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Abstract
Interval volume is the volume of the region between two isosurfaces. This paper proposes a novel measure, called VOA measure,
that is computed based on interval volume and isosurface area. This measure represents the rate of change of distance between
isosurfaces with respect to isovalue. It can be used to detect representative isovalues of the dataset since two isosurfaces near
material boundaries tend to be much closer to each other than two isosurfaces in material interiors, assuming they have the
same isovalue difference. For the same isosurface, some portion of it may pass through the boundary of two materials and some
portion of it may pass through the interior of a material. To separate the portions of an isosurface that represent different features
of the dataset, another novel isosurface measure is introduced. This measure is calculated based on the Euclidean distance of
individual sample points on two isosurfaces. The effectiveness of the two new measures in detecting significant isovalues and
segmenting isosurfaces are demonstrated in the paper.

1. Introduction

Isosurface visualization, which involves visualizing surfaces of con-
stant value in volumetric datasets, is an important visualization tech-
nique for exploring data and discovering knowledge. The best known
isosurface extraction algorithm is Marching Cubes (MC) [LC87].
It produces a triangular mesh to approximate the isosurface for a
scalar, rectilinear volumetric dataset. Over the years, many algo-
rithms have been developed to improve the topological correctness,
accuracy, and performance of MC [NY06, Wen13]. However, even
with the isosurface extraction algorithms, it can still be a challenge
to clearly visualize the structures in a volumetric dataset with iso-
surfaces. This is because in a volume dataset different structures are
often represented by isosurfaces with different isovalues. Therefore,
providing the guidance in choosing representative isovalues is very
important in isosurface visualization.

The first contribution of this paper is a new measure, called the
VOA (i.e., volume over area) measure, which can be used to detect
representative isovalues. Interval volume is the volume of the re-
gion between two isosurfaces [Guo95, FMS95]. Here, this region
is called the interval volume region (i.e., interval region for short).
The ratio of the interval volume over the average area of the two
isosurfaces that enclose the interval volume region is more mean-
ingful than interval volume since it can remove the size factor of
isosurface, which affects interval volume. This ratio approximates
the average distance between two isosurfaces. The VOA measure
further normalizes the ratio by the isovalue difference of the two
isosurfaces. Thus, VOA represents the rate of change of the distance
between two isosurfaces with respect to isovalue. Since near ma-

terial boundaries two isosurfaces tend to be much closer to each
other than two isosurfaces in material interiors, assuming they have
the same isovalue difference, this measure can be used to identify
representative isovalues that correspond to different structures. VOA
is also similar to mean gradient magnitude integrated over an isosur-
face (i.e., mean gradient for short), but has an inverse relationship
with mean gradient. Results in this paper show that VOA is more
robust than mean gradient in detecting significant isovalues.

Separating the portions of an isosurface that represent different
structures can aid in learning structural information about the dataset
and rendering true features of the dataset. Also, the produced trian-
gular mesh isosurface provides an explicit geometric representation
of the feature of interest which can be used for future modeling,
numerical simulations, etc. This is not provided by direct volume
rendering techniques [Kni02].

The second contribution of the paper is a novel segmentation
method that uses a local distance-based measure to segment the
portions of an isosurface that represent the different structures of the
dataset. The measure is calculated based on the Euclidean distance
of individual sample points on two isosurfaces. The new method
is designed based on the observation that at material boundaries
two isosurfaces with large isovalue difference can have very small
distance between each other, while they may be far away from each
other at other locations.

The paper is organized as follows. In Section 2, related work is
described. In Section 3, the VOA measure is introduced. In Section
4, the isosurface segmentation method is presented. The paper is
concluded in Section 5.
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2. Related Work

2.1. Measuring Interval Volume

Some methods have been developed to measure the interval vol-
ume [Wen13]. The histogram method counts the number of grid
vertices with each scalar value σ in a scalar grid, which represents
the frequency of the scalar value σ in the grid. Let g(σ) denote this
frequency. The histogram can be represented by a bar graph or a
polygonal line with vertices (σ,g(σ)). For scalar regular-grid volu-
metric datasets, where each grid cell is a unit cube, as the sampling
resolution increases, the histogram has been proven to converge to
a sequence of the interval volume measures where each bin of the
histogram corresponds to the isovalue interval of an interval volume
measure in the sequence [DCM13]. Therefore, histogram can be
used to approximate interval volume measures.

