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Figure 1: We propose a hybrid technique to empower novice users and artists without expertise in photorealistic rendering to create sophis-
ticated material models by applying standard image editing operations to a source image rendered in our reference scene (shown on the
left). Then, in the next step, our method proceeds to find a photorealistic BSDF that, when rendered, resembles this target image. Our method
generates each of the showcased fits within 20-30 seconds of computation time and is able to offer high-quality results even in the presence
of poorly-executed edits (e.g., the background of the gold target image, the gold-colored pedestal for the water material and the stitched
specular highlight above it). Scene: Reynante Martinez.

Abstract
Creating photorealistic materials for light transport algorithms requires carefully fine-tuning a set of material properties to
achieve a desired artistic effect. This is typically a lengthy process that involves a trained artist with specialized knowledge.
In this work, we present a technique that aims to empower novice and intermediate-level users to synthesize high-quality
photorealistic materials by only requiring basic image processing knowledge. In the proposed workflow, the user starts with
an input image and applies a few intuitive transforms (e.g., colorization, image inpainting) within a 2D image editor of their
choice, and in the next step, our technique produces a photorealistic result that approximates this target image. Our method
combines the advantages of a neural network-augmented optimizer and an encoder neural network to produce high-quality
output results within 30 seconds. We also demonstrate that it is resilient against poorly-edited target images and propose a
simple extension to predict image sequences with a strict time budget of 1-2 seconds per image.
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1. Introduction

The expressiveness of photorealistic rendering systems has seen
great strides as more sophisticated material models became avail-
able for artists to harness. Most modern rendering systems offer a
node-based shader tool where the user can connect different kinds
of material models and perform arbitrary mathematical operations
over them (e.g., addition and mixing), opening up the possibility
of building a richer node graph that combines many of the more
rudimentary materials to achieve a remarkably expressive model.
These are often referred to as “principled” shaders and are com-
monly used within the motion picture industry [BS12]. However,
this expressiveness comes with the burden of complexity, i.e., the
user has to understand each of the many parameters of the shader
not only in isolation, but also how they influence each other, which
typically requires years of expertise in photorealistic material mod-
eling. In this work, we intend to provide a tool that can be used by
a wider target audience, i.e., artists and novices that do not have
any experience creating material models, but are adept at general-
purpose image processing and editing. This is highly desirable as
human thinking is inherently visual and is not based on physically-
based material parameters [RSB∗02, Whi89]. We propose a work-
flow in which the artist starts out with an image of our material test
scene and applies classic image processing operations to it. Our key
observation is that even though this processed target image is often
not physically achievable, in many cases, a photorealistic material
model can be found that is remarkably close to it (Fig. 2). These
material models can then be easily inserted into already existing
scenes by the user (Fig. 3).

In summary, we present the following contributions:

• An optimizer that can rapidly match the target image when given
an approximate initial guess.
• A neural network to solve the adjoint rendering problem, i.e.,

take the target image as an input and infer a shader that produces
a material model to approximate it.
• A hybrid method that combines the advantages of these two con-

cepts and achieves high-quality results for a variety of cases
within 30 seconds.
• A simple extension of our method to enable predicting sequences

of images within 1-2 seconds per image.

We provide our pre-trained neural networks and the source code for
the entirety of this project.

2. Previous Work

2.1. Material Acquisition

A common workflow for photorealistic material acquisition re-
quires placing the subject material within a studio setup and using
measurement devices to obtain its reflectance properties. To im-
port this measured data into a production renderer, it can be either
used as-is, can be compressed down into a lower-dimensional rep-
resentation [PRJ∗13,RJGW19,WAA∗00] or approximated through
an analytic bidirectional scattering distribution function (BSDF)
model [PdMJ14]. Due to the large body of research works in this
area, we relate our method to a few commonly used works and
refer the interested reader to the appropriate survey papers for

more information [WdBKK15, GGG∗16]. Many recent endeav-
ors improve the cost efficiency and convenience of this acqui-
sition step by only requiring photographs of the target material
[AWL∗15,AAL16,DAD∗18,LDPT17,LSC18,GRR∗17] while still
requiring physical access to these source material samples, while
precomputed BSDF databases offer an enticing alternative where
the user can choose from a selection of materials [Mat03, DJ18].
We aim to provide a novel way to exert direct artistic control over
these material models. Our method can be related to inverse ren-
dering [MG98, RH01] and appearance computation [WDR13] ap-
proaches, where important physical material properties are inferred
from a real photograph with unknown lighting conditions. In our
work, the material test scene contains a known lighting and ge-
ometry setup, but in return, enables not only the rapid discovery
of new materials, but artistic control through standard and well-
known image-space editing operations. Our method can also be
thought of as a specialized version of recent differentiable render-
ing approaches [LHJ19,CLZ∗18] that is designed for capturing and
reproducing intricate details in material appearance.

