceed the current scale (it refers to the count from the
previous step), it is shown by a red dot on top.

An additional option of interaction is to collapse sub-trees of
the taxonomies. All ancestors of a node are then hidden and their

Figure 7: The sketch (a) depicts the components of a node glyph.
The green/red arc (b/c) indicates the number of matches gained/lost
over the last filtering state. A dot (c) shows if the scale is exceeded.

counts are added to the node’s count. That way, the visual complex-
ity of the graph can be reduced by summarizing information.

Alternative Techniques. We selected the radial layout over non-
radial options despite potential drawbacks [BW14]. It benefits from
a more compact usage of space and, hence, a more comprehen-
sive view. This way, the distance that must be covered to compare
glyphs is lower than compared to when the trees are arranged in
parallel. In the latter case, especially trees in the outmost positions
would require more cognitive effort to be compared [BW14].

7. Evaluation

To show the usefulness of VEHICLE, we present two case studies
and an evaluation conducted with conflict researchers.

7.1. Case Study 1: Validating the Outcome

This case study is based on findings we made in exploratory ses-
sions with our collaborating expert throughout the development. It
exemplifies findings of users interested in validating the algorithm
outcome. In the sessions, the dissimilarities in the ParaMultiples
between the different outcomes seem quite low, except for the jump
from 0 to 5km (T1). This shows both in the small dissimilarity
bars and the relatively similar histogram distributions, see Figure
3. To investigate this behavior, the analyst inspects the MatchTree
for different parameter combinations. This shows that often a high
number of matches occurs in only a small set of the nodes and that
this set barely changes when varying the parameter combinations
(T2b). The categories in this set are mainly related to violent events
and those with high geographic coding precision, see Figure 6.

To examine the categories which barely have any matches,
e.g., those with “non-violent groups” (NVG) as actors, the ana-
lyst switches to the EventCharts with “Dataset” as the primary at-
tribute (T2a). The bars on the “actor” axis reflect that the majority
of events have “violent groups” (VG) as actors, giving the first rea-
son for the lower number of matches for NVG. After filtering out
VG, the percentage of matched events reduces substantially, see
Figure 5. This indicates that there must be a reason for the lack of
matches in NVG other than the limited number of events compared
to VG. One of them is found when drilling down into the actor at-
tribute axis. This reveals that on the deepest levels the categories
are mostly populated by events from only a single dataset, see Fig-
ure 5. Hence, at least at these lower levels, barely any matches can
occur. Even more relevant insights are gained when looking over
to the TempMap. By hovering over different countries and tempo-
ral bins, it quickly shows that especially the spatial distribution of
events from different datasets varies quite a lot, see Figure 4. Closer
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inspection by zooming into certain areas confirms this impression.
This yields two insights. Firstly, the actor taxonomy might be too

fine-grained, preventing matches from being identified on deep lev-
els of the NVG subtree. Secondly, the datasets seem to have quite
different scopes for collecting events performed by NVG. In addi-
tion, this behavior, which also occurs similarly for other categories
with a low number of matches, explains the high similarity between
different algorithm outcomes. This is the case because the stated
reasons hold for most parameter combinations.

Overall, a deeper understanding of the underlying workings of
the matching algorithm could be gained than possible before.

7.2. Case Study 2: Exporting a Subset of Interest

This case study is adapted from the personalized evaluation ses-
sions. The analyst wants to determine, inspect, and export a subset
of interest from the integrated data, in this case, protest events in
Burkina Faso (T3). In the first step, they refer to the ParaMultiples,
see Figure 3. The color distribution of the histograms clearly shows
that the number of matches increases with loosening spatial and
temporal constraints, which is considered reasonable. In addition,
the changes between adjacent histograms are compared using the
dissimilarity bars and the histogram fill colors. The analyst identi-
fies a clear jump between ∆s = 0km and ∆s = 5km and confirms its
appropriateness. Requiring the matched events to be recorded in ex-
actly the same location is the constraint with the largest impact by
far. As the overall number of found matches seems reasonable, too,
the analyst proceeds to select the most appropriate parameter com-
bination (T1). To do so, they consider several aspects. Matches of
high quality, conveyed through the match score distribution, make
the results more trustworthy. As the overall quality reduces with
loosening constraints, this speaks for stricter constraints. In con-
trast, the number of matches increases with loosening constraints.
The higher the number of matches, the lower the chances of falsely
covering an original incident twice in the final dataset. This speaks
for less strict constraints. However, having more matches also in-
creases the chances of falsely matching an event that should actu-
ally be unique, excluding it from further analysis. To find a trade-
off between these aspects, domain knowledge helps in combination
with the examination of the match score distributions. Well-shaped
distributions without strong peaks are considered more reasonable.