Scheidegger et al. proposed a measure, called weighted isosur-
face area, that approximates the interval volume distribution by
taking the area of the isosurface for each cell and multiplying it by
the inverse of gradient magnitude, which is approximated by cell
span [SSD∗08]. This is like replacing the isosurface with a thin shell
of non-uniform thickness and computing the volume of this thin
shell. They also proposed to use cheap alternatives, such as active
edge count, active cube count, and, triangle count, to approximate
the isosurface area in their formula. When active cube count is used
as the alternative, the measure is called the weighted cube count.
However, this method doesn’t consider the existence of homogenous
cells (i.e., all 8 vertices of the cell have the same value) which do
not intersect the isosurface.

Duffy et al. made an adjustment to Scheidegger et al.’s weighted
isosurface area measure by including the volume of the cells that
are entirely within the interval region. In this paper, this measure
is called adjusted weighted isosurface area. However, when this
measure is used to approximate the interval volume measure, it
doesn’t guarantee the sum of the measures for all isovalue intervals
equal to the volume of the whole dataset, which it should be for the
true interval volume values. This is mainly because the inverse cube
span is only a very coarse approximation of gradient magnitude.
Duffy et al. also modified Scheidegger et al.’s weighted cell count
measure to include the volume of the cells that are entirely inside
the interval region. Here, this measure is called adjusted weighted
cell count. This measure guarantees that the total of all the interval
volume measures equal to the volume of the dataset.

2.2. Selecting Features of Interest

Histogram has been be used for detecting significant isovalues that
represent the important features in a volumetric dataset. However,
many datasets’ sampling resolution is not high enough for the his-
togram method to produce smooth and useful results. Histograms
are often noisy, which makes it difficult to detect representative
isovalues. Other methods mentioned in Section 2.1 that produce
approximations to interval volumes can also be used for identifying
significant isovalues.

Another category of methods that have been used for selecting
features of interest is to use local properties of a dataset, such as
first and second derivatives. Kindlmann [Kin99] demonstrated that

(a) subdividing method (b) slicing method

Figure 1: Illustration of the two methods for accurate computation
of interval volume.

plotting the gradient magnitude and data value of each vertex in
a volumetric dataset as a point generates a scatterplot diagram. In
such a diagram, boundary regions are shown as arches. Kniss et
al. [KKH02] extended this idea to develop a direct manipulation
interface that can be used for designing good transfer functions for
direct volume rendering. Tenginakai et al. [TLM01] proposed the
model-independent statistical methods based on central moments of
data that can be used to determine the salient isosurfaces at material
boundaries. Pekar et al. [PWB01] suggested that total gradient and
mean gradient computed using the Laplacian can guide the detection
of representative isovalues.

Khoury and Wenger [KW10] demonstrated that the isosurface
fractal dimension is corelated with noise in the isosurface. Plotting
the fractal dimension against isovalues provides information about
the isosurfaces in the dataset. Bruckner and Möller calculated simi-
larities between individual isosurfaces in a volumetric dataset and
use this global metric to develop an automatic method for identifying
representative isovalues [BM10].

2.3. Accurate Computation of Interval Volume

In a recent research work [Wan19], two new methods, called the
subdivision method and the slicing method, that can compute in-
terval volume measures with very high accuracy are introduced.
For these two methods, the input datasets are scalar regular-grid
volumetric datasets and the interior of the grid cell is modeled by
trilinear interpolation.

The subdividing method recursively subdivides each grid cube
into 8 equal-sized subcubes until certain termination conditions
are met or the subdivision limit is reached. Then, each subcube’s
contribution to the interval volume is determined. Summing up their
contributions yields the cube’s contribution to the interval volume.
The interval volume for the whole dataset is the sum of all cubes’
contribution to the interval volume. This idea is illustrated in Figure 1
(a), where the small red subcube is inside the interval region between
the gray and green isosurfaces, thus, its volume contributes to the
interval volume measure.