2.2. Material Editing

To be able to efficiently use the most common photorealistic render-
ing systems, an artist is typically required to have an understand-
ing of physical quantities pertaining to the most commonly mod-
eled phenomena in light transport, e.g., indices of refraction, scat-
tering and absorption albedos and more [STPP09, BS12, NSR17].
This modeling time can be cut down by techniques that enable
editing bidirectional reflectance distribution function (BRDF) mod-
els directly within the scene [BAOR06,CPWAP08,SZC∗07], how-
ever, with many of these methods, the artist is still required to
understand the physical properties of light transport, often in-
curring a significant amount of trial and error. Instead of edit-
ing the materials directly [SJR18], other techniques enable edit-
ing secondary effects, such as caustics and indirect illumination
within the output image [SNM∗13, BAEDR08]. Other efficient
material editing workflows also open up the possibility of mate-
rial remapping [SKWW17], retargeting [ATDP11], editing mea-
sured SVBRDFs [PL07] and rapid relighting previously rendered
scenes [WCPL∗08, NRH04, WTL04]. Reducing the expertise re-
quired for material editing workflows has been a subject to a large
volume of research works: an intuitive editor was proposed by
pre-computing many solutions to enable rapid exploration [HR13],
carefully crafted material spaces were derived to aid the artist
[SGM∗16, SSN18, LMS∗19], and learning algorithms have been
proposed to create a latent space that adapts to the preferences of
the user [ZFWW18]. Other image-based editing methods open up
the possibility of editing BSSRDFs [RCP14] or SVBRDFs through
an inferred albedo map [DTPG11]. We also endeavored to create
a solution that produces the desired results rapidly by looking at a
non-physical mockup image, requiring expertise only in 2D image
editing, which is considered to be common knowledge by nearly all
artists in the field. Generally, BRDF relighting methods are prefer-
able when in-scene editing is a requirement [LCY∗17, NSRS13],
otherwise, we recommend using our proposed technique in the case
of one sought material to moderate-scale problems and Gaussian
Material Synthesis (GMS) [ZFWW18] for mass-scale material syn-
thesis.
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Figure 2: Our proposed hybrid technique offers an intuitive workflow where the artist takes a source material (¶) and produces the target
image by applying the desired edits to it within a 2D raster image editor of their choice (·). Then, one or more encoder neural networks are
used to propose a set of approximate initial guesses (¸) to be used with our neural network-augmented optimizer (¹), which rapidly finds
a photorealistic shader setup that closely matches the target image (º). The artist then finishes the process by assigning this material to a
target object and renders the final scene offline.

2.3. Neural Networks and Optimization

Optimization is present at the very core of every modern neural
network: to be able to minimize the prescribed loss function effi-
ciently, the weights of the networks are fine-tuned through gradient
descent variants [Bot10, RM51] or advanced methods that include
the use of lower-order moments [KB14], while additional measures
are often taken to speed up convergence and avoid poor local min-
ima [SMDH13, Goh17]. Similar optimization techniques are also
used to generate the model description and architecture of these
neural networks [ZL16, EMH18], or the problem statement itself
can also be turned around by using learning-based methods to dis-
cover novel optimization methods [BZVL17]. In this work, we pro-
pose two combinations of a neural network and an optimizer – first,
the two can be combined indirectly by endowing the optimizer with
a reasonable initial guess, and directly by using the optimizer that
invokes a neural renderer at every function evaluation step to speed
up the convergence by several orders of magnitude (steps ¸ and ¹
in Fig. 2). This results in an efficient two-stage system that is able to
rapidly match a non-physical target image and does not require the
user to stay within a prescribed manifold of artistic editing opera-
tions. In a related approach, Zhu et al. [ZKSE16] have also used the
first mentioned combination. Their method uses a generative model
to synthesize images, restricting the space of possible image edit-
ing operations, whereas our technique seeks a parameter setup to be
used with a principled shader, allowing more general image edits,
but also requiring a more elaborate scheme to provide robust re-
sults. The use of an optimizer to refine a neural network prediction

can also be applied to reflectance capture [KCW∗18] and image-
based material estimation [GLD∗19], while a multi-network vari-
ant can be used to perform texture synthesis [HDR19]. In summary,
our technique handles marked up image inputs that are outside of
the training domain, and uses an optimizer to refine a collection
of neural network predictions to yield a low-dimensional material
representation. It also supports interactive workflows where rapid
iteration is required and is independent of the underlying BSDF
representation as long as the associated neural renderer works reli-
ably.

3. Overview

Many trained artists are adept at creating new photorealistic mate-
rials by engaging in direct interaction with a principled shader. This
workflow includes adjusting the parameters of this shader and wait-
ing for a new image to be rendered that showcases the appropriate
output material. If at most a handful of materials are sought, this is
a reasonably efficient workflow, however, it also incurs a significant
amount of rendering time and expertise in material modeling. Our
goal is to empower novice and intermediate-level users to be able
to reuse their knowledge from image processing and graphic design
to create their envisioned photorealistic materials (where the degree
of photorealism is determined by the capabilities of the shader).

Instead of using a photograph of a material sample as an in-
put, in this work, we set up a material test scene that contains a
known lighting and geometry setup, and a fixed principled shader

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

109



K. Zsolnai-Fehér, P. Wonka, M. Wimmer / Photorealistic Material Editing Through Direct Image Manipulation

Figure 3: To demonstrate the utility of our system, we synthesized a
new material using the material test scene shown in Fig. 2 and then
deployed it into an already existing scene using Blender and Cy-
cles. In this scene, we made a material mixture to achieve a richer
and foggier nebula effect inside the glass. Left: theirs, right: 50%
theirs, 50% ours. Scene: Reynante Martinez.

with a vector input of x ∈ Rm. We chose the scene to be one that
artists working in the industry are already familiar with to make
sure that results on this scene can be intuitively transferred to the
desired production scene. We use the shader from Zsolnai-Fehér et
al. with m = 19 [ZFWW18], which contains many albedo-related
parameters and is able to represent the most commonly used dif-
fuse, glossy, specular and translucent materials with varying rough-
ness and volumetric absorption coefficients. Each parameter setup
of this shader produces a different material model when rendered.
In our workflow, the user is offered a variety of images, and chooses
one desired material model as a starting point. Then, the user is
free to apply a variety of image processing operations on it, e.g.,
colorization, image inpainting, blurring a subset of the image and
more. Since these image processing steps are not grounded in a
physically-based framework, the resulting image is not achievable
by adjusting the parameters in the vast majority of cases. However,
we show that our proposed method is often able a produce a photo-
realistic material that closely matches this target image.

