
EUROGRAPHICS 2021 / N. Mitra and I. Viola
(Guest Editors)

Volume 40 (2021), Number 2

Layout Embedding via Combinatorial Optimization

J. Born1 P. Schmidt1 L. Kobbelt1

1RWTH Aachen University, Germany

Figure 1: We embed a given layout connectivity (left, visualized as a coarse mesh for illustration) into a target surface with prescribed
landmark positions (center left) by successively embedding edges as shortest paths in an optimized order. Previous methods choose a greedy
sequence of locally optimal decisions, which can lead to severe topological artifacts (center right) due to accidental blocking of subsequently
inserted paths. Our branch-and-bound method globally optimizes over all possible edge insertion sequences to find an embedding of shortest
total path length, which yields the expected homotopy class (right).

Abstract
We consider the problem of injectively embedding a given graph connectivity (a layout) into a target surface. Starting from
prescribed positions of layout vertices, the task is to embed all layout edges as intersection-free paths on the surface. Besides
merely geometric choices (the shape of paths) this problem is especially challenging due to its topological degrees of freedom
(how to route paths around layout vertices). The problem is typically addressed through a sequence of shortest path insertions,
ordered by a greedy heuristic. Such insertion sequences are not guaranteed to be optimal: Early path insertions can potentially
force later paths into unexpected homotopy classes. We show how common greedy methods can easily produce embeddings of
dramatically bad quality, rendering such methods unsuitable for automatic processing pipelines. Instead, we strive to find the
optimal order of insertions, i.e. the one that minimizes the total path length of the embedding. We demonstrate that, despite the
vast combinatorial solution space, this problem can be effectively solved on simply-connected domains via a custom-tailored
branch-and-bound strategy. This enables directly using the resulting embeddings in downstream applications which cannot
recover from initializations in a wrong homotopy class. We demonstrate the robustness of our method on a shape dataset by
embedding a common template layout per category, and show applications in quad meshing and inter-surface mapping.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh geometry models; Mesh models;

1. Introduction

Many mesh processing methods decompose an input object into
an arrangement of patches by cutting along paths on the surface,
giving rise to an embedded cell complex. The structure of this cell
complex, the layout, is often derived from the input geometry in
an automatic generation process. In this work, we consider the re-

verse problem of embedding a prescribed layout into a given target
surface.

The need to prescribe a specific layout arises in many applica-
tions: A layout itself may be used to assign semantic information
of a general structure (e.g. annotations on parts of a design template
or skeleton) which is then carried over to particular instances. For
shape collections, a common layout may act as a base domain to

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.142632

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-3707-4102
https://orcid.org/0000-0002-8917-3674
https://orcid.org/0000-0002-7880-9470

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

Figure 2: When landmark positions are fixed, there are still in-
finitely many topologically distinct ways to embed a layout (a) into
a target surface (b, c, d). We are interested in finding embeddings
of shortest total path length (d) since they correspond intuitively to
the correct embedding.

define shape correspondence across different members. When the
collection is extended by additional models, the shared layout tem-
plate needs to be embedded into each new object. For specific pro-
cessing tasks, such as re-meshing, a layout directly controls certain
aspects of the outcome, e.g. the resulting base complex of a tes-
sellation (Fig. 3). In these cases, it can be desirable to prescribe a
(hand-crafted or previously generated) layout, allowing to explic-
itly model structural features (such as symmetries or repetitions) or
standardized functional components (e.g. connectors or boreholes
in technical parts) in a controlled way.

In the following, we therefore consider the task of automatically
embedding a given layout (defined by a coarse cell complex with-
out geometry) into a target surface. We assume that the target po-
sitions for layout vertices are provided as landmarks on the input
surface. The problem of layout embedding then amounts to find-
ing a non-intersecting network of embedded paths on the surface,
conforming to the structure of the layout.

Maybe surprisingly, this problem has a vast space of possible so-
lutions: While a layout only mandates which points should be con-
nected via paths, an embedding must specify how these paths are
routed across the surface. Certainly, every path has a continuum of
possible geometric shapes. But even if we ignore continuous de-
formations of paths and only consider their homotopy, there are
infinitely many topological choices how to route a path around the
other embedded layout vertices (Fig. 2).

Faced with this enormous set of choices, it is natural to state a
preference for embeddings that are in some sense simplest or short-
est (e.g. by total geodesic length of all embedded edges). We argue
that shortest embeddings tend to match human intuition about the
“correct” topology as they avoid unnecessary twists and detours.

To simplify the task of finding shortest layout embeddings, we
restrict to a certain class of embeddings that is only parametrized
by discrete degrees of freedom and eliminates continuous choices:
We consider shortest-path embeddings, which are constructed by
successively embedding layout edges in a certain order as (non-
intersecting) shortest paths. All such embeddings are uniquely
identified by an insertion sequence of edges, which encodes topo-
logical decisions implicitly: Depending on the ordering, shortest
edge embeddings naturally assume certain homotopy classes by
avoiding intersections with earlier insertions (Fig. 4).

Shortest-path embeddings have been employed in numerous
works for the embedding of layouts [PSS01] or cut graphs [KSG03;
KS04; SAPH04; APL14]. However, all previous works rely on

Figure 3: One application scenario which relies on robust lay-
out embedding is quad meshing with prescribed base complex. Re-
sults heavily depend on finding embeddings in the correct homo-
topy class (a), thus avoiding unintended twists (b).

greedy strategies for picking an insertion sequence, basing their
decisions on local path lengths and several heuristics. Crucially,
these methods allow no backtracking: When heuristics fail, wrong
choices in earlier stages can lead to spectacularly bad embeddings
later on, exhibiting paths in unexpected homotopy classes (and of
excessive length) that swirl around remote regions of the target sur-
face (cf. Fig. 1).

Downstream applications that use embeddings for further pro-
cessing (e.g. global chart-based parametrization, re-meshing, or
inter-surface mapping) can typically not recover from initializa-
tions in a wrong homotopy class [SAPH04; APL15; SCBK20].
Due to their weak reliability, greedy methods for layout embedding
require human supervision and intervention, making them poorly
suited for automatic shape processing pipelines.

In this work, we go beyond the greedy paradigm and present
a method that systematically searches for optimal insertion se-
quences yielding shortest-path embeddings of minimal total length.
Our search is powered by a custom branch-and-bound strategy,
crawling the decision tree that governs the incremental construc-
tion of embeddings. We demonstrate that—despite the vast search
space—it is possible to quickly and reliably find low-cost solutions

Figure 4: Starting from a partial embedding (left), three additional
edges are successively inserted as shortest paths. Depending on the
insertion order (top row: blue, yellow, red), (bottom row: red, blue,
yellow), we get different embeddings with paths and patches (light
blue) in different homotopy classes.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

278

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

by exploiting domain knowledge in the form of bounding and prun-
ing rules and a specialized search priority. We can incorporate pre-
vious greedy strategies into this system by using their results as
initial solutions, which are then improved or confirmed by our al-
gorithm.

The branch-and-bound framework affords the additional flex-
ibility to tune this method to desired quality or performance
constraints: As intermediate results are accompanied by quality
bounds, it is possible to solve the problem up to a certain optimal-
ity tolerance. When running the algorithm on a fixed time budget,
it terminates with an optimality estimate. Besides these (optional)
performance specifications, our algorithm is parameter-free.

1.1. Contribution

We make the following contributions:

• a method for embedding a given layout into a simply-connected
target surface (with prescribed vertex positions) while explicitly
optimizing for minimum embedding path length,
• a combinatorial formulation of this problem in terms of edge

insertion sequences,
• a custom branch-and-bound strategy, tailored to this task.

We evaluate the performance of our method against several greedy
heuristics and demonstrate applications in quad meshing and inter-
surface mapping. Along with this publication, we release the source
code of our implementation as an open-source library.1

2. Related Work

We briefly review works in a number of fields adjacent to our prob-
lem setting.