In this method, if the data range of a subcube doesn’t intersect
with the isovalue range of the interval volume, it doesn’t need to
be further subdivided. When the subdivsion limit is reached, a final
subcube’s contribution to the interval volume measure is approxi-
mated using a method similar to Duffy et al.’s adjusted weighted
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cube count method [DCM13]. In [DCM13], Duffy et al. gave the
proof of convergence of the measures generated by their adjusted
weighted cube count method to the true interval volume measures as
the sampling rate of the volume dataset increases based on Riemann
integration. Similar Riemann proof can be easily extended to prove
that the measures computed by the subdividing method converge to
the true interval volume measures assuming the underlying function
inside the grid cube is defined by trilinear interpolation. This is be-
cause the subdividing strategy is just a way to increase the sampling
rate and the method’s early termination condition is only used to
save sampling in the subcubes that are entirely inside or outside the
interval region.

In the slicing method, each cube is evenly sliced along a major
axis. The cross-sectional area of the interval region on each slice is
calculated analytically. This is based on the fact that the intersection
of the trilinear interpolation isosurface with a slice is a hyperbola,
which represents the isocontour of the bilinear interpolation on the
slice. Then, a numerical approach that is similar to integrating areas
to find volume is applied to generate the interval volume inside the
cube. Assuming that the cross-sectional area between two adjacent
slices is a constant, the interval volume inside the cube can be
approximated by integrating the cross-sectional area multiplied by
the distance between two adjacent slices.

The main idea of this method is illustrated in Figure 1 (b). Here,
the interval region is the region between the green and gray isosur-
faces. The intersections of the slice (light blue and semi-transparent)
with the green and gray isosurfaces are shown as the yellow and red
curves, respectively. The area between the yellow and red curves is
the cross section of the interval region on the slice.

In the subdividing method, the higher the subdivision depth, the
more accurate the results generated. In the slicing Method, the num-
ber of slices that a cube is sliced into determines the precision of
the method. Experimental results in [Wan19] show that the interval
volume measures generated by the subdividing and slicing methods
converge to the same set of values. Both methods are able to produce
very accurate internal volume measures when the underlying func-
tion inside the grid cell is defined by trilinear interpolation. Results
also show that the slicing method takes much less time to converge
than the subdividing method since the cross-sectional area of the
interval region is computed analytically. In this paper, the slicing
method with 32 slices is used to compute the interval volume.

3. New Metric for Selecting Representative Isovalues

3.1. The VOA (Volume Over Area) Measure

In a volumetric dataset, materials boundaries usually are narrow
and have large data value variation, while materials interiors usu-
ally are wide and have small data value variation. Thus, at material
boundaries two isosurfaces tend to be closer to each other than
two isosurfaces in material interiors, assuming they have the same
isovalue difference. Therefore, the rate of change of distance be-
tween two isosurfaces with respect to isovalue can be used to detect
representative isovalues.

The interval volume between two isosurfaces are affected by both
the distance between the two isosurfaces and the isosurface area. Di-
viding the interval volume by the average area of the two isosurfaces

that enclose the interval volume region gives an approximation of
the average distance between the two isosurfaces. The VOA measure
computes the rate of change of this distance with respect to isovalue.
It is calculated as

dVOA(σ1,σ2) =
V (σ1,σ2)

(
S(σ1)+S(σ2)

2 )× (σ2−σ1)
(1)

where V (σ1,σ2) is the interval volume between the two isosurfaces
associated with isovalues σ1 and σ2, assume σ1 < σ2, and S(σ) is
the area of the isosurface with isovalue σ.

