
Eurographics Conference on Visualization (EuroVis) 2020
M. Gleicher, T. Landesberger von Antburg, and I. Viola
(Guest Editors)

Volume 39 (2020), Number 3

Metro Maps on Octilinear Grid Graphs

Hannah Bast1, Patrick Brosi1 and Sabine Storandt2

1University of Freiburg, Department of Computer Science, Freiburg, Germany
2University of Konstanz, Department of Computer and Information Science, Konstanz, Germany

Abstract
Schematic transit maps (often called "metro maps" in the literature) are important to produce comprehensible visualizations of
complex public transit networks. In this work, we investigate the problem of automatically drawing such maps on an octilinear
grid with an arbitrary (but optimal) number of edge bends. Our approach can naturally deal with obstacles that should be
respected in the final drawing (points of interest, rivers, coastlines) and can prefer grid edges near the real-world course of a
line. This allows our drawings to be combined with existing maps, for example as overlays in map services. We formulate an
integer linear program which can be used to solve the problem exactly. We also provide a fast approximation algorithm which
greedily calculates shortest paths between node candidates on the underlying octilinear grid graph. Previous work used local
search techniques to update node positions until a local optimum was found, but without guaranteeing octilinearity. We can
thus calculate nearly optimal metro maps in a fraction of a second even for complex networks, enabling the interactive use of
our method in map editors.

CCS Concepts
• Human-centered computing → Graph drawings; • Theory of computation → Integer programming; • Mathematics of
computing → Approximation algorithms;

1. Introduction

Maps of public transit networks usually depict the lines in a
schematized way to ensure readability. In 1931, Harry Beck pre-
sented his idea to draw the London subway lines as alternating se-
quences of horizontal, vertical and diagonal line segments [Gar94].
This octilinear design has since become the de facto standard and
its usage goes beyond the cartographic representation of public
transit networks.

The high practical relevance of these maps has lead to numer-
ous approaches to render them automatically. We give an overview
of existing work in Section 1.3. However, existing methods usually
do not guarantee octilinear results, require impractically long so-
lution times and/or only allow a small fixed number of bends (or
none at all) along edges in the final drawing. This leads to sev-
eral restrictions in their practical applicability. In particular, pre-
vious work which guaranteed octilinear results often did not have
solution times fast enough to be used interactively in a map editor.
Additionally, we are not aware of any previous work which allows
octilinear drawings to approximate the real geographical courses
of a line between stations, which is a requirement if the final maps
should be combined with either existing maps or satellite imagery.
In this work, our goal is to overcome these restrictions.

Our approach is to search for a metro map drawing in a specially
crafted octilinear grid graph. For each input station, a suitable grid
node is determined, and connecting line segments are paths on the

Figure 1: Left: The Vienna subway network, drawn with real-world
geographical station positions and line courses. Right: Octilinear
drawing by our approx. approach. Octilinearization took 202 ms.

grid graph between these nodes. The optimal assignment of nodes
and edges can be found via an integer linear program. More im-
portantly, our approach allows for an efficient approximation algo-
rithm which is based on iterative shortest path calculations on the
grid graph and can produce solutions of high quality in a fraction
of a second even for complex networks.

1.1. Contributions

We consider the following as our main contributions:

• We provide a novel formulation of the problem of drawing a
metro map on an octilinear grid graph which allows an arbitrary
number of edge bends between stations.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13986

https://diglib.eg.orghttps://www.eg.org

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

• We formulate an integer linear program (ILP) to optimize the
problem exactly.
• As ILP solution times are too long for bigger networks, we de-
scribe a fast approximation algorithm which produces solutions in
under 3 seconds and has an approximation error of under 7.5%
on our testing datasets (for which an optimal solution can be
found) when degree 2 nodes are contracted first and later re-inserted
equidistantly.
• We describe how our approximation algorithm can be sped up
by a simple A∗ heuristic.
• We evaluate our approach on six datasets (Freiburg, Stuttgart,
Vienna, Berlin, London and Sydney). Our maps can be inspected
online: http://octi.cs.uni-freiburg.de

1.2. Problem definition

Given an undirected labeled input graph G = (V,E,L), where V are
stations, E are connections between those stations and each edge
e ∈ E is labeled with a subset L(e) ∈ L of lines traveling on this
edge. We call G the line graph. We say DG = (P,C) is a drawing
of G, where P(v) ∈ R2 assigns a position to every node v ∈ V and
C(e) = (q0,q1, . . . ,qn−1),qi ∈R2 assigns a piece-wise linear curve
to every edge e∈E. The initial input drawingD∗G assigns each node
a geographical position (Fig. 1, left). Optionally, each edge may be
assigned its real-world course. Our goal is to find a schematic draw-
ingD′G that resembles a classic metro map (Fig. 1, right). This is of-
ten formalized as a set of hard and soft constraints [NW05, NW11].
We consider these hard constraints:

1. Octilinearity. Each edge curve C(e) may only consist of seg-
ments whose orientation is a multiple of 45◦.

2. Topology Preservation. The topology of the line graph must be
respected. No crossings between edges must be introduced, non-
incident edges must not share common points and the circular
edge ordering around nodes must be preserved.

3. Map Density. The distance from each station to all other curve
anchor points must be above a given threshold d̂.

We consider the following soft constraints (see Equation 8 for how
we combine them into one objective function):

1. Edge Monotony. The number of edge bends should be minimized
and large angles preferred.

2. Edge Length. Edge curve lengths should be minimized.
3. Geographical Accuracy. The original station positions should be

changed as little as possible.

Soft constraint 3 (Geographical Accuracy) is usually weakened to
only apply to nodes with a degree different than 2 (intersection
nodes and terminus nodes), as this both improves the overall map
appearance and simplifies the problem. Nodes of degree 2 are then
contracted prior to drawing and later re-inserted equidistantly onto
the final drawing. We call this the deg-2 heuristic.

Previous work defined the problem as finding an octilinear em-
bedding of the input graph, i.e. each edge is represented by a
straight octilinear arc. We are interested in octilinear drawings and
therefore use a slightly different approach. We state the problem as
finding the optimal positions P(v) ∈ N2 on a grid for each station
node and curves C(e) = (q0, . . . ,qn−1), qi ∈ N2 connecting them.

Most importantly, for two succeeding points qi =(xi,yi) and qi+1 =
(xi+1,yi+1), we require their Chebyshev distance DCh(qi,qi+1) =
max{|xi+1− xi|, |yi+1− yi|} to be exactly 1, which ensures octilin-
earity of the final drawing.

To project this grid onto a map plane, we use a scale factor D,
which is essentially the height and length of a grid cell. If D is set to
d̂, a minimum distance between any two grid points is guaranteed
to be greater or equal to d̂. The grid size X ·Y is determined by the
bounding box of the input line graph. In particular, X ·Y = dA/D2e,
where A is the area of this bounding box.

1.3. Related Work

As metro map layouts and octilinear drawings are of high practical
relevance, they both have been studied extensively in the past.