Layout Generation There exists a multitude of methods that gen-
erate coarse layouts for given models. Different approaches pro-
duce triangular [EH96; LSS*98; KLS03; SAPH04] or quadrilateral
layouts [EH96; THCM04; DBG*06; CBK12; BCE*13; RRP15;
ULP*15; PPM*16; SBLS18] (just to name a few; see [Cam17] for
an extensive survey). While the above methods generate layouts in
tandem with an embedding into the input surface, they can also be
applied for the sole purpose of extracting layout templates. Quad
layouts may also be obtained from quad meshes via base complex
simplification [BLK11; TPP*11]. Besides fully automatic methods,
interactive user-guided layout generation tools [TPSS13; CK14a;
MTP*15] have been proposed as well.

Computational Topology Various (shortest-path) surface decom-
position problems have been studied. Among them are shortest
cut graphs (NP-hard in general [EH04], but an efficient algo-
rithm exists if vertices are prescribed [Col10]), shortest homotopy
bases [EW05], and canonical polygon schemata [Liv20]. Short-
est embeddings of a fixed connectivity are of interest in graph
drawing: [LMM*95] consider the problem of finding shortest non-
intersecting paths between pairs of points in the plane (later proven

1 https://github.com/jsb/LayoutEmbedding

to be NP-hard [BF98]). [CHKL13] present polynomial-time ap-
proximation algorithms for shortest embeddings of general planar
graphs. Our layout embedding problem is more constrained: In ad-
dition to the graph structure of a layout, we also prescribe an order-
ing of edges around each vertex. From a topological perspective,
the problem of layout embedding amounts to finding the homotopy
class of an injective map from the layout to the target surface. Al-
gebraically, the potential solutions are precisely the elements of the
pure mapping class group [FM11] of the target surface punctured
at the layout vertices.

Greedy Shortest-Path Embeddings Layout embedding problems
appear in the literature in various formulations. In a problem setting
identical to ours, [PSS01] also embed a given layout into a target
surface, but instead of systematically searching for an optimal in-
sertion sequence, the embedding is created based on a series of lo-
cal decisions, guided by heuristics. Similar greedy approaches are
employed for slightly different surface decomposition tasks, where
no layout connectivity is prescribed: the compatible triangulation
of landmark vertices on pairs of meshes [KSG03; KS04; SAPH04],
or the simultaneous computation of matching cut graphs [APL14;
APL15]. The above works employ hand-crafted combinations of
heuristics to guide their decisions. We adapt those from [PSS01;
KSG03; SAPH04] to our setting and evaluate their performance in
Sec. 5.1. While we demonstrate that these heuristics can fail in cer-
tain situations, they are still valuable for our method as their results
can serve as initial solutions for our branch-and-bound search.

Homotopy-Preserving Embedding Optimization Our method
aims to find the most natural embedding topology by optimizing
across different homotopy classes. Various ways to optimize em-
bedding geometry within a given homotopy class have been pro-
posed, which can be applied as a post-process for our results: Path-
based methods include active models that continuously evolve an
explicit curve representation [LL02; BWK05; YSC20] or discrete
methods for finding shortest homotopic geodesics [HS94; SC20].
Other methods consider the interior of patches and optimize em-
beddings based on mapping distortion [KS04; SAPH04; SCBK20]
or curvature alignment [CK14b]. Another simple approach is
re-tracing paths as straight lines in local planar parametriza-
tions [PSS01].

Branch-and-Bound Optimization A number of general-purpose
numerical solvers for (mixed-)integer linear, quadratic, or non-
linear optimization use branch-and-bound as a core component
[MJSS16]. Off-the-shelf solvers (e.g. [CPL09; Gur20; GAB*20])
usually require an explicit model description (often with certain
restrictions on the objective function). Our problem, involving se-
quences of constrained shortest-path cost computations cannot be
naturally encoded in such a framework. Instead, we rely on a sim-
ple custom branch-and-bound implementation specifically tailored
to the objective and constraints of the layout embedding problem.

3. Layout Embedding

A layout L is an abstract 2-dimensional cell complex: a purely
combinatorial description of a 2-manifold polygonal mesh, car-
rying no geometric information. Its connectivity is defined by a

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

279

https://github.com/jsb/LayoutEmbedding

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

Figure 5: Vertices and edges of a layout L are mapped to points
and paths on a target surface T via an embedding M. Embeddings
are injective and preserve the cyclic ordering σv of edges around
each layout vertex v.

simple, connected graph (VL,EL). Additionally, a layout specifies
cyclic orderings σv of edges around each vertex v, which imply a
set of layout faces and their adjacency.

We consider a target surface T : an orientable, simply-
connected (genus 0 or disk) 2-manifold surface.

An embedding M : L→ T is an injective map that assigns lay-
out vertices and edges to points and paths on the target surface T
(Fig. 5). Specifically:

• Every vertex v ∈VL is mapped to a distinct point M(v) ∈ T .
• Every edge e = (v1,v2) ∈ EL is embedded as a continuous path

M(e) on T with M(v1) and M(v2) as endpoints. Embedded edges
do not (self-)intersect and only touch embedded vertices at their
endpoints.
• The cyclic order of incident paths around each embedded vertex

M(v) respects the order σv defined by the layout.

We also consider partial embeddings where only a subset of lay-
out edges is mapped. We denote this subset of embedded edges by
E(M) ⊆ EL and the set of unembedded edges as its complement
E(M) = EL \E(M). A complete embedding cuts the target surface
into patches which correspond to the faces implied by the layout.

3.1. Shortest-Path Embeddings

Given a partial embedding M and an unembedded layout edge
e ∈ E(M), we define p(M,e) as the shortest path on T that yields
a valid extension of M. Such a path does not intersect already em-
bedded edges and respects the cyclic ordering of incident embed-
ded edges at its endpoints.

An insertion sequence s = e1 · · ·en ∈ E∗L is a (partial) per-
mutation of layout edges. It describes the construction of an em-
bedding via successive addition of edges embedded as shortest
paths: Starting from an “empty” embedding M0 that only maps
vertices, we successively construct embeddings M1, . . . ,Mn, cor-
responding to the elements of s. Each Mk is identical to the previ-
ous Mk−1, but additionally includes an embedding of ek, defined as
Mk(ek) = p(Mk−1,ek). The final embedding Mn includes all edges
in s. We call it the shortest-path embedding of s, denoted by M(s).

Note that different insertion sequences of the same set of layout
edges can result in different shortest-path embeddings (Fig. 4): In
general, M(s) 6= M(π(s)) for a permutation π.

We define the cost c(M(e)) of a path as its length on T . The
cost c(M) of a (partial) embedding is the sum of costs of all em-
bedded edges. It can happen that in an embedding M, no shortest

path p(M,e) exists for some edge e due to blocking by other paths.
Consequently, it is possible that an insertion sequence s does not
imply a valid shortest-path embedding. We consider such invalid
paths and embeddings to have infinite cost.

3.2. Problem Statement

We address the following problem: Given a layout L, a target sur-
face T , and an initial embedding M0 that assigns target points for
all layout vertices, find the insertion sequence s that produces a
shortest-path embedding M(s) of minimum cost:

argmin
s∈E∗L

c(M(s))

3.3. Discrete Representation

In practice, we use discrete representations of target surfaces and
embeddings. A target surface T is given by a triangle mesh
(VT ,ET ,FT). We represent an embedding by mapping directly to
mesh elements: Each layout vertex v ∈ VL maps to a target vertex
M(v) ∈ VT . Each layout edge e ∈ EL maps to a chain of target
edges M(e)⊂ ET , connecting the corresponding endpoints.

In this representation, shortest paths p(M,e) can be found via
Dijkstra’s algorithm. As described in several prior works (e.g.
[PSS01]), the search is constrained to maintain injectivity of the
embedding: New paths must not cross or touch previously inserted
edges. Additionally, when tracing paths between vertices with inci-
dent embedded edges, those vertices may only be approached from
sectors that are consistent with the cyclic orderings σv defined by
the layout.

Following [SAPH04] and others, we adaptively refine the tar-
get mesh to accommodate paths in mesh regions that are not suf-
ficiently tessellated: During path tracing, we allow paths to ten-
tatively travel across edge midpoints of the mesh T (Fig. 6 (a)).
When a path is added to an embedding, we insert the required edge
midpoints into T via local edge splits (Fig. 6 (b)).