Solution by optimization. When given an input image t ∈Rp,
it undergoes a series of transformations (e.g., colorization, image
inpainting) as the artist produces the target image t̃ = Ψ(t), where
Ψ : Rp → Rp. Then, an image is created from an initial shader
configuration, i.e., φ : Rm→Rp, where m refers to the number of
parameters within the shader and p is the number of variables that
describe the output image (in our case p = 3 ·4102 is used with the

range of 0-255 for each individual pixel). This operation is typically
implemented by a global illumination renderer. Our goal is to find
an appropriate parameter setup of the principled shader x ∈ Rm

that, when rendered, reproduces t̃ (note that in order to conform to
artist expectations, both t and t̃ are assumed to be in image space,
i.e., tone-mapped). Generally, this is not possible as a typical Ψ

leads to images that cannot be perfectly matched through photore-
alistic rendering. However, surprisingly, we can often find a config-
uration x that produces an image that closely resembles t̃ through
solving the minimization problem

argmin
x

||φ(x)− t̃ ||2,

subject to xmin ≤ x≤ xmax, (1)

where the constraints stipulate that each shader parameter has to re-
side within the appropriate boundaries (i.e., 0≤ xi ≤ 1 for albedos
or x j ≥ 1 for indices of refraction where xi,x j ∈ x). To be able to
benchmark a large selection of optimizers, we introduce an equiv-
alent alternative formulation of this problem where the constraints
are reintroduced as a barrier function Γ(·), i.e.,

argmin
x

(
||φ(x)− t̃ ||2 +Γ(x)

)
, where

Γ(x) =

{
0, if xmin ≤ x≤ xmax,

+∞, otherwise.

(2)

In a practical implementation, the infinity can be substituted by a
sufficiently large integer. This formulation enabled us to compare
several optimizers (Table 3 in Appendix B), where we found Nelder
and Mead’s simplex-based self-adapting optimizer [NM65] to be
the overall best choice due to its ability to avoid many poor local
minima through its contraction operator and used that for each of
the reported results throughout this manuscript.

Nonetheless, solving this optimization step still takes several
hours as each function evaluation invokes φ, i.e., a rendering step
to produce an image, which clearly takes too long for day-to-day
use in the industry. We introduce two solutions to remedy this
limitation, followed by a hybrid method that combines their
advantages.

Neural renderer. To speed up the function evaluation pro-
cess, we replace the global illumination engine that implements φ

with a neural renderer [ZFWW18]. This way, instead of running
a photorealistic rendering program at each step, our optimizer
invokes the neural network to predict this image, thus reducing the
execution time of the process by several orders of magnitude, in
our case, from an average of 50 seconds to 4ms per image at the
cost of restricting the material editing to a prescribed scene and
lighting setup. Because of the lack of a useful initial guess, this
solution still requires many function evaluations and is unable to
reliably provide satisfactory solutions.

Solution by inversion. One of our key observations is that
an approximate solution can also be produced without an opti-
mization step by finding an appropriate inverse to φ: since φ is
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Figure 4: Whenever the target image (lower right) strays too far away from the images contained within their training set, our 9 inversion
networks typically fail to provide an adequate solution and potentially predict results outside the feasible region (·, ½, ¾). However, using
our “best of n” scheme and our hybrid method, the best performing prediction of our neural networks can be used to equip our optimizer
with an initial guess, substantially improving its results.

realized through a decoder neural network (i.e., neural renderer)
that produces an image from a shader configuration, φ

−1, its
inverse, can be implemented as an encoder network that takes an
image as an input and predicts the appropriate shader parameter
setup that generates this image. This adjoint problem has several
advantages: first, such a neural network can be trained on the same
dataset as φ by only swapping the inputs and outputs and retains
the advantageous properties of this dataset, e.g., arbitrarily many
new training samples can be generated via rendering, thereby
loosening the ever-present requirement of preventing overfitting
via regularization [SHK∗14, NH92, ZH05]. Second, we can use it
to find a solution directly through x ≈ φ

−1(t̃) without performing
the optimization step described in (1-2). As the output image is
not produced through a lengthy optimization step, but is inferred
by this encoder network, this computes in a few milliseconds.
We will refer to this solution as the inversion network and note
that our implementation of φ

−1 only approximately admits the
mathematical properties of a true inverse function. We also discuss
the nature of the differences in more detail in Section 4. We have
trained 9 different inversion network architectures and found that
typically, each of them performs well on a disjoint set of inputs.
Our other key observation is that because we have an atypical
problem where the ground truth image (t̃) is available and each
of the candidate images can be inferred inexpensively (typically
within 5 milliseconds), it is possible to compute a “best of n”
solution by comparing all of these predictions to the ground truth,
i.e.,

x = φ
−1
(i) (t̃), where i = argmin

j
||φ(φ−1

( j) (t̃))− t̃ ||2, (3)

where φ
−1
(i) denotes the prediction of the i-th inversion network,

j = (1, . . . ,n), and in our case, n=9 was used. This step introduces
a negligible execution time increase and in return, drastically
improves the quality of this inversion process for a variety of test
cases. However, these solutions are only approximate in cases
where the target image strays too far away from the training data
(Fig. 4). In Appendix A we report the structure of the neural
networks used in this figure.