For metro maps, it was observed early that multiple criteria are
important to produce visually pleasing and informative layouts.
In [SR04], a fitness score was introduced which incorporates the
number of edge crossings, edge lengths, node distribution, angu-
lar resolution, direction changes, and other layout aspects to judge
its quality. A hill climbing heuristic was applied to find a layout
with a high fitness score. Similar heuristic approaches were de-
scribed in [HMDN04], [HMdN06] and [SRMOW10]. While such
approaches might result in useful layouts, they come without any
quality guarantees; and expressing all layout aspects with a sin-
gle fitness score might obfuscate better trade-offs. In [NW05] and
[NW11], the metro map layout aspects were subdivided in hard and
soft constraints, and a mixed-integer program was used to ensure
that all hard constraints (among them octilinearity of all edges) are
fulfilled. This method comes with some restrictions on the input
graph (planarity, maximum degree of 8, the latter being also a re-
striction of our approach) and only allows edges without bends. The
observed running times were high already for small networks. In
[BNUW06, BKPS07], the metro-line crossing minimization prob-
lem (MCLM) was introduced. Here, the goal is to draw a set of sim-
ple paths (representing metro lines) along the edges of an embed-
ded underlying graph with a minimum number of pairwise cross-
ings. In [BBS19], a pipeline was presented in which a problem sim-
ilar to MCLM was solved efficiently to obtain transit maps with few
line crossings and few line separations. However, the goal there was
to come up with transit maps in which the abstraction from the real-
world course of the lines was negligible. Hence map schematization
and in particular octilinearity were not considered in this context.

Octilinear drawings, in which every edge of a given graph is
drawn as an alternating sequence of horizontal, vertical and diag-
onal line segments, have been studied in different contexts before.
In [BGKK14], it was proven that for planar input graphs with low
degree there always exists an octilinear drawing with at most one
direction change (or bend) per edge when using an integer grid
where the number of grid nodes is polynomial in the number of
input points. The general problem of finding planar octilinear draw-
ings with a minimum number of bends is NP-hard. In [Nöl05], an
NP-hardness proof for the problem of deciding whether a given em-
bedded graph can be drawn using only straight octilinear edges was
given. Our goal is to find an optimal octilinear drawing, i.e., edges
are allowed to be represented by octilinear paths rather than just

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

358

http://octi.cs.uni-freiburg.de

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

t

u u

t

v

w

Figure 2: Left: Shortest path between t and u on a grid graph with
uniform edge cost. Path bends are not minimized. Right: Two short-
est paths for (t,u), and (v,w) on our octilinear grid graph with uni-
form grid edge cost 2 and additional path bend penalties c135 = 1,
c90 = 2 and c45 = 3. Path (t,u) acts as an obstacle for (v,w).

by a single segment but planarity is not a necessary prerequisite.
In this configuration, our problem has resemblance to the k-node
disjoint path problem. There, given a graph and k node pairs, the
goal is to find a set of node-disjoint paths connecting each pair. The
problem was proven to be NP-hard even on grid graphs [CK15].
As our model allows to assign arbitrary costs to the edges in the
octilinear grid graph, the k-node disjoint path problem on grids can
be seen as a special case of our problem with diagonal costs set to
infinity. Our problem therefore is NP-hard, too.

A recent vision paper on passenger navigation in metro networks
[CL19] emphasizes the importance of (dynamically adaptable) oc-
tilinear drawings of metro maps for guiding passenger flows. But
current methods which are fast enough to produce schematic metro
maps on demand (as e.g. described in [CY14], [vDL18], [WC11]
and [WP16]) either compromise octilinearity or topology preser-
vation, and do not allow for adapting the visualization to different
application scenarios. Our pipeline will be shown to be very flexi-
ble, and to produce nearly optimal octilinear drawings quickly.

The metro map layout problem is often considered in conjunc-
tion with station labeling. In [NW11], an extension of the mixed-
integer linear program for drawing the metro lines allows to guaran-
tee enough space around station markers for labels. In [WTLY12]
and [WTH∗13], this was extended to work with large annotation
labels like photographs. In [WC11] and [WP16], labels are placed
after the metro map layout was obtained by minimizing an energy
function which captures labeling aspect as their directions, spaces
between labels and coherence among labels of the same line. While
labeling is not the main focus of this paper, we sketch how labels
can be included in our model towards the end of the paper.

Finally it should be noted that metro map layout algorithms are
not only relevant for visualizing the tracks of real trains, but also
for visualizing ’trains of thought’. In fact, the term metro map
metaphor was coined specifically to capture non-spatial informa-
tion visualization problems with similar visualization demands as
metro maps [SGSK01, Nes04, SRB∗05]. While our evaluation in
this paper sticks to actual metro maps, our pipeline works for any
graph with given node coordinates and optional edge shapes.

2. Octilinear Grid Graph

We use an auxiliary undirected grid graph Γ = (Ψ,Ω) with di-
agonal edges (Fig. 2, left), where Ψ are the grid nodes and

ψ0
x,y

ψ1
x,y

ψ3
x,y

ψ4
x,y

ψ5
x,y

ψ7
x,y

ψx,y

90◦

90◦

ω2
x,y

135◦

ψ2
x,y

ω0,2
x,y

ω2,7
x,y

ω2,6
x,y

45◦

45◦

ω1,2
x,y

ω2,5
x,y

ω2,4
x,y

ω2,3
x,y

ψ2
x,y

ψ6
x,y

180◦

135◦

Figure 3: A 3 ·5 octilinear grid graph. Each node ψx,y has 8 ports
ψ

0
x,y, . . . ,ψ

7
x,y which are connected to ψx,y by direct sink edges

ω
0
x,y, . . . ,ω

7
x,y. Each port is additionally connected to its 180◦,

135◦, 90◦ and 45◦ neighbor ports by bend edges ω
i, j
x,y.

Ω the grid edges. For every position (x,y) on an X · Y grid,
we add a grid node ψx,y. Each ψx,y is connected to its neigh-
bors N0(ψx,y), . . . ,N7(ψx,y), where N0(ψx,y) is the north neigh-
bor of ψx,y, N1(ψx,y) the north-east neighbor, etc. A path p =
(ψ0,ψ1, . . . ,ψn−1),ψi ∈ Ψ is then an octilinear curve with cost
c(p) = (n−1) · ch, where ch is the hop cost of using a grid edge.

2.1. Penalizing Line Bends

To optimize soft constraint 1 (Edge Monotony) between stations,
we additionally want the cost for a path in Γ to reflect the number
of bends. A bend penalty should also reflect its angle - either 135◦,
90◦ or 45◦. We call these penalties c135, c90 and c45. A straight pass
through a node should go unpunished, so c180 = 0. Since we aim
for a smooth path through Γ, we favor obtuse angles and require
c180 ≤ c135 ≤ c90 ≤ c45.

We extend our cost function and now want to search for the path
p = (ψ0,ψ1, . . . ,ψn−1) which minimizes the cost

c(p) = (n−1) · ch +
n−2

∑
i=1

cb(ψi−1,ψi+1), (1)

where cb(ψi−1,ψi+1) is the angular bend cost between adjacent
edges {ψi−1,ψi} and {ψi,ψi+1}, that is, either 0, c135, c90 or c45.