Path generation is a fully modular component of our algorithm.
The above method is easy to implement and avoids excessive mesh
refinement; it can however deviate from true geodesics (especially
on poorly triangulated target meshes). If this is a concern, it can be
easily replaced by a more costly but exact geodesic computation
method [CLPQ20].

Figure 6: A new edge embedding (red) is computed as a shortest
intersection-free path on T . During tracing (a), the path may travel
across edge midpoints. Upon insertion (b), midpoints are incorpo-
rated into T via local refinement. After the embedding is complete,
we apply path smoothing to the entire embedding (c).

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

280

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

As a consequence of this discrete representation, resulting short-
est paths can appear slightly jagged (due to the tessellation of
the underlying mesh). A variety of (homotopy-preserving) post-
processes can be applied to remove such discretization artifacts
and improve the shape of embeddings (cf. Sec. 2). We use the path
smoothing method described by [PSS01] (retracing each edge path
in a harmonic parametrization of the incident faces, Fig. 6 (c)) in
our visualizations.

4. Branch-and-Bound Optimization

The incremental construction of a layout embedding via successive
shortest path insertions consists of a sequence of decisions: Which
layout edge should be embedded next? We can describe this pro-
cess by a decision tree in which nodes represent intermediate par-
tial embedding states and each edge indicates an insertion decision.

ε

c

cb

cba

a

ca

cab

b

a b

b

bc

bca

a

ba

bac

c

a c

a

ac

acb

b

ab

abc

c

b c

a
b

c

Each node is uniquely identified by
an insertion sequence s, encoding
the (partial) embedding M(s). (In
the following, we will use the terms
node, embedding state, and insertion
sequence interchangeably.) The root
node is the empty insertion sequence
ε, corresponding to the initial state
where only vertex correspondences
are given and no edges are embedded. The outgoing edges of each
interior node s represent possible extensions of the partial embed-
ding M(s): Each unembedded layout edge e ∈ E(M(s)) is a candi-
date for insertion, leading to a child node identified by the sequence
se. Therefore, every node s is a prefix of all of its descendants s′,
we write sv s′. The |EL|! leaf nodes of the tree correspond to full
embedding sequences, which are potential solutions to our problem
(cf. Sec. 3.2).

Already for layouts with a moderate number of edges, the facto-
rial size of this decision tree makes an exhaustive search for the op-
timal solution infeasible. In the following, we describe our branch-
and-bound strategy that finds solutions while only exploring a frac-
tion of the search tree. Effective bounding allows our method to
prune the search space and to precisely judge the optimality of the
solutions it discovers.

4.1. Algorithm

Essentially, the branch-and-bound algorithm is a tree search that
crawls the decision tree along a front propagating from the root.
During the entire search, it keeps track of an incumbent solution
s∗: an insertion sequence representing the best (i.e., lowest-cost)
solution encountered so far. The cost of the current incumbent de-
fines a global upper bound c>= c(M(s∗)). At any time, this upper
bound is greater than (or equal to) the cost of the true optimal solu-
tion of the problem. It decreases monotonically with each update,
approaching the optimum.

We can use greedy heuristic methods (cf. Sec. 5 for details) to
produce an initial incumbent and upper bound. If no heuristic ini-
tialization is used, we start with c> =∞.

Besides global upper bound estimates, a vital element of any

branch-and-bound method is the ability to additionally compute
lower bound cost estimates for individual states of the decision tree.
For each state of the tree, identified by a partial insertion sequence
s, we define a local lower bound c⊥(s) fulfilling the following
property: Any state s′ in the subtree rooted at s yields an embed-
ding with a cost of at least c⊥(s), i.e.

c⊥(s)≤ c(M(s′)) ∀sv s′.

Lower bounds are typically obtained via a relaxation of the remain-
ing sub-problem. We explain the computation of lower bounds in
our setting in Sec. 4.3.

Available information on upper and lower bounds can be ex-
ploited to prune the decision tree. Any time a state s has a lower
bound c⊥(s) that exceeds the current global upper bound c>, we
can safely ignore it (and its entire subtree) in our search: By defi-
nition of c⊥(s), all solutions in the subtree of s will be more costly
than c> and therefore cannot improve the incumbent s∗.

The order in which states (nodes of the search tree) are visited
is controlled by a function that assigns a priority P(s) to any state
s. We discuss our design of the priority function P(s) in Sec. 4.5.
Potential states to be visited are stored in a priority queue Q sorted
by P. Initially, this queue only contains the root node, i.e. Q = {ε}.

The core of our branch-and-bound algorithm is a loop that con-
sumes the priority queue Q. In each iteration, the state s with the
highest priority is extracted from Q and processed as follows:

1. Update: Whenever the insertion sequence s yields a complete
embedding M(s), it is a potential solution (i.e., a leaf node of
the decision tree). If its cost c(M(s)) improves the current in-
cumbent solution s∗, we record s as the new incumbent and up-
date the global cost upper bound c> accordingly.

2. Branch: If s corresponds to a partial embedding, we enumerate
all states that can be reached from s by inserting an additional
layout edge e ∈ E(M(s)) (child nodes of s in the decision tree)
and add them to Q for future exploration.

3. Bound: For each new state s′ that is added to Q, we perform
a bounds check: If the cost lower bound c⊥(s

′) is larger than
the current global upper bound c>, it can be pruned: Instead of
adding s′ to Q, we simply discard it.

A typical behavior for Q is to initially keep growing until an up-
per bound c> is reached that facilitates enough pruning to reverse
the growth of Q. The algorithm terminates when Q is exhausted.

4.2. Optimality Gap

At any time during the algorithm, Q contains a set of states along
the current propagation front of the tree search. By examining the
lower bounds of states in Q, we can compute a global lower bound

c⊥ = min
s∈Q

c⊥(s)

which bounds the cost of all unseen solutions further down the tree.
The difference between the two global bounds c>− c⊥, called the
optimality gap, quantifies by how much the incumbent solution
could possibly improve during the remainder of the search. Fig. 7

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

281

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

Figure 7: Progression of global upper bound c> and global lower
bound c⊥ over the course of an optimization (here: embedding a
cube layout into a sphere with random target vertex positions). The
optimal solution is already found after 11 s. Optimality is proven
after 139 s.

visualizes how the optimality gap gradually closes as global upper
and lower bounds converge over the course of an optimization.

When the algorithm terminates, we know the incumbent s∗ is a
global optimum. Instead of waiting for termination, the algorithm
can also be stopped prematurely. In that case, s∗ may not be op-
timal, but we can give an estimate of its quality: We know that if
there is a better solution, its cost could at most be better by the cur-
rent optimality gap. This mechanism gives us the flexibility to run
the branch-and-bound algorithm on a time limit.

Likewise, we can choose to terminate the algorithm early if the
current optimality gap falls below an acceptable threshold. When
the relative optimality gap c>−c⊥

c> falls below a certain tolerance
fraction α, we stop execution. The same tolerance can be applied
for all pruning operations, which further reduces the search space.
We use α = 1% in all of our experiments.

In the following, we discuss customizations of this general
branch-and-bound setup, which are specifically tailored to the
structure of our layout embedding problem.

4.3. Lower Bounds

Given a state s, corresponding to a partial embedding M(s), we
want to compute c⊥(s): A lower bound on the cost of any full em-
bedding M(s′) that can be reached from s by embedding all remain-
ing layout edges E(M(s)).

One valid lower bound is the cost of the current partial embed-
ding c(M(s)) (Fig. 8 (a)): All edges already embedded in M(s) are
identical in any extension M(s′) and the insertion of the remaining
edges in M(s′) will only incur additional cost. By itself, this lower
bound is fairly ineffective because it entirely ignores the potential
cost of embedding the remaining part of the layout.