Hybrid solution. Both of our previous solutions suffer from
drawbacks: the optimization approach provides results that re-
semble t̃ but is impracticable due to the fact that it requires too
many function evaluations and gets stuck in local minima, whereas
the inversion networks rapidly produce a solution, but offer no
guarantees when the target image significantly differs from the
ones shown in the training set. We propose a hybrid solution
based on the knowledge that even though the inverse approach
does not provide a perfect solution, since it can produce results
instantaneously that are significantly closer to the optimum than
a random input, it can be used to endow the optimizer with a
reasonable initial guess. This method is introduced as a variant
of (2) where xinit = φ

−1(t̃) and a more detailed description of
this hybrid solution is given below in Algorithm 1. Additionally,
this technique is able to not only provide a “headstart” over the
standard optimization approach but was also able to find higher
quality solutions in all of our test cases.

Predicting image sequences. A typical image editing workflow
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Figure 5: Results for three techniques on common global coloriza-
tion operations including saturation increase and grayscale trans-
form. The “reference material” labels showcase materials that can
be obtained using our shader and would be picked by a user from
a random gallery as starting point for the editing operation. The
arrows indicate which images were the input and output of image-
processing operations performed by the user. The results of the
three methods in reference-material rows indicate how well the
methods can reproduce materials that are actually exactly repro-
ducible by the shader.

takes place within a raster graphics editor program where the artist
endeavors to find an optimal set of parameters, e.g., the kernel
width σ in the case of a Gaussian blur operation to obtain their en-
visioned artistic effect. This process includes a non-trivial amount

Algorithm 1 Photorealistic Material Editing

1: Given t, φ(·),
[
φ
−1
(1) (·), . . . ,φ

−1
(n) (·)

]
, xmin, xmax

2: t̃←Ψ(t) . Obtain target image
3: for i← 1 to n do . Predict with n inversion networks
4: Compute each φ

−1
(i) (t̃)

5: Find i = argmin j∈1..n ||φ(φ
−1
( j) (t̃))− t̃ ||2 . Find best candidate

6: Define xinit← φ
−1
(i) (t̃)

7: Define f1(x) = xmax−x . Set up constraints
8: Define f2(x) = x−xmin
9: Define C =

{
x | fi(x)≥ 0, i = 1,2

}
. Construct feasible

region

10: Define Γ(x) =

{
0, if x ∈ C,
+∞, otherwise

. Construct barrier

11: Initialize optimizer with xinit
12: Minimize argminx

(
||φ(x)− t̃||2 +Γ(x)

)
. Refine initial guess

13: Display φ(x) to user

of trial and error where the artist decides whether the parameters
should be increased or decreased; this is only possible in the pres-
ence of near-instant visual feedback that reflects the effect of the
parameter changes on the image. We propose a simple extension
to our hybrid method to accommodate these workflows: consider
an example scenario where the k-th target image in a series of tar-
get images t̃(k) are produced by subjecting a starting image t to
an increasingly wide blurring kernel. This operation is denoted by
Ψσ(t) = Gσ ∗ t, where Gσ is a zero-centered Gaussian, and for sim-
plicity, the target images are produced via t̃(k) = Ψk(t), with the
initial condition of t̃(0) = t. We note that many other transforms
can also be substituted in the place of Ψ without loss of generality.
We observe that such workflows create a series of images where
each neighboring image pair shows only minute differences, i.e.,
for any positive non-zero k, ||t̃(k+1)− t̃(k)||2 remains small. As in
these cases, we are required to propose many output images, we
can take advantage of this favorable mathematical property by ex-
tending the pool of initial inversion networks with the optimized
result of the previous frame by modifying Steps 3-5 of Algorithm
1 to add

φ
−1
(n+1)(t̃k) = argmin

x

(
||φ(x)− t̃k−1||2 +Γ(x)

)
. (4)

Note that this does not require any extra computation as the result
of Step 12 of the previous run can be stored and reused. Intuitively,
this means that both the inversion network predictions and the
prediction of the previous image are used as candidates for the
optimization (whichever is better). This way, after the optimization
step is finished, the improvements can be “carried over” to the next
frame. This method we refer to as reinitialization and in Section
4, we show that it consistently improves the quality of our output
images for such image sequences, even with a strict budget of 1-2
seconds per image.
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Initial guess 50 fun. evals 300 fun. evals 1500 fun. evals