Let f be a scalar function defined in the domain of the volumet-
ric dataset. Function f−1(σ) defines an isosurface of f with iso-
value σ. In [SSD∗08], based on Federer’s Co-Area formula [Mor16],
Scheidegger et al. showed that the interval volume measure can be
computed as:

V (σ1,σ2) =
∫

σ2

σ1

∫
f−1(σ)

1
|∇ f |

dSdσ

=
∫

σ2

σ1

C(σ)dσ,

(2)

where C(σ) is the interval volume distribution function at isovalue
σ and it is equal to:

C(σ) =
∫

f−1(σ)

1
|∇ f |

dS (3)

Here, |∇ f | is the gradient magnitude of function f , which rep-
resents the rate of change of isovalue with respect to distance at a
specific point. Thus, the inverse gradient magnitude, 1

|∇ f | , represents
the rate of change of distance between isosurfaces with respect to
isovalue at a specific point.

Let σ′ ∈ (σ,σ+∆σ). If both S(σ′) and C(σ′) are very constant
within the range of (σ,σ+∆σ), which is usually true if ∆σ is very
small, then V (σ,σ+∆σ) can be approximated by

V (σ,σ+∆σ)≈C(σ)∆σ, (4)

and dVOA(σ,σ+∆σ) can be approximated by

dVOA(σ,σ+∆σ)≈ C(σ)

S(σ)
, (5)

Therefore, the VOA measure approximates the integral of the
inverse gradient magnitude over the isosurface divided by the area
of the isosurface.

3.2. Comparison with Mean Gradient

The mean gradient measure proposed in [PWB01] is the average
gradient magnitude over the isosurface. Equation 5 shows that VOA
approximates the average inverse gradient magnitude over the iso-
surface, thus, it is inversely corelated with mean gradient. However,
VOA and mean gradient are not exact inverse of each other, since
the average inverse gradient magnitude is not the inverse average
gradient magnitude. There can be obvious differences between one
measure and the inverse of the other, especially when the gradient
magnitudes over an isosurface have a relatively large variation. The
VOA measure provides another way to identify significant isovalues.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

39



C. Wang / Representative Isovalue Detection and Isosurface Segmentation Using Novel Isosurface Measures

The mean gradient can be computed using a Laplacian based
method [PWB01], which requires the computation of the Laplace
values at grid vertices. The Laplace value at a grid vertex is usually
computed using the vertex’s 6 neighboring vertexes’ values based on
the second central difference method. However, this method doesn’t
produce good results if the isosurface is not closed [Wen13]. This is
a big problem if mean gradient needs to be used for local regions of
the dataset, where the isosurfaces are usually not closed.

In some research work [SSD∗08, DCM13, Wen13], the gradient
magnitude for a cube region is approximated by the cube span, which
is the difference between the largest and smallest vertex values of
the cube [Wen13]. However, the cube span usually overestimates
the gradient magnitude [SSD∗08]. In the experiments reported in
this paper, a method, called the cube center gradient method, is
used to compute gradient magnitude. The method first uses bilinear
interpolation on cube faces to compute the value of each cube face’s
center. Then, the difference between the values of opposite cube
faces’ centers is used as one component of the gradient vector at
the cube center. Finally, the gradient magnitude is computed from
this gradient vector. This method gives a better approximation of
gradient magnitude for a cube region than the cube span method
since it uses all 8 cube vertexes’ values to compute the gradient
magnitude, instead of only the largest and smallest vertex values of
the cube.

The total gradient of an isosurface is the sum of the gradient
magnitudes of all cubes that intersect the isosurface. The mean
gradient is the total gradient divided by the area of the isosurface.
Sometimes, the isosurface area is approximated by the number of
cubes that intersect the isosurface [SSD∗08]. When the cube center
gradient method is used to compute the gradient magnitude and the
active cube count is used for the isosurface area, what is doing to
compute mean gradient essentially is that the gradient is sampled at
the center of each cube that intersects the isosurface, and then all
those cubes’ sampled gradients’ magnitudes are averaged.