We can obtain a tighter bound by also simulating the insertion
cost of the remaining edges in a setting that relaxes the constraints
on a valid embedding: For each unembedded edge e ∈ E(M(s)),
we compute a candidate path, i.e. its shortest-path embedding

p(M(s),e). While each candidate by itself is compatible with the
current state M(s), the set of all candidates will likely not consti-
tute a valid embedding (Fig. 8 (b)): It is possible that candidates
mutually intersect or violate each other’s cyclic ordering require-
ments. Still, due to each candidate path being individually short-
est, we know that any modification to resolve these conflicts would
only increase cost (Fig. 8 (c)). Therefore, the sum of candidate path
costs serves as a lower bound for the cost of any valid completion.
In combination with the cost of already embedded edges, we arrive
at the following cost lower bound for a state s:

c⊥(s) = c(M(s))+ ∑
e∈E(M(s))

c(p(M(s),e)).

By definition (Sec. 3.1), we consider path costs to be infinite
where no valid path exists. In a situation where one of the candidate
paths has no valid embedding (due to being blocked by different,
already inserted paths), the lower bound c⊥(s) becomes infinite,
thereby identifying the current state as a “dead end” and excluding
it from further processing.

4.4. Pruning Redundant Subtrees

Besides pruning based on upper and lower bounds, we employ spe-
cialized pruning rules to reduce redundant computations in differ-
ent branches of the decision tree.

4.4.1. Detecting Redundant States

It is possible that two different insertion sequences s1, s2 lead to
an identical (partial) embedding M(s1) = M(s2). In that case, the
entire subtrees of s1 and s2 are identical as well. If we have already
visited s1 (or know that we will visit it), we can safely ignore s2
and its entire subtree in our search.

Whenever we consider adding a new state s to the priority queue
Q for exploration, we compute a lightweight hash of its embed-
ding h(M(s)) and look it up in a table H of known embeddings. If
h(M(s)) is already in H, we simply discard s. Otherwise, we add s
to Q and insert its hash h(M(s)) into H.

In our discrete setting, an embedding hash h(M) can be com-
puted as follows: For each layout edge e ∈ EL, we form a string
we by concatenating the vertex positions along the corresponding

Figure 8: We compute a lower bound for the cost of any valid com-
pletion of a partial embedding (a): Besides measuring the length
of embedded edges (solid gray lines), we compute candidate paths
(dashed lines) for unembedded layout edges (b). These are compat-
ible with the partial embedding but possibly mutually conflicting.
The sum of these path lengths is a lower bound for the cost of any
embedding where all conflicts are resolved (c).

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

282

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

embedded edge M(e). If e is not embedded in M, we use a blank
symbol we = #. We concatenate all strings we in a canonical order
and compute a hash of the resulting word to obtain h(M).

The above strategy detects redundant states when different
branches of the decision tree have arrived at an identical embed-
ding. In the following, we describe additional rules that can predict
when the exploration of certain subtrees will only lead to redundant
results so we can prune proactively.

4.4.2. Delaying Non-Conflicting Insertions

In a state s, each unembedded edge e ∈ E(M(s)) is associated with
a candidate path p(M(s),e). Inserting an edge e will lead to a new
state in which other edges have different candidate paths in gen-
eral. However, there are some edges (called non-conflicting edges)
whose insertion will not change the candidate paths of any other
edges. When inserting only non-conflicting edges, the outcome will
hence not depend on their order: For a set of n non-conflicting
edges, all of their n! insertion sequences will lead to an identical
embedding. We detect non-conflicting edges and avoid the redun-
dant computation of exploring all their permutations and thus sig-
nificantly reduce the effective branching degree of our search tree.

A non-conflicting set of unembedded edges C ⊆ E(M(s)) is a
set for which all insertion sequences lead to the same embedding;
i.e. M(sπ(C)) is identical for any permutation π. For each state, we
define C(s) as the maximal non-conflicting set and its complement,
the set of conflicting edges, as C(s) = E(M(s))\C(s). We consider
the following two cases:

• If C(s) is empty, all remaining unembedded edges are the non-
conflicting edges C(s). In this case, the remaining edges can be
inserted in any order, all leading to the same solution. Instead of
exploring further child states, we immediately insert the remain-
ing edges in an arbitrary order and terminate the search in this
branch.
• If C(s) is not empty, there are insertion decisions that matter:

Every insertion of an edge from C(s) has consequences for the
embedding of at least one other edge, so we must consider these
states in our search. In contrast, insertions of edges from C(s)
have no immediate effect on other edges, so inserting them at
this point would only introduce redundant branching. We there-
fore skip all insertions from C(s). Essentially, this delays the in-
sertion of non-conflicting edges until they either become con-
flicting in some later state (at which point they are considered as
an insertion option), or until only non-conflicting edges remain,
which are then inserted simultaneously (see case above).

(We prove that this ruleset indeed only excludes redundant states in
Appendix A.)

An extreme effect of this pruning strategy can be observed when
the initial network of candidate paths at the root state ε is already
conflict-free (which can in fact happen on simple inputs). In that
case, C(ε) is empty and our algorithm immediately terminates, re-
turning the optimal result: An arbitrary insertion sequence of all
edges.

Detecting Non-Conflicting Edges For each unembedded edge
ei ∈ E(M(s)), we have already computed a candidate path pi =

Figure 9: There are three types of conflicts between candidate
paths (dashed lines): (a) path intersections, (b) wrong path order-
ing within a sector created by already embedded edges (gray lines),
(c) wrong path ordering around a vertex without sectors.

p(M(s),ei) as part of the lower bound estimate of state s (Sec 4.3).
We can determine the sets of conflicting and non-conflicting edges
C(s), C(s) based on the current configuration of candidate paths pi:

Clearly, if two candidate paths p1 and p2 intersect (Fig. 9 (a)),
the edges e1 and e2 are in conflict and we can add them to C(s).

Additional conflicts can arise from the cyclic ordering require-
ments of paths around embedded vertices (Sec. 3): A path pi may
affect incident candidate paths at its endpoints, requiring them to
approach the vertex from a different direction if pi were inserted
earlier. We detect such conflicts by verifying the current ordering
of candidate paths around each embedded vertex M(v). We distin-
guish two cases:

• If the layout vertex v has incident edges that are already embed-
ded, the corresponding outgoing paths divide the region around
M(v) into sectors (Fig. 9 (b)). All candidate paths incident to
M(v) are already in their correct sector (otherwise their embed-
ding would be invalid), but their relative ordering within a sector
may be incompatible with the ordering σv imposed by the lay-
out. In this case, it suffices to check conflicts based on a linear
ordering: If an edge e1 comes before another edge e2 (in a coun-
terclockwise sense) within a layout sector, the candidate path p1
must come before p2 in the embedded sector. Otherwise, e1 and
e2 are conflicting and are added to C(s).
• If M(v) has no incident embedded edges, there are no sectors,

so we need to verify the cyclic ordering of all candidate paths
(Fig. 9 (c)): For every triplet (e1,e2,e3) ∈ σv of layout edges
around v (in counterclockwise order), the corresponding candi-
date paths p1, p2, p3 must have the same cyclic ordering at M(v)
in the embedding. Otherwise, we consider the edges e1, e2, e3 as
conflicting and add them to C(s).

4.5. Priority

A common strategy to explore the search tree is to prioritize states
with a small cost lower bound c⊥(s), motivated by the expecta-
tion to potentially find the lowest-cost solution there. In our obser-
vations, this strategy performs poorly: During early stages of the
search, lower bounds can be quite similar across many states. With
lower bounds monotonically increasing along branches of the deci-
sion tree, this priority leads to an approximate breadth-first traversal
where large portions of the tree are expanded before reaching any
leaf nodes that produce potential solutions. Since significant prun-
ing of states can only happen after suitable upper bounds have been
found, this search strategy essentially explores almost the entire de-
cision tree, which is practically impossible.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

283

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

We suggest a different exploration priority that aims to produce
upper bounds early on (to facilitate pruning) while still steering to-
wards states with promising lower bounds (to find potentially better
solutions). The idea is to favor the pursuit of branches that have al-
ready made significant progress towards a solution.