We model this by adding 8 auxiliary port nodes ψ
0
x,y, . . . ,ψ

7
x,y to

every grid node (Fig. 3). Each port again corresponds to an out-
going angle in clockwise fashion and is connected to ψx,y via sink
edges ω

0
x,y, . . . ,ω

7
x,y. These sink edges allow us to leave and reach

an original grid node ψx,y. For paths passing through ψx,y, we con-
nect each port ψ

i
x,y with its 7 - i succeeding (in clockwise fashion)

sibling ports at position j with bend edges ω
i, j
x,y (Fig. 3, right).

To distinguish the different node and edge types, we define the
set of original grid nodes as Ψ

g 3 ψx,y, the set of port nodes as
Ψ

p 3 ψ
i
x,y, the set of bend edges as Ω

b 3 ω
i, j
x,y, the set of sink edges

as Ω
s 3 ω

i
x,y and the set of original grid edges as Ω

g. Additionally,
for each ψ ∈ Ψ, we define ψ

∗ ∈ Ψ
g to be the original grid node

belonging to ψ (this may be ψ itself). For ease of notation, we de-
note by P(ψ) the projected coordinates of the original grid node
ψ
∗ = ψx,y belonging to ψ.

As we want to prevent the use of sink edges in pass-through

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

359

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

ψ0,1

ψ2,0ψ1,0

ψ0,1

ψ1,0

ψ2,0

Figure 4: The same path (ψ0,1,ψ1,0,ψ2,0) on two grid graph vari-
ants. Left: with bend edges. Right: without bend edges.

(1) (2) (3) (4)

Figure 5: 1. 180◦ pass through a node ψ. 2. A 90◦ pass. 3. 45◦

pass simulated by a 180◦ and 135◦ pass. 4. 90◦ pass simulated by
two 135◦ passes.

nodes, we set a uniform sink cost cs high enough so that a sink edge
is always more expensive than a bend edge, for example cs = c45.
In a shortest path from s to t, the only sink edges are then a leaving
sink edge at s and an arriving sink edge at t (Fig. 4, left).

2.2. Modeling Edge Costs

As both a 45◦ and a 90◦ bend edge may be substituted by cheaper
edges, special care has to be applied to the modeling of the actual
edge costs. For example, a 45◦ bend may be replaced by a 180◦

bend edge and a 135◦ bend edge (Fig. 5.3). Similarly, a 90◦ bend
can be substituted by two cheaper 135◦ bend edges (Fig. 5.4).

To prevent such shortcuts, we introduce a constant a ≥ 0 and
offset the bend costs by a. We call the updated bend edge costs
c′180, . . . ,c

′
45 and choose a so that the following inequalities hold:

2c′135 = 2a+2c135 ≥ a+ c90 = c′90 (2)

c′135 + c′90 = 2a+ c135 + c90 ≥ a+ c45 = c′45. (3)

Inequality 2 ensures that simulating a 90◦ bend with two 135◦

passes is never cheaper than c′90. Inequality 3 ensures that simulat-
ing a 45◦ bend with a 135◦ pass and a 180◦ pass is never cheaper
than c′45. They are fulfilled for a = c45− c135.

A shortest path p′ on our octilinear grid graph with bend penal-
ties will now consist of two nodes for each original grid node: for
the start and end node, the original grid node and a single port node
appear in the path (Fig. 4). For pass-through nodes, a port node for
arriving at and a port node for leaving the original grid node ap-
pears (w.l.o.g., we ignore the case where a bend edge is replaced
by two bend edges with similar cost, as this does neither affect the
final path on the original grid graph, nor the cost of that path).

This shortest path p′ = (ψ0,ψ1, . . . ,ψn′−1) thus always de-
scribes a path p = (ψ∗0 ,ψ

∗
2 ,ψ
∗
4 , . . . ,ψ

∗
n′−1) on the corresponding

original grid graph, with |p|= n = |p′|/2 = n′/2. It has the cost

c′(p′) =

sink edges︷︸︸︷
2cs +(n−1) · ch︸ ︷︷ ︸

grid hops

+

offsetted bend costs︷ ︸︸ ︷
n−2

∑
i=1

a+ cb
(
ψ
∗
2i−2,ψ

∗
2i+2

)
. (4)

To remove the constant offset a, we set c135 = 1, c90 = 1.5 and
c45 = 2, which means a = c45− c135 = 1. If we then set the cost
of a single hop ch = 1 = a and the actual grid edge costs to c′h =
ch−a = 0, we can rewrite Equation 4 as

c′(p′) = 2cs +(n−1) · c′h +
n−2

∑
i=1

ch + cb
(
ψ
∗
2i−2,ψ

∗
2i+2

)
(5)

= 2cs +(n−2) · ch +
n−2

∑
i=1

cb
(
ψ
∗
2i−2,ψ

∗
2i+2

)
(6)

= 2cs + c(p)− ch = c(p)+2cs−1. (7)

As the shortest path p′ thus minimizes c(p)+2cs− 1, it also min-
imizes c(p). Note that since we set the actual grid edge cost c′h to
0, we are able to introduce arbitrary offset costs to individual grid
edges by setting the cost of that grid edge to the offset cost. This
will be used in Section 6.1 to prefer grid edges close to the original
course of an input edge.

3. Optimal Solution via ILP

Using the octilinear grid graph, we now define the problem of find-
ing the optimal drawing on Γ like this: find grid nodes ψ(v) for
each input node v and non-intersecting shortest paths in the grid
graph between the grid nodes for adjacent input nodes. This means
that for each edge e = {v,u} in the input graph, we search for a
shortest path in Γ between the grid nodes for v and u and for an
optimal assignment of input nodes to grid nodes at the same time.
This solution should minimize the sum of (1) all path costs, (2) the
distances between the original and the grid position of an input sta-
tion node, and (3) the line bend penalties at stations (which are not
covered by the path costs on Γ). Formally, we want to minimize

t(DG) = ∑
e∈E

c(p(e))+ ∑
v∈V

d (v,ψ(v))
ch + cm

D
+ cv

b, (8)

where p(e) is the path through Γ for input edge e, c is the cost of
the path as defined in Equation 1, ψ(v) is the grid node v was as-
signed to, d (v,ψ(v)) is the euclidean distance between the input
node v and its grid node ψ(v) and cv

b is the sum of the bend costs
cb(pa(e), pb(f)) between adjacent grid edges pa(e) and pb(f) of
input edges e and f (both adjacent at v and with at least one line
in common, that is L(e)∩ L(f) 6= ∅). As a move penalty too low
will result in positions which minimize the total path costs, we nor-
malize the distance d (v,ψ(v)) by the grid cell size D and multiply
this normalized distance by the hop cost ch as well as an additional
explicit move penalty cm.

This section describes how to optimize t(DG) using an integer
linear program (ILP). We first model each undirected grid edge
{ψ,ψ′} as a pair of directed edges (ψ,ψ′) and (ψ′,ψ). To be able
to later retrieve the placement of stations, we add binary decision
variables xv,ψ for each input node v and grid node ψ ∈ Ψ

g which
should be 1 of v was assigned to ψ, or 0 otherwise. xv,ψ is added to
the objective function with d (v,ψ(v)) ch+cm

D as a coefficient.