However, for each cube, the gradient magnitude computed using
the cube span or cube center gradient methods is fixed for the whole
cube region. The gradient magnitude changes inside the cube may
be missed. On the other hand, the VOA measure uses the interval
volume measure, which considers the entire space between the
two isosurfaces, not isolated samples. Also, the interval volume
measure calculated using the slicing method can have high accuracy.
Thus, VOA can have high accuracy in capturing the rate of change
of distance between isosurfaces with respect to isovalue inside a
cube. Therefore, the VOA plots can be smoother and more accurate
for identifying significant isovalues than the mean gradient plots,
especially for the low resolution datasets or local regions of a dataset.

3.3. Experimental Results

Let Ai, Mmin ≤ i ≤ Mmax, be the interval region associated with
the isovalue range [i− 0.5, i + 0.5), where i is an integer and
[Mmin,Mmax] be the rangle of isovalues for the VOA plot. In this
paper, to generate the VOA plot, first, the interval volume is calcu-
lated using the slicing 32 method for each interval region Ai; then,
the areas of two bounded isosurfaces of Ai (i.e., the isosurfaces
with isovalues i+0.5 and i−0.5) are calculated; finally, the VOA

Figure 2: The ideal boundary is represented with a step function
(a). The step function is convolved with a Gaussian function (b),
producing the blurred boundary function (c), which exhibits the
shape of the er f () function. (Adapted from [Kin99])

measure is computed using Equation 1. To calculate the isosurface
area for the VOA measure, the Marching Cubes algorithm is used
to extract a triangular mesh to represent the isosurface. The sum of
the areas of all triangles in the mesh gives an approximation of the
isosurface area. Also, in order to compare, each measure reported in
this section is normalized by its own sum over all isovalue intervals.

3.3.1. Synthetic Dataset Experiments

Here, the VOA measure was tested with a synthetic dataset which
contains two materials with isovalues 20 and 200. The high value
material is inside a sphere with radius r centered at the volume center.
The rest of the volume is occupied with the low value material. Thus,
the ideal boundary between the two materials is a sphere. Along each
radial direction of the sphere, a 1D Gaussian filter is implemented to
blur the boundary between the two materials based on the boundary
model given in [Kin99]. In this model, the ideal boundary function is
represented by a step function (Figure 2 (a)). The Gaussian function
(Figure 2 (b)) blurs the idea boundary. The resulting boundary curve
(Figure 2 (c)) happens to be the integral of the Gaussian function,
which is called the error function, notated er f (). The er f () function
is defined as

er f (x) =
1√
π

∫ x

−x
e−t2

dt

=
2√
π

∫ x

0
e−t2

dt.
(6)

The boundary data value is given as a function of the posi-
tion [Kin99]:

v = f (x) = vmin +(vmax− vmin)

1+ er f (
x

σ
√

2
)

2
, (7)

where v is the data value of a point, x is the distance of the point
to the idea boundary, and vmin and vmax are the data values of the
two materials on either side of the boundary. The parameter σ,
which is the standard deviation of the Gaussian function, controls
the thickness of the blurred boundary. When the sphere dataset
is generated, first, each vertex’s distance to the volume center is
calculated; then, this distance subtracting by r gives the point’s
distance to the ideal boundary; next, its data value is computed
using Equation 7.

The first derivative of f is given in [Kin99] as follows:

f ′(x) =
vmax− vmin

σ
√

2π
exp(− x2

2σ2 ), (8)
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(a) σ = 0.5 (b) σ = 1 (c) σ = 2

Figure 3: Cross-sections of the three sphere datasets with different
σ values.

(a) σ = 0.5 (b) σ = 1 (c) σ = 2

Figure 4: 3D renderings of the three sphere datasets with different
σ values.

Since the sphere dataset is spherical symmetric, all the isosurfaces
are concentric spheres. Thus, the gradient direction at a point is the
direction of the radial line passing through the point and the gradient
magnitude at the point is the first derivative of f . Therefore, all
points with the same distance to the volume center have the same
data value and same gradient magnitude. To convert the gradient
magnitude from the function of the position to the function of the
data value, points are densely sampled along the positive y axis.
Given the y value of each sample point, its distance to the ideal
boundary is y− r. The data value v and gradient magnitude f ′ of
each sample point are calculated based on Equations 7 and 8 and
are paired up. All pairs of (v, f ′) are plotted as points in a scatter
plot to show the relationship between v and f ′.