With ∆s = 50km and ∆t = 2d, the analyst continues with “All
Events” as the scope and “Match info” as the primary attribute.
They inspect the TempMap and filter for the country Burkina Faso,
see Figure 1. They gain an impression of how the matches are dis-
tributed by using temporal highlighting (T2a). To inspect clusters
around the main capital and at specific times, they zoom in fur-
ther and reset to the overall country view when done. To select
only events of type “protest”, the analyst uses the EventCharts to
drill down into the event type taxonomy and filter for protests (T3).
They drill into other categories to better understand the distribu-
tion of the matches and use the automatic axis reorder function to
see that events are best matched if they are encoded with high ge-
ographic precision, see Figure 1. Using the TempMap, they also
find that for the most part the matches were identified around the
capital, increasingly since 2011, see Figure 1. Finally, to see how
the matches of the selected subset are distributed, they open the
MatchTree (T2b). They find that the matches are of high quality

according to the match scores, see Figure 1. Satisfied with the va-
lidity of the matching outcome and the selected subset, the analyst
goes back to view “All Events” and exports the integrated data.

7.3. Pair Analytics Sessions

The sessions were inspired by the evaluation methodology from
Kaastra and Fisher [KF14] and Cakmak et al. [CSB∗20]. In indi-
vidual sessions that lasted between 50 and 90 minutes, in total five
conflict researchers excluding our collaboration partner used VEHI-
CLE. With our remote assistance, they analyzed the data described
in this paper. We video-recorded the sessions and analyzed them
afterward. Each session started by collecting some background in-
formation about the analysts. They had been working in conflict re-
search for 3/6/9/13/19 years. They had at least some programming
experience with languages like R and a background in statistics.
They had experience with static data visualizations but not much
with interactive ones. Two of them were female and three male.

After that, we explained the different components of the tool to
them during which they already interacted with it and we discussed
the first insights. Afterward, they explored the tool freely, if nec-
essary with our assistance, while exchanging insights and impres-
sions with us. Eventually, they were asked to fill out a short ques-
tionnaire. We structure the results according to the components.

ParaMultiples. The analysts found the view “intuitive” and
“useful for robustness checks and to see where the biggest change
happens”. They liked that both relative and absolute information is
displayed and could easily assess the influence of the parameters.
One analyst would have liked to extend the range of ∆t and to have
hover information to better compare the dissimilarity counts.

TempMap. The analysts found the view “useful”, and “straight-
forward”. They liked “that you can manually type the date” but one
would have wished to also adjust the temporal bin sizes and to have
a less abstract map, e.g., with terrain or cities. Another would have
liked to see the count of individual temporal bars in the histograms
when hovering over them. In addition, some had trouble with using
the temporal brush at the beginning but adapted it after a while.

EventCharts. They found the view “handy” and “useful”. They
liked the drilling functionality and that the data in the view was
synchronized with the exported data. One analyst had issues with
grasping what the axis reorder function did and stated that the view
“should not be more complex” as “you have to think a little about
how to interpret the information”. Another initially struggled with
processing what happened when we changed the primary attribute.
The quantitative feedback reflects these difficulties, see Figure 8.

MatchTree. The analysts found the view “useful” and “really
interesting”. They especially liked the additional information about
size, match score, and dataset “because it is really difficult to look
at otherwise”. They used this combined with filtering and inspect-
ing the arcs. About the complexity, one analyst stated: “You first
have to get used to the depiction [...] but I find it cool.”

Overall. In the free investigation, the analysts showed excite-
ment and curiosity for the various ways to explore the data. With
one analyst, we even lost track of time to which he stated “it shows
how much there is you can do”. The analysts found the tool “super
useful” but said that it was not for casual users. One analyst stated
it “provides a much deeper look into [the integrated data]” than
possible before. This also shows in the quantitative feedback, see
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Figure 8: Each column of the two tables corresponds to the quan-
titative feedback of one analyst after the pair analytics session.

Figure 8. Still, one of the analysts would have liked to “go into the
original event text to feel psychologically closer to what the system
does”. At the start of the session, the analysts required quite some
assistance, but towards the end, they could do almost all investiga-
tions on their own. They expressed confidence to use the tool on
their own and were excited to do so in the future.