To be able to retrieve the course of the shortest paths, we define
binary variables xe,ω for each input edge e and each grid edge ω

which should be 1 if ω is used in the path for e, or 0 otherwise. xe,ω
is added to the objective function with the cost of ω as a coefficient.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

360

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

3.1. Station Placement

To ensure that each input node v is assigned to exactly one grid
node ψx,y, we add the following constraint:

∀v ∈V : ∑
ψ∈Ψg

xv,ψ = 1. (9)

A grid node may either be assigned a single input node, used as
a pass-through for a single input edge, or be not used at all. We
enforce this with the following set of constraints:

∀ψ ∈Ψ
g : ∑

v∈V
xv,ψ + ∑

e∈E
∑

ω∈Ωb
ψ

xe,ω ≤ 1, (10)

where Ω
b
ψ is the set of bend edges adjacent to ψ. If an input station

is assigned to ψ, the first sum is already 1, forbidding further use.
Similarly, if ψ is used as a pass-through, it cannot be assigned to
an input station node or be used as a pass-through by another path.
Note that Equation 10 also enforces that a grid edge ω can only be
used by a single path, as a second path using ω would either arrive
or pass through a grid node already used by the other path.

3.2. Edge Continuity

To globally compute the optimal paths on Γ between all adjacent
input nodes, we build on the standard formulation of the shortest
path problem as a linear program. We first have to make sure that
edges assigned to the path from ψ(s) to ψ(t) are connected. We add
the following constraints (where e = {s, t}):

∀e ∈ E ∀ψ ∈Ψ
p : ∑

ω∈out(ψ)
xe,ω−∑

ω∈in(ψ)
xe,ω = 0, (11)

∀e ∈ E ∀ψ ∈Ψ
g : xt,ψ−2xs,ψ +∑

ω∈out(ψ)
2xe,ω−∑

ω∈in(ψ)
xe,ω = 0. (12)

Equation 11 guarantees that the number of outgoing and incoming
edges at each port node is the same. Equation 12 handles ψ(s) and
ψ(t). Here we count an outgoing edge twice, which means that
the grid node could only make up for an outgoing edge with two
incoming edges. This, however, would mean that our shortest path
split somewhere, which is prevented by Equation 11. The only way
to fulfill the constraint is thus for ψ to be the source node ψ(s) for
the input edge. Similarly, the only way to counter an incoming edge
is for ψ to be the target node ψ(t) for the input edge.

If we allow grid edges of cost 0, we also have to ensure that a
pair of directed grid edges (ψ,ψ′) and (ψ′,ψ) is not activated as a
stray circular path of cost 0 by the ILP solver. This is enforced by
the following set of constraints:

∀(ψ,ψ′) ∈Ω
g :∑

e∈E
xe,(ψ,ψ′)+ xe,(ψ′,ψ) ≤ 1. (13)

3.3. Preservation of Topology

To preserve the input topology, it suffices to ensure that no two
paths in Γ (which both correspond to a single edge in the planar
input graph G) intersect and that the circular ordering of adjacent
edges is the same as in G. Equation 10 already prevents paths cross-
ing at grid nodes. As our octilinear grid graph is not planar, we also
have to prevent crossings at intersecting grid edges. We define Ω

d

as the set of diagonal grid edges and say that for ω ∈Ω
d , ω
× ∈Ω

d

is the diagonal edge crossing ω. We then add the constraint

∀ω ∈Ω
d : ∑

e∈E
xe,ω + xe,ω× ≤ 1. (14)

To respect the original circular edge ordering, we would first like
to have a variable δv,e ∈ {0, . . . ,7} which tells us the octilinear di-
rection of input edge e at adjacent input node v in the final drawing.
To get the desired assignments, we add the following constraints:

∀e = {s, t} ∈Ω :

(
∑

ψ∈Ψg

7

∑
p=1

pxe,(ψ,ψp)

)
−δs,e = 0 (15)

∀e = {s, t} ∈Ω :

(
∑

ψ∈Ψg

7

∑
p=1

pxe,(ψp,ψ)

)
−δt,e = 0. (16)

In Equation 15, each outgoing sink edge (ψ,ψp), p ∈ 0, . . . ,7 adds
p to the sum. As Equations 12 and 10 ensure that only a single out-
going sink edge may be used by the path for an input edge, the left
side of the equation is guaranteed to equal the octilinear direction
0, . . . ,7 of e = {s, t} at s. The only way to fulfill the constraint is
then to set the value of δs,e to the octilinear direction. Equation 15
is modeled equivalently for incoming paths at t.

To finally preserve the circular edge ordering, we employ a
technique originally used in [Nöl05]. If v0, . . . ,vp, . . . ,vdeg(u)−1
is the clockwise ordering of nodes adjacent to u in the original
drawing, then δv,(v,up) < δv,(v,up+1) has to be true for all but one
p ∈ {0, . . . ,deg(u)−1} in the final octilinear drawing. This can be
enforced with the following constraints, which we add for all u∈V
with deg(u)> 2 and where βp,v is a new binary variable:

δv,(v,up+1)−δv,(v,up)+8 ·βp,v ≥ 1, (17)

deg(u)−1

∑
p=0

βp,v ≥ 1. (18)

If δv,(v,up) 6< δv,(v,up+1), then δv,(v,up+1)− δv,(v,up) ≤ 0 and the only
way to fulfill Equation 17 is to set βp,v to 1. Equation 18 ensures
that this can only happen once.

3.4. Avoiding Line Bends

So far, our shortest paths only penalize line bends along paths. We
have to ensure that bends at input nodes are equivalently penalized.
We would like to have binary variables telling us whether edges e
and f in the input graph describe a 45◦, 90◦, 135◦ or 180◦ bend at
their joint node in the final drawing.

We first note that for two directional variables δu,e and δu, f ,
δu,e− δu, f mod 8 is either 1 or 7 for 45◦ bends, 2 or 6 for 90◦

bends, 3 or 5 for 135◦ bends and 4 for 180◦ bends. As modulo
cannot be used directly in an ILP, we use the following equivalent
constraint for each pair e, f of edges in the input graph adjacent at
node u and sharing a line:

0≤ δu,e−δu, f +8γe f ≤ 7, (19)

where γe f is an auxiliary binary variable which will be 1 if δu, f >
δu,e. We then have δu,e− δu, f + 8γe f = δu,e− δu, f mod 8, which
we will denote by ∆e, f . We now add binary decision variables

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

361

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

∆
0
e, f , . . . ,∆

7
e, f for each of the 8 possible values of ∆e, f and the fol-

lowing constraint for each pair of adjacent input edges:

∆e, f −
7

∑
i=0

i∆i
e, f = 0. (20)

To ensure that only one of the bend decision variables is set to 1,
we add the following constraint:

7

∑
i=0

∆
i
e, f = 1. (21)

Each of the 8 bend decision variables is then added to the objective
function with its corresponding penalty.