In the first experiment, the size of the dataset is 64× 64× 64.
The boundary sphere’s radius, r, is 20. Three sphere datasets with
the parameter σ in the Gaussian function being 0.5, 1, and 2 are
generated. The cross-sections and 3D rendering of those sphere
datasets are shown in Figures 3 and 4, respectively. The 3D rendering
of the dataset is represented using the isosurfaces with isovalues 20.5,
110, and 199.5. The isosurface with isovalue 110 (half transparent
and yellow) is where the idea boundary is. The region between the
isosurface with isovalue 20.5 (half transparent and light blue) and the
isosurface with isovalue 199.5 (brown) approximates the transition
region between the two materials. The parameter σ controls the
thickness of the boundary. Based on Equation 7, when the value
of σ doubles, the width of the boundary also doubles. Let the side
length of a grid cube in the dataset be 1. The distance between
isosurfaces 20.5 and 199.5 is 2.8, 5.5, 11.1 for σ equals 0.5, 1, and
2, respectively.

Figure 5 compares the interval volume, isosurface area, and VOA
measures for the synthetic sphere dataset with σ = 1. Results show
that the plots of all three measures are smooth. As the isovalue

Figure 5: Comparison of interval volume, isosurface area, and VOA
for the sphere dataset with size 64×64×64 and σ = 1.

Figure 6: Comparison of mean gradient and VOA for the sphere
dataset with size 64×64×64 and σ = 1.

increases from 20 to 200, the isosurface area gradually decreases.
This is because all isosurfaces in this dataset are spheres; as the
isovalue increases, the radius of the isosurface spheres decreases,
thus, the isosurface area decreases. The shape of the VOA plot
is pretty symmetric about the center of the isovalue range, i.e.,
110. However, the shape of the interval volume plot is not quite
symmetric about the range center. The left half side is a little bit
taller than the right half side affected by the isosurface area. The
VOA plot also shows that the smallest VOA measure is at isovalue
110, which occurs at the middle of the boundary. As isovalue moves
towards the two ends of the isovalue range, 20 and 200, which is
also the values of the two materials, the VOA measure increases.

Figure 6 compares VOA and the mean gradient with gradients
computed by the cube center gradient method for the sphere dataset
with s = 1. Here, this mean gradient measure is called the sampled
mean gradient (or mean gradient for short). Results show that the
mean gradient and VOA are inverse of each other. In fact, because
of the design of the sphere dataset, the mean gradient and VOA are
exact inverse of each other. At the boundary of the two materials, the
mean gradient is large, but VOA is small. In the material interiors,
the mean gradient is small, while VOA is large. However, the results
also show that the mean gradient plot is noisier than the VOA plot.

In the sphere dataset, the gradient magnitude is the same every-
where on an isosurface. Thus, the mean gradient is just the gradient
magnitude at any point on the isosurface and can be calculated by
Equation 8. This calculated mean gradient is the true mean gra-
dient for the sphere dataset. Also, the reverse of VOA, which is
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(a) σ = 0.5 (b) σ = 1 (c) σ = 2

Figure 7: Comparison of mean gradient, inverse of VOA, and true mean gradient for the sphere dataset with size 64×64×64 for three σ

values.

one divided by VOA, can be used to compare with the sampled
mean gradient and true mean gradient to show the accuracy of VOA.
Comparison of the sampled mean gradient, true mean gradient, and
reverse of VOA for the three sphere datasets with σ being 0.5, 1, and
2 are shown in Figure 7 (a), (b), and (c), respectively. The results
show that the reverse of VOA plot matches the true mean gradi-
ent plot better than the mean gradient plot, and the mean gradient
plot is noisier than the reverse of VOA plot. In addition, as the σ

value decreases, i.e., the volume of the boundary region decreases,
the inverse of VOA plot is still very smooth and fits the true mean
gradient plot well. On the other hand, the mean gradient plot gets
noisier and doesn’t match the true mean gradient plot well. This
is because as the boundary region gets narrower, the number of
gradient samples decreases. This makes the mean gradient unable
to capture the gradient changes over the isovalue range well. Note
that in the subfigures of Figure 7, as well as in Figures 9, 14, and 16
where mean gradient and the inverse of VOA are compared, the
vertical axis is plotted on a linear scale, while the rest of figures in
Section 3.3 that compare different measures have a log scale on the
vertical axis.