Input Random NN Optimizer Ours Optimizer Ours Optimizer Ours

Fig. 5, Row 1 41.93 5.94 33.81 4.53 9.42 2.84 5.62 2.37

Fig. 5, Row 2 78.45 32.72 68.55 32.67 40.24 32.67 40.21 32.67
Fig. 5, Row 4 35.37 18.68 30.88 16.53 17.29 14.71 16.98 14.68
Fig. 5, Row 7 41.65 22.42 38.10 22.38 26.30 22.38 26.24 22.38
Fig. 5, Row 8 29.04 19.82 26.79 18.43 22.93 15.37 22.93 15.37
Fig. 8, Row 2 23.78 12.79 20.31 11.62 8.27 7.81 8.26 7.80
Fig. 8, Row 3 21.60 9.09 16.54 8.28 6.24 5.80 6.19 5.80
Fig. 8, Row 8 29.58 9.74 22.69 7.92 6.63 5.36 6.63 5.36

Table 1: A comparison of the optimization approach (with random initialization) and our hybrid method (with “best of 9” NN initialization)
on a variety of challenging global and local image editing operations in Fig. 5 and 8. The numbers indicate the RMSE of the outputs, and for
reference, the first row showcases an input image that is reproducible by the shader.

Image ID in sequence (i.e., k of t̃(k))

F. evals Technique 0 10 20 30 40 50 60 70 80 90 100 110 120 Σ

100
No reinitialization 1.93 1.67 2.19 2.90 3.82 4.79 5.73 6.81 7.93 9.14 10.43 11.55 12.99 81.88

Reinitialization 1.93 1.34 1.88 2.54 3.34 4.30 5.30 6.38 7.50 8.69 9.93 11.55 12.99 77.67

300
No reinitialization 1.64 1.47 2.07 2.80 3.70 4.62 5.70 6.75 7.86 9.00 10.21 11.41 12.82 80.05

Reinitialization 1.64 1.30 1.80 2.42 3.25 4.25 5.25 6.33 7.45 8.64 9.88 11.41 12.82 76.44

600
No reinitialization 1.57 1.44 2.06 2.77 3.66 4.60 5.69 6.74 7.83 8.96 10.12 11.41 12.80 79.65

Reinitialization 1.57 1.29 1.80 2.49 3.33 4.20 5.18 6.27 7.38 8.58 9.81 11.41 12.80 76.11
Table 2: Our proposed reinitialization technique consistently outperforms per-frame computation for the image sequence shown in Fig. 6.
The numbers indicate the RMSE of the outputs.

4. Results

In this section, we discuss the properties of our inverse problem for-
mulation (i.e., inferring a shader setup that produces a prescribed
input image), followed by both a quantitative and qualitative eval-
uation of our proposed hybrid method against the optimization and
inversion network solutions. We also show that our system supports
a wide variety of image editing operations and can rapidly predict
image sequences. To ensure clarity, we briefly revisit the three in-
troduced methods:

• The optimization approach relies on minimizing (2) with Nelder
and Mead’s simplex method using a random initial guess, and
implementing φ through a neural renderer,
• the inversion network refers to the “best of 9” inversion solu-

tion, i.e., x≈ φ
−1
(i) (t̃) as shown in (3),

• our hybrid method is obtained by combining the two above ap-
proaches as described in Algorithm 1.

Furthermore, in Appendix A, we report the structure of the neu-
ral networks used to implement each individual φ

−1
(i) shown in Fig.

4, and compare our solution to a selection of local and global min-
imizers in Appendix B. At the end of this section, we also com-
pare the total time taken to synthesize 1, 10, and 100 selected
materials against a recent method for mass-scale material synthe-
sis. Throughout this manuscript, all results were generated using
a NVIDIA TITAN RTX GPU. The training set for the neural ren-
derer is equivalent to the one used in Gaussian Material Synthe-
sis [ZFWW18]. Our inversion networks are formulated as the ad-

joint of this neural renderer, and hence can be trained on the same
dataset by swapping the inputs and outputs.

Inversion accuracy. Our inversion technique leads to an ap-
proximate solution within a few milliseconds, however, because
the structure of the forward and inverse networks differ, the inver-
sion operation remains imperfect, especially when presented with
a target image that includes materials that are only approximately
achievable. To demonstrate this effect, we have trained 9 different
inversion networks to implement φ

−1 and show that none of the
proposed solutions are satisfactory as a final output for the global
colorization case, and some may even predict results outside of
the feasible domain (Fig. 4). Our goal with this experiment was
to demonstrate that a solution containing only one inversion net-
work generally produces unsatisfactory outputs, regardless of net-
work structure. The reason for this is that the input images undergo
a set of creative transforms by the artist and therefore differ sig-
nificantly from the images contained within the training set. As a
result, in most cases, an exact match is impossible to attain through
the given principled shader. Due to the non-convex landscape of our
principled shader, simply clamping back the parameters to the fea-
sible domain may lead to undesirable results. One might consider
using a final layer that passes the (to-be constrained) values through
a suitable activation function (e.g., tanh). However, not all used
quantities (e.g., volumetric absorption) are normalized, and tanh
activations generally train less efficiently compared to ReLUs, es-
pecially when backpropagating gradients through many layers (we
typically use 9 or more layers as discussed in Appendix A).
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However, since we have an atypical problem where both the pre-
dicted images and the target image are available, we can inexpen-
sively determine and choose the best prediction of a number of
all of these inversion networks, leading to our “best-of-9” scheme.
these predictions can be used to equip our optimizer with an initial
guess, substantially improving its results. As each neural network
consumes between 300MB and 1GB of video memory, we were
able to keep all of them loaded during the entirety of the work ses-
sion. We discuss the used architectures for all of these inversion
networks in the Appendix and have included them in the supple-
mentary materials as well.