3.5. ILP Size

For an X ·Y grid, our octilinear grid graph has Θ(XY) edges and
nodes. For the station placement, we need Θ(|V |XY) variables. Ad-
ditionally, Equations 9 and 10 add Θ(|V |XY) constraints. For the
shortest path calculations, we need Θ(|E|XY) variables and con-
straints. For the preservation of the input topology, Equation 14
adds Θ(XY) constraints. Equations 15 and 16 add Θ(|E|) con-
straints. Equations 17 and 18 add Θ(|V |) constraints. Finally, for
avoiding line bends and input nodes, we add at most 8 ·7 auxiliary
variables per input node (as there can be at most 8 · 7 edge pair-
ings per input node in our octilinear setting) and at most 82 ·7 bend
variables per input node. Similarly, Equations 19, 20 and 21 all add
at most 8 · 7 constraints per input node, so the overall number of
constraints and variables for the line bend penalty at input nodes is
Θ(|V |). The total number of constraints and variables in our ILP is
thus Θ(|E|XY + |V |XY) =O(|E|XY) =O(|E| · dA/D2e).

4. Approximate Solution

ILP solution times tend to get very big for complex input graphs
(Table 2). This section addresses the need for a fast method that
works well in practice. We describe a fast algorithm to solve the
problem approximately. Our method works as follows: (1) Order
the edges of the input graph. (2) For each (ordered) input edge
e = {u,v}, calculate the shortest path from a set of possible start
nodes S to a set of possible target nodes T on the grid graph (if
the grid node for u or v has already been settled, the corresponding
node set has size 1). Paths already calculated act as obstacles. (3) If
no initial drawing could be found, randomize the ordering and try
again. (4) Optimize the initial drawing via a local search approach
where individual nodes are moved to one of their 8 neighboring
positions and adjacent edges re-routed.

4.1. Input Edge Ordering

In addition to the standard degree deg(v) of an input node v, we
define the line degree ldeg(v) of a node to be the number of (non-
unique) lines on each adjacent edge. We then establish an initial
input edge ordering (e0,e1, . . . ,e|E|−1) as follows: (1) Mark all in-
put nodes as unprocessed. (2) Take the unprocessed node v with
highest line degree ldeg(v) and mark it as dangling. (3) As long as
there are dangling nodes, take the dangling node vd with highest
line degree and add all adjacent edges {vd ,u0}, . . . ,{vd ,uk} lead-
ing to an unprocessed node ui to the edge ordering, where the ui are

1

2

4
37

1

3

5
1

2 4 4 1

165

6

89
10

11

Figure 6: Left: Input line graph with edge processing order (black)
and node line degrees (red). Right: Line graph on grid after the
seventh edge has been routed.

t t

ψ(s)? ?
s

T T

S

d̂

Figure 7: Left: Routing an edge on the grid graph from grid node
candidates S for input node s to grid node candidates T for input
node t (both within a distance d̂ around t and s). The grid nodes de-
picted as full rectangles constitute the hull of the S and T , respec-
tively. Right: routing an edge on the grid graph from an already
settled grid node ψ to a set T of target node candidates.

sorted in descending order w.r.t. ldeg(ui). Mark each ui as dangling,
and vd as processed. (4) If there are no dangling nodes anymore, but
unprocessed nodes remain, then the input graph was not connected.
In this case, we start again at (2). Figure 6, left gives an example.

4.2. Edge Routing and Station Placement

With an initial edge ordering at hand, we route each input edge ei =
{v,u} through the octilinear grid graph iteratively (Fig. 6, right). As
the grid nodes for v and u may be still unknown, we route between
node sets S and T . S consists of candidate grid nodes for s, T are
candidate grid nodes for t. As candidates, we use all grid nodes
within a distance r around the input node’s original position (Fig. 7,
left). If both s are t are not settled yet, it may happen that S and T
are not disjoint. To prevent this, we build a local Voronoi diagram:
we define ST = S∪T and say that for each ψx,y ∈ ST , ψx,y is moved
into S if it is nearer to s than t, or else into T .

To prefer grid nodes near the original position of the input node,
we offset the cost of each sink edge adjacent to the candidate grid
node with the corresponding distance penalty. As in the ILP formu-
lation, this penalty is the distance between p(v) and p(ψ) normal-
ized by D and multiplied by ch +cm, where cm is the move penalty.

Afterwards, we calculate the set-to-set shortest path between S
and T using a standard implementation of Dijkstra’s algorithm. If s
or t were not settled before, they are now settled to the start (and/or
end) node of the resulting shortest path.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

362

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

v

e

f
g

22 1

p(e)

p(f)

p(e)

p(g)
1

(1)

(3)(2)

(2a) (3a)

ψ(v)

ω0 ω1

ω2

ω3

ω0 ω1

ω2

ψ(v)

ψ(v) ψ(v)

Figure 8: (1) Part of an input graph G. Edges e and f have a clock-
wise (green) distance of 1 at v, meaning that there are no edges be-
tween them in an angular, clockwise ordering. Their counterclock-
wise distance (blue) is 2. (2) Paths p(e) and p(f) have been routed.
The red area is now blocked for path p(g). (3) Paths p(e) and p(g)
have been routed, but the placement of p(g) means the original
edge ordering cannot be respected for p(f).

4.3. Preservation of Embedding

To prevent paths crossing each other, we update the grid graph after
each Dijkstra run. Grid nodes that were used in the previous short-
est path are both bend-closed by setting the cost of each adjacent
bend edge to ∞ and sink-closed by setting the cost of each adja-
cent sink edge to∞. This prevents further paths to use any of these
nodes. If a node ψx,y was settled as the source or target node for the
previously routed edge, it may later be used again as a source or
target node. We then have to re-open its sink. To prevent crossing
paths at diagonal grid edges, we close for each diagonal grid edge
used in the previously found path all crossing diagonal grid edges
by setting their cost to∞.

To preserve the circular edge ordering at nodes, we update the
costs of adjacent sink edges for the grid node used for s, and the
grid node used for t. We consider Figure 8.2. The routing order at
v is (e, f ,g), and paths p(e) and p(f) have already been routed. To
respect the input edge ordering at v, we have to make sure that p(g)
does not enter or leave ψ(v) in the area marked red. We achieve this
by closing each sink edge ω

p that lies between ω
0 and ω

3 prior to
routing p(g) by setting its cost to∞ (including the sink edges used
by p(e) and p(f)) (Fig. 8.2a).

We now consider Figure 8.3 and assume the routing order at v
to be (e,g, f). Paths p(e) and p(g) have already been routed. How-
ever, there is no sink edge left at ψ(v) to route p(f) in such a way
that the input edge ordering is preserved. To prevent dead-ends like
this, we make sure that there are always enough sink edges left in
both directions of f . For example, the clockwise distance between
e and g at v in the input graph is 2, their counterclockwise distance
is 1 (Fig. 8.1). If p(e) is already routed (Fig. 8.3), we now close the
sink edge ω

0 used by p(e), but also the succeeding (in clockwise
direction) sink edge ω

1 (Fig. 8.3a). This ensures that any path p(g)
found for g will now leave one sink edge open between p(e) and
p(g), allowing p(f) to later respect the original edge order at v.