In the second experiment, the 64×64×64 sphere dataset with
r = 20 and σ = 0.5, whose 3D rendering is shown in Figure 4
(a), was tested with another two different gird sizes: 32×32×32
and 128× 128× 128. In order to scale the idea boundary radius,
r, and boundary region width proportionally to the side length of
the volumetric dataset, when the side length doubles, r and σ both
should double. For the 32×32×32 dataset, r = 10, σ = 0.25. For
the 128×128×128 dataset, r = 40, σ = 1. The 3D renderings of all
three datasets should look the same except that they are in different
resolutions. Results show that when the grid size decreases, i.e.,
the data resolution decreases, the accuracy of both VOA and mean
gradient decreases. However, mean gradient’s accuracy degrades
much more than VOA. Also, the mean gradient plot is much noisier
than the VOA plot. For the 32×32×32 dataset, the comparison of
mean gradient and VOA is shown in Figure 8. This figure shows that
for this dataset the mean gradient plot is noisy and flat, it doesn’t
capture the mean gradient changes over isovalues well, while the
VOA plot is smooth and shows the changes of VOA over isovalues
very well. The comparison of mean gradient, the reverse of VOA,
and true mean gradient is shown in Figure 9.

Figure 8: Comparison of mean gradient and VOA for the sphere
dataset with size 32×32×32 and σ = 0.25.

Figure 9: Comparison of mean gradient, inverse of VOA, and true
mean gradient for the sphere dataset with size 32× 32× 32 and
σ = 0.25.

3.3.2. Real Dataset Experiments

3.3.2.1. Global Measures The results of testing the VOA measure
with two CT-scan datasets are reported in Figures 10 and 11 for the
engine and human head datasets, respectively. Subfigure (a) of each
figure shows the comparison of three measures: interval volume,
isosurface area, and VOA. Peaks in those plots usually indicate
the materials themselves and troughs usually correspond to the
boundaries between the materials. In isosurface visualization and
direct volume rendering, material boundaries are usually the primary
interest of rendering.

In Figure 10 (a), both interval volume and VOA clearly shows
three peaks, which correspond to the background, the engine’s
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medium value material, and the engine’s high value material. The
trough between the first and second peak, which is called trough 1,
and the trough between the second and third peaks, which is called
trough 2, are associated with the boundaries between the materials.
The isosurface area barely shows the second peak and completely
misses the third peak. But it shows that the isosurface areas in trough
1 are larger than those in trough 2.

The VOA measure in trough 1 has about the same magnitude as
it does in trough 2, while the interval volumes in these two troughs
have obvious magnitude difference. This shows that VOA is a more
meaningful measure than interval volume, because large interval
volumes may cause by large isosurface areas, and vice versa. In this
case, the smaller interval volume in trough 2 is due to the smaller
isosurface area in trough 2.

In Figure 10 (a), the vertical dashed lines and the black dots
correspond to the representative isovalues for the trough regions.
The isosurfaces associated with the two representative isovalues are
shown in (b) and (c). A rendering of the engine dataset combining
these two isosurfaces are shown in (d). For global datasets, the VOA
plots are often smooth, thus, local minimums usually can be used
in choosing the representative isovalues. Here, approximated first
derivative computed by the central difference method can be used
to find the local minimums of the VOA plot. If the VOA plot is very
noisy, then it needs to be smoothed first using some averaging filter
to achieve good results.