Optimizer and hybrid solution accuracy. In Table 1, we com-
pared our hybrid solution against the “best of 9” inversion network
and optimization approaches and recorded the RMS error after 50,
300 and 1500 function evaluations (these roughly translate to 1,
6, and 30-second execution times) to showcase the early and late-
stage performance of these methods. The table contains a selection
of scenarios that we consider to be the most challenging and note
that the outputs showed no meaningful change after 1500 function
evaluations. Our hybrid method produced the lowest errors in each
of our test cases, and surprisingly, the inversion network initializa-
tion not only provides a “headstart” for our method, but also im-
proves the final quality of the output, thereby helping the optimizer
to avoid local minima.

These results suggest that if real-time interaction is required, a
two-stage system could be used where first, our inversion networks
propose a reasonably accurate initial solution in a few milliseconds,
and in the next stage, it is used as an initial guess by the optimizer
and undergoes further refinement. In production rendering environ-
ments where the artist can typically afford to wait 20 seconds for a
more accurate solution, we recommend using both stages. Further-
more, since both the input and the output images are available for
the algorithm, the RMSE between the two can be compared. With
a carefully chosen error threshold, this would result in a “best of
both worlds” solution that only takes 20 seconds when necessary,
and would execute in close to real time otherwise.

To validate the viability of our solutions, we also ran a global
minimizer [WD97] with several different parameter choices and a
generous allowance of 30 minutes of computation time for each;
our hybrid method was often able to match (and in some cases,
surpass) the quality offered by this solution (Appendix B, Table
3), further reinforcing how our inversion network initialization step
helps avoid getting stuck in poor local minima. Note that the op-
timizer was unable to meaningfully improve the best prediction of
the 9 inversion networks in Fig. 5, Row 7 – in this case, a better
solution can be found by using the prediction of only the first neu-
ral network and passing it to the optimizer, improving the reported
RMSE from 22.38 to 19.39 by using 300 function evaluations. This
case is also the closest we have obtained to a failure case for our
method, although we still consider it an acceptable result.

Example image editing operations. A typical workflow using
our technique includes the artist choosing a source material and
applying an appropriate image editing operation (Ψ) instead of en-
gaging in a direct interaction with the principled shader. In collab-
oration with multiple artists, we selected a number of transforms
that are likely to be relevant to a material-editing workflow and

Figure 6: Our image sequence starts with an input that is achiev-
able using our shader (upper left), where each animation frame
slightly increases its black levels. The lower right region showcases
the 300th frame of the animation.

cluster them into global (Fig. 5) and local (Fig. 8) operations: these
include predominantly albedo-based changes, e.g., saturation and
contrast enhancement, grayscale transform, changing the color bal-
ance or hue, and other image-based operations. e.g., image mixing,
stitching and inpainting, and selective blurring of highlights. Other
transforms should work as well (within limitations, see Sec. 5), as
the system is trained independently of these operations.

Both the optimizer and our hybrid method were run for 1500
function evaluations to obtain the results showcased in these two
figures. As these transformations come from a 2D raster editor and
are not grounded in a physically based framework, a perfect match
is often not possible, however, in each of these cases, our hybrid
method proposed a solution of equivalent or better quality com-
pared to the “best of 9” inversion network and the optimizer solu-
tions.

Image sequence prediction. As our earlier results in Table 1
revealed that the global colorization techniques typically prove to
be among the more difficult cases, we have created a challenging
image sequence with an input image that is achievable with our
shader, and subjected it to a slight black level increase over many
frames (Fig. 6). Every image within this sequence is reproduced
both with independent per-frame inference and our reinitialization
technique with a strict time budget of 2, 6, and 12 seconds per im-
age (100, 300, and 600 function evaluations). In Table 2, we show
that this simple extension successfully exploits the advantageous
mathematical properties of these workflows and consistently re-
duces the output error for the majority of the sequence, i.e., im-
ages 1-100. We also report the RMSE of images 101-120 for ref-
erence, which we refer to as the “converged” regime in which the
target images stray further and further away from the feasible do-
main, and the proposed solution remains the same despite these
changes. Even in these cases, our reinitialization technique per-
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forms no worse than the “no reinitialization” method, and because
of its negligible additional cost, we consider it to be a strictly better
solution.

Modeling and execution time. In Fig. 7, we have recorded
the modeling times for 1, 10, and 100 similar materials using our
method and compared them against Gaussian Material Synthesis
[ZFWW18] (GMS), a learning-based technique for mass-scale ma-
terial synthesis. We briefly describe the most important parameters
of the task and refer the interested reader to this paper for more
details. All timings are end-to-end, i.e., including all relevant user
interaction and execution times. The task was to create a prescribed
number n of materials that resemble (or match, in the case n = 1)
a given target material. The novice and expert user timings were
taken from the GMS paper and contain the time to created the mate-
rials by hand using Disney’s “principled” shader [BS12]. The GMS
timings contain scoring a material gallery by the user, computing
suggestions, and selecting a desired material. Our timings contain
the selection of a starting image from a set of images with random
material parameters, the fixed cost of loading the 9 neural networks
(5.5s), image processing operations by the user, as well as execu-
tion times.