4.4. Avoiding Line Bends

Just as in the ILP formulation, our shortest paths so far only opti-
mize line bends along paths. We have to also ensure that line bends

v

e

f
g

(1) (2)

p(g) p(f)

(3)

c45 c135+

∞ ∞ ∞

c90 c180+

c135 c135+

c180 c90+

c135 c45+
ψ(v) ψ(v)

Figure 9: (1) Part of an input line graph with a node v and three
adjacent edges e,g, f . (2) g and f have already been routed on the
grid graph, v has been settled at ψ(v). (3) The sink edge costs at
ψ(v) prior to routing e. As v has been settled, the bend edges at
ψ(v) are closed and are not depicted. Already used or blocked sink
edges (red) have cost ∞. Unused sink edges have costs equal to
the bend costs induced by letting p(e) leave in the corresponding
direction.

at nodes are equivalently penalized. We handle this similar to the
edge ordering constraints in the previous section. Assume a grid
node ψ that was already settled for an input node v with adjacent
edges (in routing order) e0, . . . ,ei, . . . ,edeg(v)−1. Prior to routing an
edge ei, we calculate the line bend penalty between every routed
edge e j, j < i and ei for each of the possible placements of ei on
adjacent sink edges. The sum of the line bend penalties on each ad-
jacent sink edge is then used as the cost for this sink edge (Fig. 9).

4.5. Complexity

To establish the initial input edge ordering, we have to process |V |
nodes and find the node with lowest line degree |V | times in the
worst case. This can be done in O(|V | log |V |). To assign each v
a set of node candidates, we have to make O(|V | · |Ψ|) distance
calculations. For the edge routing, we need |E| Dijkstra runs on the
grid graph Γ, which takes O(|E| · (|Ω|+ |Ψ| log |Ψ|)). After each
run, we have to close the used nodes, which takes timeO(|E| · |Ψ|),
and update the sink edge costs at up to two newly settled nodes.
As the degree of input nodes is at most 8 and if we assume that
we can check whether two input edges share a common line in
constant time, the latter can be done in constant time. Note that
|Ψ| ∈ O(|Ω|) = O(XY) as we use an octilinear grid graph, |V | ∈
O(|E|) as we can ignore input nodes of degree 1 and |V | ≤ |Ψ|
as the input graph is trivially undrawable if there are more input
nodes than grid nodes. The total running time of our approximation
approach is thereforeO(|E| · (XY +XY logXY)) =O(|E|XY · (1+
logXY))=O(|E| ·A/D2 · logA/D2), where A is again the bounding
box area of the input line graph.

4.6. Optimization via Local Search

To further polish the look of our final maps, we employ a local
search approach. Given an octilinear drawing D0

G on a grid graph
Γ, we define the local neighborhood of D0

G as the set of drawings
where exactly one grid node position of an input node vm is moved
to one of the 8 neighboring grid position (if free). For each neighbor
of the current drawing, we remove the paths for each edge adjacent
to vm, move vm to the designated new position, re-route all adjacent
edges in clockwise ordering and calculate the new overall score of
the drawing. At the end, the best neighbor is taken, and the opti-
mization proceeds from there (Figure 10).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

363

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

ψ

(1) (2) (3)

ψ
ψ

Figure 10: Optimizing a drawing (1) by exploring the local search
neighborhood, consisting of the 8 neighboring positions (depicted
here for node ψ) for each settled grid node. All edges adjacent to
ψ are re-routed after it is moved to a neighboring position, and the
position which yields the biggest improvement is taken (2, 3).

l = 2 l = 3

ψ(v)ψ(u) ψ(u)

ψ(v)
Fu,v

Figure 11: Left: k = 2 stations are re-inserted equidistantly onto
an octilinear curve with L∞ length l = 2. The hypothetical spring
stores a potential energy of 1

4 c. Right: Node ψ(v) is moved to relax
the spring, the potential energy is now 0.

4.7. Optimizing Distances Between Contracted Nodes

The deg-2 heuristic mentioned in Section 1.2 contracts all nodes
of degree 2 and later re-inserts them equidistantly. It is then no
longer guaranteed, however, that there is a minimal distance d̂ be-
tween adjacent stations, as the edge they are re-inserted onto may
not be long enough. We consider the octilinear drawing before the
re-insertion of the contracted nodes. For an input edge e with an oc-
tilinear curve C(e) built of l grid edges and containing k contracted
stations, we define a spring force Fu,v =

c
k · (k+1− l), where c is a

penalty factor. This spring is relaxed if the L∞ (grid edge) length l
of e is such that we can insert k stations equidistantly with distance
1 (Fig. 11). If Fu,v > 0 (that is, if the hypothetical spring is com-
pressed), we add the potential energy Eu,v =

c
2k · (k+1− l)2 to our

objective function during the local search optimization phase.

4.8. Speed-up Heuristic

The octilinear grid graph allows for a simple cost heuristic for the
path-finding step. Given a (set) of target nodes, a cost heuristic h(ψ)
gives an estimate of the shortest path cost from ψ to any target node.
It is called admissible if it never overestimates the real cost.

We reconsider Figure 7. In the right example, the cost for reach-
ing a grid node (or any of its port nodes) in T from a grid node ψ

outside of T is at least the cost of reaching one of the grid nodes that
constitute the hull of the node candidates. To estimate the shortest
path cost from ψ to the hull, we use the fact that to reach a grid node
ψx,y (or any of its port nodes) from a grid node ψx′,y′ (or any of its
port nodes) we have to pass through at least DCh((x

′,y′),(x,y))−1
grid nodes. We can thus use the following heuristic:

h(ψ) = min
{

DCh
(
P(ψ),P(ψ′)

)
−1|ψ′ ∈ HT

}
, (22)

as each shortest path has to take some bend edge at the pass-through
nodes and the cost of this bend edge is at least c′180 = 1.

Figure 12: Right: Map of the Stuttgart light rail network, octilin-
earized with our approach A-2+D with grid size D = 0.75 · d̄ in 843
ms. Left: Same map, before the local search phase.

Figure 13: Map of the Berlin subway network, octilinearized with
our approach A-2+D with grid size D = 0.75 · d̄ in 764 ms.

5. Labeling

Neither our ILP nor our approximation algorithm so far consider
the optimal placement of station labels. In particular, our meth-
ods do not explicitly optimize for enough space for labels around
stations. In Figure 15.4, we give an example of the Sydney map
labeled a posteriori with a very simple approach which greedily
places labels around stations at one of 8 octilinear directions, where
no collision is induced. Nodes with higher line degrees are labeled
first. A slight advantage is given to labels on certain directions to
break ties, which leads to maps where labels are grouped on one
side of a line. Although the result is satisfactory, three stations
could not be labeled because the local map density was too high.
Further work is therefore necessary.

6. Evaluation

We implemented both the ILP generation and the approximation
algorithm in a tool called octi, which expects a line graph with ge-
ographical node positions and optional geographical line courses
and outputs an octilinearized line graph. Using this tool, we eval-
uated six networks: the light rail networks of Stuttgart (ST) and
Sydney (SY), the underground networks of Vienna (V), Berlin (B)
and London (L) as well as Freiburg’s tram network (F).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

364

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

Figure 14: Map of the London underground network, octilinearized
with our approach A-2+D with grid size D = 0.75 · d̄ in 2.7 s.