8. Discussion and Future Work

Our evaluation showed that the domain experts could use VEHI-
CLE to analyze the integration of conflict data and enjoyed do-
ing so despite some drawbacks. Accordingly, they wished for more
personalized adjustments. This includes viewing additional infor-
mation and adjusting the temporal bin sizes in the TempMap. We
want to provide those minor improvements in the future and are ex-
cited to get even more such input after the release. This expectation
seems justified considering the eager feedback of the analysts from
the evaluation. A more difficult drawback to deal with turned out
to be the tool’s complexity, especially regarding the EventCharts.
To make this view more comprehensible, several actions should be
taken in the future. To improve legibility, the same height for all
category bar stacks could be used. By doing so, the different axes
would have a more balanced aspect ratio and, thus, allow for a more
prominent display of the hierarchy based on node-links or stacked
rectangles. This way, we could reduce the confusion introduced by
the differing bar heights and could potentially even rearrange the
axes to save space. In addition, the axis of the primary attribute
could be set apart from the other attributes to better convey its rele-
vance and, thus, the meaning of the view. This could be done using,
e.g., spacing, a frame, or a dedicated background. Highlighting the
primary attribute could also make the "Reorder Attribute Axes" in-
teraction feel more intuitive.

To extend the approach to other application areas, the corre-
sponding data needs to have the following properties. The event
recordings, which come from different sources, represent their orig-
inal incidents with a loss of information. Ideally, they are geo-
temporal and the data can be classified in at least two different hi-
erarchical structures/taxonomies. The depth and number of the tax-
onomies may vary to a certain degree to still be displayable in the
EventCharts and the MatchTree but should not be too high to pre-
vent visual clutter. If necessary, the glyph size could be decreased.

To integrate and analyze such data using VEHICLE, analysts
need to take the following steps. They need to create suitable tax-
onomies and classify the original data accordingly. In addition, they
need to determine reasonable ranges for the parameters ∆s and ∆t
as, naturally, the ranges would differ between areas like Paris or
Syberia. For the ParaMultiples, this adjustment should be relatively

feasible. Despite changes to the maximum values of the ranges,
only a limited number of grid points for each parameter would be
necessary. The underlying assumption is that larger ranges indicate
higher imprecision of the measured distances, meaning their gran-
ularity can be coarser. In a case where this does not hold, panning
and zooming functionalities should be provided, or the ParaMulti-
ples would need to be changed more substantially. After the param-
eter selection, a matching algorithm like MELTT [DDM∗19] needs
to be run on the given data. This should take at most a few hours.
As indicated in Case Study 1, techniques like semantic match-
ing [GS03] could improve the integration results, e.g., in the case
where a protest is recorded as a violent event by one dataset and as
a nonviolent event by another one. With semantic matching, the un-
derlying meanings of the different categories could be considered
rather than just the category names. This change would require a
larger adjustment of the matching algorithm and the MatchTree to
indicate which matches were identified this way.

After following the steps above, the data could be analyzed
in VEHICLE as described in this paper. An example of such an
approach could be imagined in social media analysis when try-
ing to collect a set of original incidents from Twitter postings.
The different data sources would then be the users and the tax-
onomies could be either manually created by domain experts or
the results of different hierarchical clusterings applied on the data
[FZZ∗15, ISB14].

9. Conclusion

We introduced VEHICLE, a web-based tool to validate and explore
the hierarchical integration of conflict event data. These investiga-
tions were only possible in a basic way so far, calling the validity
of insights derived from the integrated data into question. Through-
out the development of VEHICLE, we identified associated domain
problems, characterized the underlying data, and derived a task and
workflow abstraction. To accomplish this, we worked together with
a conflict research expert to design and develop the tool in an it-
erative process. VEHICLE consists of multiple linked views that
allow switching between the analysis of all events from the differ-
ent integrated datasets and only those events that were identified
to represent the same original incident. For the identification, we
adopted the matching algorithm MELTT [DDM∗19]. To facilitate
the analysis, we relied mainly on direct interaction techniques and
employed radial layouts in two of the views. In addition, we pro-
vided a view allowing analysts to investigate the influence of the
input parameters required for the matching algorithm.

In two case studies and a pair analytics evaluation, we demon-
strated that with those design decisions, VEHICLE allows conflict
researchers to gain new insights about the integration process and
assess its validity. It also allows them to confirm existing hypothe-
ses, explore subsets of events and export them for further analysis.
At the same time, the results showed that due to its complexity, VE-
HICLE can be considered an expert tool. In addition, the evaluation
provided us with directions on how to extend the tool in the future.
We plan to follow them when releasing it to the broad audience.
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