If only one material is desired, our technique outperforms this
previous work and nearly matches the efficiency of an expert user.
When 10 similar materials are sought (1 base material and 9 vari-
ants), our proposed method was adapted to use the re-initialization
technique and offers the best modeling times, outperforming both
GMS and expert users. For 100 or more similar materials, both
methods outperform experts, where GMS offers the best scaling
solution – but note that in many practical scenarios, a scene is to
be populated with many different materials of which only some
are similar, which is equivalent to the 1- or 10-material cases we
tested, leaving the advantage to GMS only in the specific use-case
of mass-scale material synthesis. Also, discussions with artists sug-
gest that our technique would often be used in different situations
than GMS, namely editing an existing material vs. modeling from
scratch. In this sense, it could also be used to fine-tune materials
modeled with GMS.

5. Limitations and Future Work

As demonstrated in Fig. 4, the results of φ
−1 depend greatly on the

performance of the encoder and decoder neural networks. As these
methods enjoy significant research attention, we encourage further
experiments in including these advances to improve them (e.g.,
architecture search [RMS∗17], capsule networks [SFH17, HSF18]
and skip connections [MSY16] among many other notable works)
and adapting other neural network architectures to our problem that
are more tailored to solve inverse problems [AKW∗18, MEM19].
Even though our principled shader contains a set of parameters that
are commonly used in the industry, there are other potential user
interface options [KP10] that may lead to a difference in the mod-
eling timings (Fig. 7). Furthermore, strongly localized edits, e.g.,
blurring a small part of a specular highlight typically introduces
drastic changes within only a small subset of the image and repre-
sent only a small fraction of the RMSE calculations and thus may
not get proper prioritization from the optimizer. To alleviate this,
the relative importance of different regions may also be controlled

Figure 7: The recorded modeling times reveal that if at most a
handful (i.e., 1-10) of target materials are sought, our technique
offers a favorable entry point for novice users into the world of
photorealistic material synthesis.

via weighted masks to emphasize these edits, making these edited
regions “score higher” in the error metric, offering the user more
granular artistic control. In specialized cases, our reinitialization
technique may prove to be useful for single images by using the
parameter set used to produce t as an initial guess for t̃. In-scene
editing still remains the key advantage of BRDF relighting tech-
niques.

We also note that our learning technique assumes an input shader
of dimensionality m and a renderer that is able to produce images
of the materials that it encodes. In this work, our principled shader
was meant to demonstrate the utility of this approach by show-
casing intuitive workflows with the most commonly used BSDFs.
However, this method needs not to be restricted to our principled
BSDF, and is also expected to perform well on a rich selection of
more specialized material models including thin-film interference
[Dia91, IWR∗15], fluorescence [WTP01] birefringence [WW08],
microfacet models [HHdD16] layered materials [Bel18,ZJ18], ma-
terials with Fresnel effects, and more.

Our method relies on using the same scene and lighting setup for
the editing session, as changing these would require retraining the
network. We do not consider this a major limitation as we carefully
chose a material test scene that is widely used by material editing
artists working in the industry. The same scene was also used in
GMS [ZFWW18]. Even though starting the editing process from
an arbitrary image is not possible with this proposed system, we
conjecture that it can be extended to work with real photographs
as inputs – this can likely be achieved through the presence of a
mechanism for detecting and lining up the specular highlights with
the image of our material editing scene [FJL∗16].

It would be interesting to investigate gradients for the loss func-
tion. This is challenging since these neural networks are typically
very sensitive to the complexity of the loss function and may be-
come more difficult to train properly.

For error measurements, we used RMSE as it is the standard
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Figure 8: Results for three techniques on local image editing op-
erations and image mixing. Please see Fig. 5 for an explanation of
reference material and arrows.

way of measuring differences in BRDF modeling [DJ18]. There are
specialized cases, e.g., noise and blurring among other examples,
that would likely require non-standard or perceptual image quality
metrics. Regardless, we have tried measuring the PSNR and pro-
duced per-channel greyscale images to record the SSIM and have
not found meaningful differences to RMSE in our test cases.

6. Conclusions

We have presented a hybrid technique to empower novice users and
artists without expertise in photorealistic rendering to create so-

phisticated material models by applying image editing operations
to a source image. This allows them to reuse their image editing
knowledge and apply it to material synthesis. The resulting images
are typically not achievable through photorealistic rendering, how-
ever, in many cases, solutions be found that are close to the de-
sired output. Our learning-based technique is able to take such an
edited image and propose a photorealistic material setup that pro-
duces a similar output, and provides high-quality results even in the
presence of poorly-edited images. Our proposed method produces
a reasonable initial guess and uses a neural network-augmented op-
timizer to fine-tune the parameters until the target image is matched
as closely as possible. This hybrid method is simple, robust, and its
computation time is within 30 seconds for every test case show-
cased throughout this paper. This low computation time is benefi-
cial especially in the early phases of the material design process
where a rapid iteration over a variety of competing ideas is an im-
portant requirement (Fig. 9). Our key insights can be summarized
as follows:

• Normally, using an input image that was generated by a princi-
pled shader is not useful given that the user has to generate this
image themselves with a known parameter setup. However, our
main idea is that the user can subject this image to raster edit-
ing operations and “pretend” that this input is achievable, and
reliably infer a shader setup to mimic it.
• Our neural networks can be combined with optimizers both di-

rectly, i.e., by using an optimizer that invokes a neural renderer at
every function evaluation step to speed up the convergence and
indirectly by using a set of neural networks network to endow
the optimizer with a reasonable initial guess (steps ¸ and ¹ in
Fig. 2).
• Our inversion problem is quite difficult to solve reliably – the

reason why this happens is that the edited images often stray far
away from the samples contained within the training set, and it is
not feasible to train them on all possible artistic edits. To alleviate
this, our system combines multiple, otherwise unreliable neural
network predictions with an optimizer to be able to match these
inputs.