For each dataset, we evaluated our ILP approach with or with-
out the deg-2 heuristic (LP, LP-2) and our approximation approach
with or without the deg-2 heuristic (A, A-2). We also evaluated
the approximation approach with the deg-2 heuristic and additional
distance optimization of contracted nodes (A-2+D). Running times
of all approaches with a grid size D = 0.75 · d̄ (where d̄ is the aver-
age distance between adjacent nodes in the input graph) are given
in Table 2. For LP and LP-2, we additionally evaluated the opti-
mization times when the solver was provided with the approximate
solution (LP∗, LP-2∗). Interestingly, optimization took longer for
the Vienna network for LP-2∗ than for LP-2, but in general it sped
up the optimization by up to a factor of 2. For LP-2 and A-2, we
evaluated both the final objective function value and the approx-
imation error produced by A-2 for D = 0.75 · d̄,D = 1.0 · d̄ and
D = 1.25 · d̄. The results are given in Table 1. As the penalty func-
tion for the distance optimization of contracted nodes is quadratic,
we cannot use it in our ILP formulation. We could therefore not
evaluate the approximation error of A-2+D. However, we report
the solution times for A-2+D in Table 2 and give visual results for
this approach in Figures 1, 12, 13, 14, 15 and 16. For all evaluation
runs, we used the following bend penalties: c135 = 1, c90 = 1.5
and c45 = 2 and restricted the possible grid node candidates for
an input node v to lie within a radius of 3 ·D around v. The node
move cost cm was always set to 0.5. An additional offset cost of
0.5 was added to diagonal edges, as we found that slightly prefer-
ring vertical and horizontal edges produced results that were more
esthetically pleasing. If the distance between contracted nodes was
penalized (A-2+D), we always set the spring constant to c = 10.
Tests were run on an Intel Xeon E5649 machine with 12 cores à
2.53 GHz and 96 GB RAM. ILPs were solved with Gurobi 8.1.1
using default parameters, the number of threads was set to 8.

Apart from optimizing the distances between contracted nodes,
we found the local search phase to be indeed only a polishing step
for all datasets. For example, Figure 12, left shows the Stuttgart
map before the local search phase, the result is already satisfactory.

In general, the deg-2 heuristic had a significant impact on solu-
tion times. None of the ILPs could be optimized in under 24 hours
without it (we could therefore not evaluate the approximation error
for method A). With the deg-2 heuristic enabled, an optimal solu-
tion was found in under 24 hours for all datasets except London.
Similarly, the deg-2 heuristic led to solution times of our approx.
approach which were up to an order of magnitude faster (Table 2).

Table 1: Final objective values of our ILP (LP-2) and our approx.
approach (A-2), both with deg-2 heuristic for grid cell sizes D =
0.75 · d̄,D= 1 · d̄ and D= 1.25 · d̄. The approximation error is given
as δ. Scores of — mean no solution could be found. If no optimal
LP solution was found in under 24 hours, we give the best bound.

D = 0.75 · d̄ D = 1.0 · d̄ D = 1.25 · d̄

LP-2 A-2 δ LP-2 A-2 δ LP-2 A-2 δ

F 144.6 146.5 1.3% 119.1 121.6 2.1% 95.1 101.6 6.8%
V 170.5 175.1 2.7% 132.5 132.6 0.1% 109.7 110.5 0.7%
ST 383.2 399.2 4.1% 308.4 319.7 3.7% 264.3 275.9 4.4%
B 315.4 326.0 3.4% 252.3 269.4 6.8% 215.2 230.9 7.3%

SD 360.6 361.4 0.2% 291.3 311.6 7% 247.9 252.9 2%
L ≥669.2 758.3 ≤14% ≥559.6 — — ≥333.3 — —

Table 2: Solution times for grid cell size D = 0.75 · d̄ for LP,
LP-2, A, A-2 and our approx. approach with deg-2 heuristic and
optimized distance between contracted nodes (A-2+D). For LP∗

and LP-2∗, the solver was provided with the approximate solution.
Times of — mean we aborted after 24 hours (for LP-2 and LP) or
that no solution was found (for A and A-2). For A, A-2 and A-2+D,
‘its.’ is the number of local search iterations until convergence.

LP LP∗ A its. LP-2 LP-2∗ A-2 its. A-2+D its.

F — — 290ms 15 11m 10m 73ms 2 110ms 5
V — — 2s 33 13h 19h 171ms 4 202ms 6
ST — — 3s 37 12h 6h 510ms 9 843ms 12
B — — 3s 49 20h 12h 513ms 11 764ms 15

SD — — 3s 36 7h 6h 250ms 2 515ms 7
L — — — — — — 2.1s 12 2.7s 22

We also conducted a visual comparison of our methods against
3 state-of-the-art approaches from [NW11], [WC11] and [WP16].
The results can be seen in Figure 15.

All results for all datasets and all methods can be inspected on-
line at http://octi.cs.uni-freiburg.de.

6.1. Grid Cost Experiments

As mentioned in Section 2.2, we may introduce arbitrary offsets to
individual grid edges. Figure 16.2 gives an example of the Freiburg
map rendered with a cost offset of 6 for vertical and horizontal
edges. Figure 16.3 uses a cost offset of 3 for diagonal edges. Ad-
ditionally, we added obstacle polygons for lakes, park areas and
mountains. Grid edges contained in or intersecting such an obsta-
cle received infinite offset costs. A particularly interesting use of
offset costs is shown in Figure 16.4. The offset cost for each grid
edge was set to the quadratic distance of the grid edge to the origi-
nal geographical course of the input line. The result is an octilinear
drawing in which edges close to the original geographical path are
preferred. One practical application of this is that the resulting octi-
linear maps can be used as overlays over existing maps or satellite
imagery. Since our method allows an arbitrary number of bends per
edge, this technique still works even for large distances between
stations (as is for example the case in national railway maps).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

365

http://octi.cs.uni-freiburg.de

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

(1) (2) (3) (4)

Figure 15: Visual comparison of the Sydney CityRail network map rendered by our approach and several state-of-the-art approaches.
(1) Result from [NW11], reported octilinearization time (incl. labeling optimization) was 23 minutes. (2) Result from [WC11], reported
octilinearization time was 816 ms. (3) Results from [WP16], no octilinearization time was reported, but a network of similar size (Berlin)
was optimized in under 150 ms. (4) Our map with simple labeling, octilinearized with A-2+D and grid size D = 1.25 · d̄ in 370 ms.

(1) (2) (3) (4)

Figure 16: Grid cost experiments. (1) Freiburg tram network map octilinearized with our approach A-2+D with grid size D = 0.75 · d̄. (2)
Map with additional cost offset 6 for vertical and horizontal edges. (3) Map with additional cost offset 3 for diagonal edges and obstacles
for mountains, park areas and lakes. (4) Octilinear map of the Freiburg tram network used as an overlay over a satellite image, grid edge
costs reflected the distance to the original geographical line course, resulting in a map closer to reality.