For a given state s, we quantify this progress as follows: After
computing candidate paths for the unembedded edges of M(s), we
apply the classification into conflicting and non-conflicting edges
C(s) and C(s) (Sec. 4.4.2). We use the number of conflicting edges
|C(s)| to judge how far s is from a complete solution: Starting from
s, we estimate that |C(s)| decisions are needed to resolve all re-
maining conflicts. We combine this information with the cost lower
bound of s to define

P(s) = |C(s)| · c⊥(s)

and prioritize states where P(s) is smallest.

4.6. Implementation Notes

During optimization, we need to represent different partial embed-
dings on the target triangle mesh T . In each iteration, we extract
a state s from the queue Q and reconstruct the embedding M(s)
by starting from the original mesh T and inserting the sequence s,
locally refining the mesh as needed (cf. Sec. 3.3).

During our search, we build a lightweight representation of the
decision tree explored so far, which allows us to cache interme-
diate results and avoid costly recomputations of paths. Whenever
we produce a new state se from a parent state s, we save the newly
computed path p(M(s),e) at the corresponding edge of the decision
tree. We can later reconstruct the embedding M(s) by collecting all
cached paths along the branch from ε to s and inserting them in that
order.

The computation of candidate paths (Sec. 4.3) can be cached in
a similar way: Initially, we compute candidate paths for all edges
independently and store them in the root node ε. For all subsequent
states, we only need to recompute candidate paths for the edges
that are affected by a new insertion. In each child state se, those are
precisely the edges that were in conflict with e in the parent state s
(Sec. 4.4.2). It suffices to only cache the set of updated candidate
paths in each state: To reconstruct the full set of candidate paths,
we follow the tree towards its root until a cached path is found for
all edges.

In all our examples, the total memory consumed by the queue Q
(Sec. 4.1), the hash table H (Sec. 4.4.1), and the hierarchical cache
of shortest paths never exceeded 188 MB.

5. Results and Applications

In the following we evaluate the performance of our method,
compare against greedy approaches with different heuristics, and
demonstrate application scenarios that benefit from the robustness
of our method.

Greedy Ordering Heuristics We compare against three different
greedy methods that base their decisions (which edge to embed
next) on the heuristics that appear in [PSS01; KSG03; SAPH04].

While [PSS01] addresses our exact problem setting, we adapt the
ideas presented in [KSG03] and [SAPH04] from the variable-
layout setting to our fixed-layout setting:

• [PSS01] use a “swirl detection” heuristic to delay path insertions
that are likely to cause topological artifacts: Edge embeddings
are postponed if opposite layout vertices of the inserted edge are
located on the wrong side of the tentative path, based on a prox-
imity check. Further, embedded paths are traced using a custom
metric that pushes paths away from landmark vertices. To pre-
vent dead ends, insertions that close a cycle of edges are delayed
until a spanning tree of the entire layout is embedded.
• Instead of relying on a conservative spanning tree heuristic,

[KSG03] (and [KS04]) only prevent insertions that actually lead
to a blocking of future paths.
• [SAPH04] also employ the swirl detection and spanning tree

heuristics described by [PSS01]. In addition, their method
prefers the insertion of edges connecting “extremal vertices”
with a large average geodesic distance to other landmarks.

As described in Sec. 4.1, greedy orderings are convenient to quickly
derive global upper bounds on the total embedding length. We ini-
tialize our branch-and-bound algorithm by running all three greedy
variants and choosing the best result as upper bound.

5.1. Layout Embedding in Shape Collections

Applications that establish correspondences within shape collec-
tions may require embedding a common layout into a range of
models. This layout can carry semantic information, guide remesh-
ing algorithms, or act as a parametrization base domain. Especially
if the layout was created before all instances in the collection were
known or when the collection contains outliers, insertion of new
instances can be challenging and requires a robust embedding al-
gorithm. We simulate this situation by generating one layout per
class of the SHREC’07 dataset and embedding it into all models of
that class.

Dataset From the SHREC’07 dataset [GBP07] with sparse land-
mark correspondences provided by [KLF11], we select all classes
of genus 0 meshes with at least 3 landmark annotations (16 classes
in total). For each class, we generate a triangular layout via con-
strained decimation of its first model: We incrementally perform
halfedge collapses until only the landmark vertices (between 7 and
36 per class) remain. The resulting coarse mesh connectivity de-
fines our prototypical template layout.

Experiment For each model, we run our algorithm as well as the
three greedy methods based on [PSS01], [KSG03] and [SAPH04].
For visual clarity we apply the path smoothing operator of [PSS01]
to all embeddings. Quantitative results (e.g. total embedding
lengths) are reported prior to this post process.

Discussion In Fig. 11 we present a selection of resulting embed-
dings, while Fig. 10 shows quantitative results of the entire exper-
iment: Per object class, we arrange all models within this class on
the horizontal axis and plot the total embedding lengths achieved by
the four methods on the vertical axis; i.e. each column represents a
problem instance and each dot represents a solution by one of the

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

284

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

Figure 10: Quantitative evaluation of our SHREC’07 experiment, in which we embed a common layout into the objects of each class.
Corresponding qualitative results are reported in Fig. 11. Per class, we horizontally arrange all problem instances as columns and plot
total embedding lengths on the vertical axis. Each dot represents a solution by one of the algorithms: either greedy—based on [KSG03]
(yellow), [PSS01] (orange), [SAPH04] (red)—or by our branch-and-bound method (blue). Global lower bounds proven by our method are
marked in light blue. For a few classes all methods perform equally well, but in most instances our branch-and-bound optimization achieves
considerable improvements.

algorithms. For each problem instance we mark the global lower
bound c⊥, computed by our method, with a horizontal bar (light
blue). This means our solver proved that no embedding sequence
shorter than this bound can exist.

As we employ all three greedy heuristics to find an initial up-
per bound, the embeddings computed by our method (blue dots in
Fig. 10) are always shorter or equal to those of the greedy methods.

On favorable examples (e.g. Fig. 11 (f)), all four methods find the
same embedding. In those cases (including the entire classes Bust,
Plier and Mech, cf. Fig. 10), our algorithm quickly proves that a
greedy embedding sequence is indeed optimal up to the prescribed
threshold (α = 1% in all examples).

In Fig. 10 we observe that each greedy method, while perform-
ing well in some instances, fails to generate shortest embeddings in
a significant number of cases. The results shown in Fig. 11 demon-
strate that these cases coincide with topologically unexpected em-
beddings containing excessive swirls.

While in some cases at least one greedy method yields the de-
sired result (e.g. Fig. 11 (b), (f), (k)), there are plenty of cases in

which all three fail (e.g. Fig. 11 (c-e), (g-i) (l-n), (r-u)). Therefore,
an algorithm running all three heuristics and choosing the best re-
sult does not provide a satisfactory solution. In contrast, we did not
find unnecessarily long paths or swirls in any of the embeddings
produced by our branch-and-bound method.

In many cases (35% of the dataset, e.g. Fig. 10 (b), (f), (o), (z))
our algorithm confirms optimality of the solution (up to the thresh-
old of 1%) within the given time frame (5 minutes in all examples).
When the algorithm exhausts this time budget, small gaps are usu-
ally reported. For 83% of the dataset, optimality has been proven
up to 5%.

Only in a few particularly challenging cases our algorithm was
stopped with a large remaining gap (e.g. 10% in (q), 17% in
(β)). Fig. 11 (q) poses a challenge as two landmark positions are
swapped in the original dataset. Example (β) is difficult because it
is the only model in the Human class where the arms are merged
with upper body and legs (see zoom-in). While the task of em-
bedding the given layout into this particular model is semantically
questionable, our method still handles this outlier gracefully. Even
though optimality is only proven up to 17%, we argue that the so-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

285

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

Figure 11: Selected results of our evaluation in Fig. 10: Automatically generated layouts are embedded into models of the SHREC’07
dataset. We compare greedy methods based on the heuristics in [PSS01], [KSG03], and [SAPH04] against our branch-and-bound method.
While in some cases (e.g. (f)) all methods achieve the desired result, and in some instances at least one greedy method succeeds ((b), (k)),
there are many inputs on which all greedy strategies fail ((c-e), (g-i) (l-n), (r-u)). If embedding algorithms fail, defects can be severe, with
paths forced into unwanted homotopy classes.