Furthermore, we proposed a simple extension to support predict-
ing image sequences with a strict time budget of 1-2 seconds and
believe this method will offer an appealing entry point for novices
into world of photorealistic material modeling.
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Figure 9: Our technique is especially helpful early in the material design process where the user seeks to rapidly iterate over a variety of
possible artistic effects. Both material types were designed using the material test scene (see Fig. 5) and then transferred to the scene in this
figure. We also demonstrate the method in our supplementary video.

Appendix A: Neural network architectures

Below, we describe the neural network architectures we used to im-
plement φ

−1
(i) . The Conv2D notation represents a 2D convolutional

layer with the appropriate number of filters, spatial kernel sizes and
strides, where FC represents a dense, fully-connected layer with a
prescribed number of neurons and dropout probability.

1. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
1x{Conv2D(64,3,1), MaxPool(2,2)} –
2x{Conv2D(128,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.1)} - FC(m, 0.0)

2. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.1)} - FC(m, 0.0)

3. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.5)} - FC(m, 0.0)

4. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
1x{Conv2D(64,3,1), MaxPool(2,2)} –
2x{Conv2D(128,3,1), MaxPool(2,2)} –
2x{FC(3000, 0.5)} - FC(m, 0.0)

5. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
1x{Conv2D(64,3,1), MaxPool(2,2)} –
2x{Conv2D(128,3,1), MaxPool(2,2)} –
2x{FC(3000, 0.0)} - FC(m, 0.0)

6. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.0)} - FC(m, 0.0)

7. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.0)} - FC(m, 0.0)

8. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(100, 0.0)} - FC(m, 0.0)

9. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.0)} - FC(m, 0.0)

Neural networks 6,7 and 9 are isomorphic and were run for a
different number of epochs to test the effect of overfitting later in
the training process, and therefore offer differing validation losses.
The implementation of φ is equivalent to the one used in Zsolnai-
Fehér et al.’s work [ZFWW18].

Appendix B: Comparison of optimizers

In Table 3, we have benchmarked several optimizers, i.e., L-BFGS-
B [BLNZ95], SLSQP [Kra94], the Conjugate Gradient method
[HS52] and found Nelder and Mead’s simplex-based self-adapting
optimizer [NM65] to be the overall best choice for our global and
local image-editing operations. For reference, we also ran Basin-
hopping [WD97], a global minimizer with a variety of parameter
choices and a generous allowance of 30 minutes of execution time
for each test case. This method is useful for challenging non-linear
optimization problems with high-dimensional search spaces. Note
that when being run for long enough, this technique is less sen-
sitive to initialization due to the fact that it performs many quick
runs from different starting points, and hence, we report one re-
sult for both initialization techniques. The cells in the intersection
of “Nelder-Mead” and “NN” denote our proposed hybrid method,
which was often able to match, and in some cases, outperform this
global minimization technique.
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Input Init. type Init. RMSE Nelder-Mead L-BFGS-B SLSQP CG Basin-hopping

Fig. 5, Row 1 Rand 41.93 5.62 20.47 17.96 5.24 2.01
Fig. 5, Row 1 NN 5.94 2.37 5.84 5.94 5.94

Fig. 5, Row 2 Rand 78.45 40.21 78.45 78.45 78.45 32.67
Fig. 5, Row 2 NN 32.72 32.67 32.72 32.72 32.72

Fig. 5, Row 4 Rand 35.37 16.98 28.84 35.37 34.99
14.72

Fig. 5, Row 4 NN 18.68 14.68 15.33 18.18 15.90

Fig. 5, Row 7 Rand 41.65 26.24 41.65 41.65 41.65 22.38
Fig. 5, Row 7 NN 22.42 22.38 22.42 22.42 22.42

Fig. 5, Row 8 Rand 29.04 22.93 29.04 26.71 28.21
15.69

Fig. 5, Row 8 NN 19.82 15.37 19.82 28.87 19.82

Fig. 8, Row 2 Rand 23.78 8.26 23.78 23.78 21.75 7.63
Fig. 8, Row 2 NN 12.79 7.80 12.79 12.79 12.79

Fig. 8, Row 3 Rand 21.60 6.19 21.60 21.60 20.83
5.86

Fig. 8, Row 3 NN 9.09 5.80 9.09 9.09 9.09

Fig. 8, Row 8 Rand 29.58 6.63 29.58 29.58 29.58 5.07
Fig. 8, Row 8 NN 9.74 5.36 9.61 9.61 9.68

Table 3: A comparison of a set of classical optimization techniques revealed that when using Nelder and Mead’s simplex-based optimizer
with our “best of 9” inversion network initialization, we can often match, and in some cases, outperform the results of Basin-hopping, a
global minimizer. In the interest of readability, we have marked the cases where the optimizers were unable to improve upon the initial guess
with red. For reference, the first two rows showcase an input image that is reproducible by the shader.
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