7. Conclusions and Future Work

We considered the general problem of drawing octilinear transit
maps with a potentially arbitrary number of edge bends between
stations. We provided an integer linear program (ILP) to solve the
problem optimally. Since solving the ILP takes several hours even
for simple networks, we developed a fast approximation algorithm
which calculates near-optimal solutions in under three seconds for
all datasets when input nodes of degree 2 are first contracted. The
approximation error is always under 7.5% for datasets which could
be optimized exactly. Even without contraction, solution times are
under five seconds for all datasets for which a solution could be
found, while none of the corresponding ILPs could be optimized
in under 24 hours. We also described how a minimum distance be-
tween contracted stations may be enforced in our approach.

Our maps have objective advantages over existing maps: due
to the potentially arbitrary number of bends, we can approxi-
mate a given geographical course and we can exclude forbid-
den areas. Throughout the paper and on http://octi.cs.
uni-freiburg.de we provide numerous examples of the high
esthetic quality of our maps. It would be interesting to conduct a
more rigorous evaluation of the esthetic value, both relative to ex-

isting maps as well as among variants of our own method. This
would require a comprehensive user study, which was out of scope
for this paper, but which we consider a very worthwhile pursuit.

Our model so far constrains the bend penalties and the cost of a
grid hop by c135 ≤ c90 ≤ c45 and ch ≥ c135− c45. This is caused
by the way we model the bend edges between node ports. A more
flexible model could use a directed grid graph where each original
grid node is outfitted with two port nodes per octilinear direction:
one for arriving and one for leaving the grid node. If an arriving port
is only connected via bend edges to leaving ports and vice versa, it
would be impossible for a path to use two bend edges in sequence.

As mentioned in Section 5, further work on labeling is neces-
sary. For example, it would be possible to consider the label place-
ment during the local search phase of our approximate approach.
To achieve this, the score of an optimized labeling for the drawing
of the current local search iteration could be added to the objec-
tive score. Lastly, we feel that requiring adjacent nodes to have a
uniform minimum distance is not always desirable. Consider Fig-
ures 12 and 13. Both drawings have long outlier edges for periph-
eral lines. It may be interesting to locally enlarge areas of the input
line graph (for example, the city center) prior to octilinearization.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

366

http://octi.cs.uni-freiburg.de
http://octi.cs.uni-freiburg.de

H. Bast, P. Brosi & S. Storandt / Metro Maps on Octilinear Grid Graphs

Acknowledgements

This work was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - Project-ID
50974019 - TRR 161.

References

[BBS19] BAST H., BROSI P., STORANDT S.: Efficient generation of
geographically accurate transit maps. ACM Transactions on Spatial Al-
gorithms and Systems (TSAS) 5, 4 (2019), 25. 2

[BGKK14] BEKOS M. A., GRONEMANN M., KAUFMANN M., KRUG
R.: Planar octilinear drawings with one bend per edge. In International
Symposium on Graph Drawing (2014), Springer, pp. 331–342. 2

[BKPS07] BEKOS M. A., KAUFMANN M., POTIKA K., SYMVONIS A.:
Line crossing minimization on metro maps. In International Symposium
on Graph Drawing (2007), Springer, pp. 231–242. 2

[BNUW06] BENKERT M., NÖLLENBURG M., UNO T., WOLFF A.:
Minimizing intra-edge crossings in wiring diagrams and public trans-
portation maps. In International Symposium on Graph Drawing (2006),
Springer, pp. 270–281. 2

[CK15] CHUZHOY J., KIM D. H.: On approximating node-disjoint
paths in grids. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)
(2015), Schloss Dagstuhl - Leibniz-Zentrum für Informatik. 3

[CL19] CRAIG P., LIU Y.: A vision for pervasive information visualisa-
tion to support passenger navigation in public metro networks. In 2019
IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (2019), IEEE, pp. 202–207. 3

[CY14] CLAUDIO P., YOON S.-E.: Octilinear layouts for metro map
visualization. In 2014 International Conference on Big Data and Smart
Computing (BIGCOMP) (2014), IEEE, pp. 19–21. 3

[Gar94] GARLAND K.: Mr. Beck’s Underground Map: A History. Capital
Transport Pub, 1994. 1

[HMDN04] HONG S.-H., MERRICK D., DO NASCIMENTO H. A.: The
metro map layout problem. In International Symposium on Graph Draw-
ing (2004), Springer, pp. 482–491. 2

[HMdN06] HONG S.-H., MERRICK D., DO NASCIMENTO H. A.: Au-
tomatic visualisation of metro maps. Journal of Visual Languages &
Computing 17, 3 (2006), 203–224. 2

[Nes04] NESBITT K. V.: Getting to more abstract places using the metro
map metaphor. In Proceedings. Eighth International Conference on In-
formation Visualisation, 2004. IV 2004. (2004), IEEE, pp. 488–493. 3

[Nöl05] NÖLLENBURG M.: Automated drawing of metro maps. Univer-
sität Karlsruhe, Fakultät für Informatik, 2005. 2, 5

[NW05] NÖLLENBURG M., WOLFF A.: A mixed-integer program for
drawing high-quality metro maps. In International Symposium on Graph
Drawing (2005), Springer, pp. 321–333. 2

[NW11] NÖLLENBURG M., WOLFF A.: Drawing and labeling high-
quality metro maps by mixed-integer programming. IEEE Trans. Vis.
Comput. Graph. 17, 5 (2011), 626–641. 2, 3, 9, 10

[SGSK01] SANDVAD E. S., GRØNBÆK K., SLOTH L., KNUDSEN J. L.:
A metro map metaphor for guided tours on the web: the webvise guided
tour system. In Proceedings of the 10th international conference on
World Wide Web (2001), ACM, pp. 326–333. 3

[SR04] STOTT J. M., RODGERS P.: Metro map layout using multicri-
teria optimization. In Proceedings. Eighth International Conference on
Information Visualisation, 2004. IV 2004. (2004), IEEE, pp. 355–362. 2

[SRB∗05] STOTT J. M., RODGERS P., BURKHARD R. A., MEIER M.,
SMIS M. T. J.: Automatic layout of project plans using a metro map
metaphor. In Ninth International Conference on Information Visualisa-
tion (IV’05) (2005), IEEE, pp. 203–206. 3

[SRMOW10] STOTT J., RODGERS P., MARTINEZ-OVANDO J. C.,
WALKER S. G.: Automatic metro map layout using multicriteria op-
timization. IEEE Transactions on Visualization and Computer Graphics
17, 1 (2010), 101–114. 2

[vDL18] VAN DIJK T. C., LUTZ D.: Realtime linear cartograms and
metro maps. In Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (2018),
ACM, pp. 488–491. 3

[WC11] WANG Y., CHI M.: Focus+context metro maps. IEEE Trans.
Vis. Comput. Graph. 17, 12 (2011), 2528–2535. 3, 9, 10

[WP16] WANG Y., PENG W.: Interactive metro map editing. IEEE Trans.
Vis. Comput. Graph. 22, 2 (2016), 1115–1126. 3, 9, 10

[WTH∗13] WU H., TAKAHASHI S., HIRONO D., ARIKAWA M., LIN
C., YEN H.: Spatially efficient design of annotated metro maps. Comput.
Graph. Forum 32, 3 (2013), 261–270. 3

[WTLY12] WU H., TAKAHASHI S., LIN C., YEN H.: Travel-route-
centered metro map layout and annotation. Comput. Graph. Forum 31,
3 (2012), 925–934. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

367