Figure 12: Ablation study: We run our algorithm in different
configurations (each disabling one of the features discussed in
Sec. 4.3–4.5) on a subset of the SHREC’07 dataset. For each con-
figuration, we report the percentage of instances which terminated
within a given time.

lution is indeed the desired one since we could not find any unnec-
essarily long paths or swirls upon visual inspection.

Leaving the difficult task of proving optimality aside, we observe
that our algorithm produces good embeddings very quickly. In 60%
of the dataset, the best solution of each problem instance was al-
ready found after 10 seconds. Only in 2% of cases the final result
was found after more than 3 minutes. All timings were measured
using a single-threaded implementation on a desktop computer.

Ablation Study We evaluate the performance impact of the
branch-and-bound customizations discussed in Sec. 4. Based on
the previous experiment, we select all instances of the SHREC’07
dataset where the search was completed within 5 minutes and re-
run our algorithm in different configurations, each disabling one of
its features. To rule out the influence of different heuristics, we do
not initialize our algorithm with a greedy solution in this experi-
ment. Results are reported in Fig. 12: The plot shows the relative
number of instances that have terminated (i.e. found and proved an
optimal solution up to 1%) within a given time. Disabling the detec-
tion of redundant states via hashing (dark green, Sec. 4.4.1) causes
some runs to exceed the 5 minute time limit but has nearly no effect
on simple inputs, where runtimes are close to our fully-featured al-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

286

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

Figure 13: Starting from their initial position on the target surface, we move landmarks along random trajectories and compute embeddings
(a, b, c). Already for quite small perturbations (b, c), greedy methods (e.g. [KSG03; SAPH04]) can produce unfavorable changes in homotopy
class, indicated by a discontinuous increase in embedding cost. In comparison, embeddings generated by our method (B&B) remain in the
most adequate homotopy class (identical for (a, b, c)), and embedding costs increase only gradually.

Figure 14: We embed the same layout template into multiple target
meshes (top row) to compute quad meshes (a, b, c) with prescribed
base complex. Greedy methods, susceptible to excessive swirls, may
produce embeddings of undesired homotopy, resulting in distorted
quad meshes. Our branch-and-bound algorithm (bottom row) com-
putes swirl-free embeddings in all examples, allowing us to extract
clean quad meshes with the desired base complex.

gorithm (blue). The impact of our proactive pruning by delaying
non-conflicting insertions (Sec. 4.4.2) is more pronounced: When
disabled (light green), performance deteriorates across almost all
examples. With a traditional best-first search priority (yellow, in-
stead of our mixed priority, Sec. 4.5), or a simplistic computa-
tion of lower bounds (orange, ignoring the cost of candidate paths,
Sec. 4.3), only very few runs terminate within the time limit.

5.2. Robustness with Respect to Landmark Positions

In an additional experiment (Fig. 13) we compare the resilience of
all four algorithms with respect to a perturbation of landmark po-
sitions on the target surface. Initially, we embed the layout using
a favorable set of landmark positions. We then move each land-
mark along a random walk on the surface and recompute embed-
dings at different travel distances. We find that greedy methods are
quite sensitive towards such changes in landmark positions. Al-
ready for mild perturbations, all three greedy methods introduce
swirls leading to high embedding costs. Further, we observe that
for an (approximately) continuous motion of target vertices, the
length of greedy embeddings changes discontinuously, as path ho-
motopy classes are often switched accidentally. In contrast, the
lengths of our branch-and-bound embeddings increases gradually
and all paths remain in their initial homotopy class for the duration
of this experiment.

5.3. Quad Meshing with Prescribed Base Complex

Generating meshes with a high-quality base complex is a chal-
lenging task in parametrization-based quad meshing. The problem
becomes even more difficult when the same resulting base com-
plex is required across multiple target shapes. In many methods
(e.g. [BZK09; BCE*13; RRP15]), the base complex arises as a
result of the remeshing process on a single shape. An alternative
approach is to reverse this dependency and explicitly model the
base complex a priori; either manually [TPSS13; CK14a] or auto-
matically [CBK12; ULP*15]. Several quad meshing methods (e.g.
[BCE*13; CBK15; ESCK16]) offer control over the resulting base
complex by constraining pairs of prescribed vertices to the same
iso-parameter line. However, formulating such constraints requires

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

287

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

Figure 15: We compute inter-surface maps by embedding an automatically generated layout (a) into two target models. Greedy embddings
(here via [KSG03]) are likely to include paths in different homotopy classes across target models (see e.g. leg in (b)). Subsequent continuous
map optimization (here using [SCBK20]) cannot leave the initial map homotopy class implied by the embeddings. We visualize the optimized
map (c) by projecting a texture to the front-facing part of the first model and transferring it to the second model. Note how the map is twisted
around the left leg, pulling parts of the untextured back to the front of the leg. Our method successfully generates shortest embeddings (d)
which lead to the desired map homotopy class and allow continuous optimization to reach the expected result (e).

knowledge of the desired path homotopy, which is usually not
available when the target base complex was designed on a differ-
ent model. Obtaining this required homotopy information amounts
to the exact same problem as embedding a prescribed layout (base
complex) into a target surface.

We illustrate the general approach of quad meshing with a pre-
scribed base complex at the example of a simplistic quad mesh-
ing pipeline: We (1) embed a given quad layout into multiple tar-
get surfaces, (2) apply the path smoothing operator from [PSS01],
(3) choose a number of subdivisions per dual loop, (4) Tutte-embed
each patch to a planar rectangle, and (5) extract a quad mesh
via regular re-sampling. In Fig. 14 we run this pipeline on three
hand models and compare results using our embedding method
to typical failure cases of greedy embeddings. While all result-
ing quad meshes share the same base complex, some meshes based
on greedy embeddings exhibit extreme distortion due to paths and
patches in undesirable homotopy classes. Such cases demonstrate
that robustness of an embedding algorithm is essential when used
as a step in a geometry processing pipeline. Our branch-and-bound
algorithm produced the expected embedding homotopy in all our
experiments.

5.4. Inter-Surface Map Initialization

Bijective maps between surfaces are often initialized in a patch-
wise manner via compatible layout embeddings on two models
[SAPH04; KS04; SCBK20]. The homotopy classes of paths on
both surfaces together imply the homotopy class of the inter-surface
map. If landmark correspondences are used as hard point-to-point
constraints, this map homotopy is with respect to the surfaces punc-
tured at the landmarks [APL15]. Continuous optimization algo-
rithms reducing map distortion, by their very nature, cannot switch
between map homotopy classes. Therefore, it is crucial to compute
an initial map that is already in the desired homotopy class.

To demonstrate this importance, we pick a pair of models from
the experiment in Sec. 5.1 and initialize inter-surface maps; once
via greedy embeddings and once via our branch-and-bound embed-
dings (see Fig. 15). We then optimize both maps using [SCBK20]
and visualize the results via texture transfer. The greedy pair (b)
shows paths in different homotopy classes on the left leg: Some
paths (e.g. yellow) are twisted around the leg of the first model, but
not around the leg of the second model. As a result of this discrep-
ancy, the optimized map (c) exhibits a twist, where regions from
the back of the leg (untextured) are mapped to the front of the leg.
The optimization [SCBK20] is inevitably trapped in this map ho-
motopy class and cannot resolve the situation. In contrast, the em-
beddings produced by our optimal (up to 1%) insertion sequences
solely contain paths in the expected homotopy classes (d) and lead
to the desired bijective map (e).

6. Limitations and Future Work

Our method is limited to simply-connected (i.e., genus 0 or disk-
topology, Fig. 16) domains. On other input topologies, our algo-
rithm will still find an optimal shortest-path embedding of all edges.

Figure 16: Our algorithm can embed disk-topology layouts (face,
hand) into target surfaces of disk topology (left) or genus 0 (right).

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

288

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

However, it is no longer guaranteed that such an embedding is
cellular, i.e. that all patches are disk-homeomorphic (see inset).
A potential remedy is to impose further topological
constraints on candidate paths, e.g. by enforcing that
edges which close a separating cycle in the layout
graph are embedded as separating paths (similar to
[LPVV01; SAPH04], though finding shortest sep-
arating paths is more involved). The higher-genus
setting requires additional restrictions to anticipate and avoid in-
sertion decisions that run into dead-ends, e.g. when a separating
path splits layout and target surface into topologically incompati-
ble parts (which cannot occur in the simply-connected setup).

Our algorithm finds the shortest embedding that can be
produced by a sequence of successive shortest path inser-
tions (Sec. 3.2). Is such an embedding always optimal?
For general graphs, there are known examples of op-
timal embeddings that are not the result of any inser-
tion sequence [CHKL13] (see inset). However, none
of these counterexamples apply to our more con-
strained problem setting (requiring a connected graph and fixed
cyclic orderings around vertices). We are neither aware of a proof
nor a counterexample of optimality in this setting and leave this
question for future research.

One source of redundancy that remains undetected by our proac-
tive pruning strategy (Sec. 4.4.2) arises when disjoint subsets of
mutually conflicting edges can be resolved independently. In this
case, insertions in different conflict components can be interleaved,
leading to a number of sequences which can only later be identified
as redundant (Sec. 4.4.1). A possible solution would be to solve
component sub-problems separately. However, this is only viable
if their individual results are guaranteed to remain non-conflicting,
which is difficult to predict.

It would be interesting to explore objectives beyond total embed-
ded path length. While different path metrics (e.g. favoring smooth-
ness or feature alignment) can be readily integrated in our frame-
work, a more challenging extension is the formulation of patch-
based quality measures (e.g. mapping distortion), requiring new
techniques for computing lower bounds.

A different direction is the application of our branch-and-bound
optimization to more loosely constrained tasks such as shortest cut
graph generation or compatible triangulation (without a prescribed
layout). Here, one has to deal with a much higher branching degree,
as decisions concerning the layout connectivity and its embedding
need to be considered simultaneously. The even more challenging
task of automatically embedding layouts without prescribed vertex
locations is another interesting unsolved problem.

Acknowledgments

This work was supported by the Gottfried-Wilhelm-Leibniz Pro-
gramme of the Deutsche Forschungsgemeinschaft DFG. Finan-
cial support from the DFG through grant IRTG-2379 is gratefully
acknowledged. 3D models are from Keenan Crane (Fig. 1), the
SHREC’07 (Figs. 3, 11, 13, 15), and TOSCA datasets (Fig. 16), and
the AIM@SHAPE repository (Fig. 14). We thank Philip Trettner

for maintaining the polymesh and glow libraries and Sasa Lukic for
contributing additional code to our prototype implementation.

References
[APL14] AIGERMAN, NOAM, PORANNE, ROI, and LIPMAN, YARON.

“Lifted Bijections for Low Distortion Surface Mappings”. ACM Trans-
actions on Graphics 33.4 (2014) 2, 3.

[APL15] AIGERMAN, NOAM, PORANNE, ROI, and LIPMAN, YARON.
“Seamless Surface Mappings”. ACM Transactions on Graphics 34.4
(2015) 2, 3, 12.

[BCE*13] BOMMES, DAVID, CAMPEN, MARCEL, EBKE, HANS-
CHRISTIAN, et al. “Integer-grid Maps for Reliable Quad Meshing”.
ACM Transactions on Graphics 32.4 (2013) 3, 11.

[BF98] BASTERT, OLIVER and FEKETE, SANDOR P. Geometric Wire
Routing. Tech. rep. University of Cologne, 1998 3.

[BLK11] BOMMES, DAVID, LEMPFER, TIMM, and KOBBELT, LEIF.
“Global Structure Optimization of Quadrilateral Meshes”. Computer
Graphics Forum 30.2 (2011) 3.

[BWK05] BISCHOFF, STEPHAN, WEYAND, TOBIAS, and KOBBELT,
LEIF. “Snakes on Triangle Meshes”. Bildverarbeitung für die Medizin.
Springer, 2005 3.

[BZK09] BOMMES, DAVID, ZIMMER, HENRIK, and KOBBELT, LEIF.
“Mixed-Integer Quadrangulation”. ACM Transactions on Graphics 28.3
(2009) 11.

[Cam17] CAMPEN, MARCEL. “Partitioning Surfaces into Quadrilateral
Patches: A Survey”. Computer Graphics Forum 36.8 (2017) 3.

[CBK12] CAMPEN, MARCEL, BOMMES, DAVID, and KOBBELT, LEIF.
“Dual Loops Meshing: Quality Quad Layouts on Manifolds”. ACM
Transactions on Graphics 31.4 (2012) 3, 11.

[CBK15] CAMPEN, MARCEL, BOMMES, DAVID, and KOBBELT, LEIF.
“Quantized Global Parametrization”. ACM Transactions on Graphics
34.6 (2015) 11.

[CHKL13] CHAN, TIMOTHY M., HOFFMANN, HELLA-FRANZISKA, KI-
AZYK, STEPHEN, and LUBIW, ANNA. “Minimum Length Embedding of
Planar Graphs at Fixed Vertex Locations”. International Symposium on
Graph Drawing. Springer. 2013 3, 13.

[CK14a] CAMPEN, MARCEL and KOBBELT, LEIF. “Dual Strip Weaving:
Interactive Design of Quad Layouts using Elastica Strips”. ACM Trans-
actions on Graphics 33.6 (2014) 3, 11.

[CK14b] CAMPEN, MARCEL and KOBBELT, LEIF. “Quad Layout Em-
bedding via Aligned Parameterization”. Computer Graphics Forum 33.8
(2014) 3.

[CLPQ20] CRANE, KEENAN, LIVESU, MARCO, PUPPO, ENRICO, and
QIN, YIPENG. A Survey of Algorithms for Geodesic Paths and Distances.
2020. arXiv: 2007.10430 4.

[Col10] COLIN DE VERDIÈRE, ÉRIC. “Shortest Cut Graph of a Sur-
face with Prescribed Vertex Set”. European Symposium on Algorithms.
Springer. 2010 3.

[CPL09] CPLEX. “User’s Manual for CPLEX”. International Business
Machines Corporation 46.53 (2009) 3.

[DBG*06] DONG, SHEN, BREMER, PEER-TIMO, GARLAND, MICHAEL,
et al. “Spectral Surface Quadrangulation”. Proceedings of SIG-
GRAPH ’06. 2006 3.

[EH04] ERICKSON, JEFF and HAR-PELED, SARIEL. “Optimally Cutting a
Surface into a Disk”. Discrete & Computational Geometry 31.1 (2004) 3.

[EH96] ECK, MATTHIAS and HOPPE, HUGUES. “Automatic Reconstruc-
tion of B-spline Surfaces of Arbitrary Topological Type”. Proceedings
of SIGGRAPH ’96. 1996 3.

[ESCK16] EBKE, HANS-CHRISTIAN, SCHMIDT, PATRICK, CAMPEN,
MARCEL, and KOBBELT, LEIF. “Interactively Controlled Quad
Remeshing of High Resolution 3D Models”. ACM Transactions on
Graphics 35.6 (2016) 11.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

289

http://arxiv.org/abs/2007.10430

J. Born & P. Schmidt & L. Kobbelt / Layout Embedding via Combinatorial Optimization

[EW05] ERICKSON, JEFF and WHITTLESEY, KIM. “Greedy Optimal Ho-
motopy and Homology Generators”. SODA. Vol. 5. 2005 3.

[FM11] FARB, BENSON and MARGALIT, DAN. A Primer on Mapping
Class Groups. Princeton University Press, 2011 3.

[GAB*20] GAMRATH, GERALD, ANDERSON, DANIEL, BESTUZHEVA,
KSENIA, et al. The SCIP Optimization Suite 7.0. Tech. rep. Optimiza-
tion Online, 2020 3.

[GBP07] GIORGI, DANIELA, BIASOTTI, SILVIA, and PARABOSCHI,
LAURA. SHape REtrieval Contest 2007: Watertight Models Track.
2007 8.

[Gur20] GUROBI OPTIMIZATION, LLC. Gurobi Optimizer Reference
Manual. 2020 3.

[HS94] HERSHBERGER, JOHN and SNOEYINK, JACK. “Computing Mini-
mum Length Paths of a Given Homotopy Class”. Computational Geom-
etry 4.2 (1994) 3.

[KLF11] KIM, VLADIMIR G., LIPMAN, YARON, and FUNKHOUSER,
THOMAS. “Blended Intrinsic Maps”. ACM Transactions on Graphics
30.4 (2011) 8.

[KLS03] KHODAKOVSKY, ANDREI, LITKE, NATHAN, and SCHRÖDER,
PETER. “Globally Smooth Parameterizations with Low Distortion”.
ACM Transactions on Graphics 22.3 (2003) 3.

[KS04] KRAEVOY, VLADISLAV and SHEFFER, ALLA. “Cross-
Parameterization and Compatible Remeshing of 3D Models”.
ACM Transactions on Graphics 23.3 (2004) 2, 3, 8, 12.

[KSG03] KRAEVOY, VLADISLAV, SHEFFER, ALLA, and GOTSMAN,
CRAIG. “Matchmaker: Constructing Constrained Texture Maps”. ACM
Transactions on Graphics 22.3 (2003) 2, 3, 8–12.

[Liv20] LIVESU, MARCO. “Scalable Mesh Refinement for Canonical
Polygonal Schemas of Extremely High Genus Shapes”. IEEE Transac-
tions on Visualization and Computer Graphics (TVCG) (2020) 3.

[LL02] LEE, YUNJIN and LEE, SEUNGYONG. “Geometric Snakes for Tri-
angular Meshes”. Computer Graphics Forum 21.3 (2002) 3.

[LMM*95] LIEBLING, TH. M., MARGOT, FRANÇOIS, MÜLLER, DI-
DIER, et al. “Disjoint Paths in the Plane”. ORSA Journal on Computing
7.1 (1995) 3.

[LPVV01] LAZARUS, FRANCIS, POCCHIOLA, MICHEL, VEGTER, GERT,
and VERROUST, ANNE. “Computing a Canonical Polygonal Schema of
an Orientable Triangulated Surface”. Proceedings of the Seventeenth An-
nual Symposium on Computational Geometry. 2001 13.

[LSS*98] LEE, AARON W. F., SWELDENS, WIM, SCHRÖDER, PETER,
et al. “MAPS: Multiresolution Adaptive Parameterization of Surfaces”.
Proceedings of SIGGRAPH ’98. 1998 3.

[MJSS16] MORRISON, DAVID R., JACOBSON, SHELDON H., SAUPPE,
JASON J., and SEWELL, EDWARD C. “Branch-and-Bound Algorithms:
A Survey of Recent Advances in Searching, Branching, and Pruning”.
Discrete Optimization 19 (2016) 3.

[MTP*15] MARCIAS, GIORGIO, TAKAYAMA, KENSHI, PIETRONI, NICO,
et al. “Data-Driven Interactive Quadrangulation”. ACM Transactions on
Graphics 34.4 (2015) 3.

[PPM*16] PIETRONI, NICO, PUPPO, ENRICO, MARCIAS, GIORGIO, et
al. “Tracing Field-Coherent Quad Layouts”. Computer Graphics Forum
35.7 (2016) 3.

[PSS01] PRAUN, EMIL, SWELDENS, WIM, and SCHRÖDER, PETER.
“Consistent Mesh Parameterizations”. Proceedings of SIGGRAPH ’01.
2001 2–5, 8–10, 12.

[RRP15] RAZAFINDRAZAKA, FANIRY H., REITEBUCH, ULRICH, and
POLTHIER, KONRAD. “Perfect Matching Quad Layouts for Manifold
Meshes”. Computer Graphics Forum 34.5 (2015) 3, 11.

[SAPH04] SCHREINER, JOHN, ASIRVATHAM, ARUL, PRAUN, EMIL, and
HOPPE, HUGUES. “Inter-Surface Mapping”. ACM SIGGRAPH 2004 Pa-
pers. 2004 2–4, 8–13.

[SBLS18] SORGENTE, TOMMASO, BIASOTTI, SILVIA, LIVESU,
MARCO, and SPAGNUOLO, MICHELA. “Topology-Driven Shape
Chartification”. Computer Aided Geometric Design 65 (2018) 3.

[SC20] SHARP, NICHOLAS and CRANE, KEENAN. “You Can Find
Geodesic Paths in Triangle Meshes by Just Flipping Edges”. ACM Trans-
actions on Graphics 39.6 (2020) 3.

[SCBK20] SCHMIDT, PATRICK, CAMPEN, MARCEL, BORN, JANIS, and
KOBBELT, LEIF. “Inter-Surface Maps via Constant-Curvature Metrics”.
ACM Transactions on Graphics 39.4 (2020) 2, 3, 12.

[THCM04] TARINI, MARCO, HORMANN, KAI, CIGNONI, PAOLO, and
MONTANI, CLAUDIO. “Polycube-Maps”. ACM Transactions on Graph-
ics 23.3 (2004) 3.

[TPP*11] TARINI, MARCO, PUPPO, ENRICO, PANOZZO, DANIELE, et al.
“Simple Quad Domains for Field Aligned Mesh Parametrization”. ACM
Transactions on Graphics 30.6 (2011) 3.

[TPSS13] TAKAYAMA, KENSHI, PANOZZO, DANIELE, SORKINE-
HORNUNG, ALEXANDER, and SORKINE-HORNUNG, OLGA. “Sketch-
Based Generation and Editing of Quad Meshes”. ACM Transactions on
Graphics 32.4 (2013) 3, 11.

[ULP*15] USAI, FRANCESCO, LIVESU, MARCO, PUPPO, ENRICO, et al.
“Extraction of the Quad Layout of a Triangle Mesh Guided by its Curve
Skeleton”. ACM Transactions on Graphics 35.1 (2015) 3, 11.

[YSC20] YU, CHRISTOPHER, SCHUMACHER, HENRIK, and CRANE,
KEENAN. Repulsive Curves. 2020. arXiv: 2006.07859 3.

Appendix A: Proof: Delaying Non-Conflicting Insertions

Consider a state s and a pair of edges c ∈C(s) and n ∈C(s). Since
n is non-conflicting, its insertion will neither change the candidate
path of any other edge when inserted, nor will its candidate path be
changed by the insertion of any other edge into s, i.e.

p(M(s),c) = p(M(sn),c),

p(M(s),n) = p(M(sc),n),

which implies M(snc) = M(scn), and thus

M(sncs′) = M(scns′) (1)

for any remaining sequence s′.

Our conflict-avoiding pruning only visits states v∈V with inser-
tion sequences of the form v = scsn where

• sc is a conflicting sequence, i.e. for each prefix s′ce v sc, it is
e ∈C(s′c),
• sn is a non-conflicting sequence, i.e. for each prefix scs′nev scsn,

it is e ∈C(scs′n).

We show that for every unvisited state s /∈V , there is an embedding
sequence v ∈ V such that M(s) = M(v). We can construct v from s
by iteratively pushing non-conflicting insertions towards the end:

Suppose s /∈V . Then, there is a decomposition s = scsnncs′ such
that sc is a (possibly empty) conflicting sequence, sn is a (possi-
bly empty) non-conflicting sequence, n ∈C(scsn), and c ∈C(scsn).
By Eq. (1), we have M(scsnncs′) = M(scsncns′). Repeating this
operation yields M(scsnncs′) = M(sccsnns′). As c ∈C(scsn), so is
c ∈ C(sc), hence scc is a conflicting sequence. If snns′ is a non-
conflicting sequence, then sccsnns′ ∈ V (q.e.d.). Otherwise, we re-
peat the same argument for the remaining part until s′ becomes
empty.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

290

http://arxiv.org/abs/2006.07859