For the human head dataset, Figure 11 (a) shows that the VOA
measure indicates four peaks, while both the interval volume and
isosurface area miss the last peak which is at about 235-255. The
last peak corresponds to the tooth structure that has high data values.
Since the teeth occupy much smaller space than other major struc-
tures, such as tissue and bone, both the isosurface area and interval
volume have much smaller values for teeth than their values for other
major structures. However, when the interval volume is divided by
the isosurface area, it only keeps the distance information, while
removes the size factor. Therefore, VOA is able to reveal important
features that may not be detected by the other two measures. The
three isosurfaces with the identified representative isovalues are
shown in (b), (c), and (d). These three isosurfaces are combined in
(e) to show their relative positions to each other.

For global measures, since the gradient is sampled at a large
amount of grid cubes, the mean gradient plot is smooth and the
mean gradient tends to be the inverse of VOA. Both measures are
good at identifying global representative isovalues.

For the engine dataset, the VOA measure is computed for each
of the isovalue interval [i−0.5, i+0.5), 0≤ i≤ 255. The execution
time to calculate all VOA measures is 108.6 seconds, in which 43.5
seconds are spent on computing interval volumes with the slicing 32
method and 65.1 seconds are spent on extracting isosurfaces with
the Marching Cubes algorithm. The execution time to compute all
mean gradients is 4.5 seconds. The time to compute VOA measures
can be reduced by using less number of slices in the slicing method
or using a faster isosurface extraction algorithm, such as Discretized
Marching Cubes [MSS94]. For the human head dataset, the times to
compute the VOA measures and mean gradients are 115.9 seconds
and 4.4 seconds, respectively.

(a) Comparison of three measures

(b) Isovalue = 78 (c) Isovalue = 184 (d) Combined

Figure 10: Representative isovalue selection for the engine dataset
with the VOA measure. (a) shows the comparison of isosurface
area, interval volume, and VOA. Isosurfaces with the presentative
isovalues 78 and 184 are shown in (b) and (c). A combined rendering
with both isosurfaces is displayed in (d).

3.3.2.2. Local Measures In this set of experiments, the results of
testing two local regions in the tooth dataset are reported. The size
of each region is 6× 6× 6 cubes. In Figure 12, the local regions
are the regions inside black boxes; the local region in (a) contains
the background and the dentin; the local region in (b) crosses the
background and the enamel.

Figure 13 compares mean gradient and VOA for the neighborhood
region in Figure 12 (a). Here, the vertical axis is plotted on a log
scale. In this figure, the left and right peaks in the VOA plot indicate
the background itself and the dentin itself, respectively; while the
trough between the two peaks corresponds to the boundary between
the two materials. This figure also shows that the mean gradient plot
is noisier than the VOA plot. Also, the VOA plot has two obvious
peaks that correspond to the representative isovalues for the two
materials themselves in the local region, while the mean gradient
plot doesn’t have two obvious trough regions.

To demonstrate that the VOA plot is smoother than the mean
gradient plot, Figure 14 compares the mean gradient and inverse of
VOA for the local region in Figure 12 (a). Here, the vertical axis is
plotted on a linear scale.

Similar results are obtained for the local region in Figure 12 (b).
They are demonstrated in Figures 15 and 16.

For the background-dentin local region, the range of the isoval-
ues is [402,851]. The execution times to compute VOA measures
and mean gradients are 2.2×10−2 and 2.0×10−4 seconds, respec-
tively. The isovalue range for the background-enamel local region is
[413,1262]. For this local region, the times to compute VOA mea-
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(a) Comparison of three measures

(b) Isovalue = 65 (c) Isovalue = 138

(d) Isovalue = 218 (e) Combined

Figure 11: Representative isovalue selection for the human head
dataset with the VOA measure.

(a) background-dentin (b) background-enamel

Figure 12: Two local regions in the tooth dataset.

sures and mean gradients are 4.7× 10−2 and 3.6× 10−4 seconds,
respectively. The background-enamel local region requires longer
time to compute VOA measures than the background-dentin local
region is because of its larger isovalue range. Results show that it
takes longer time to compute VOA measures than mean gradients.
The VOA measure trades the speed for accuracy and robustness.

Figure 13: Comparison of mean gradient and VOA for the dentin-
background local region in Figure 12 (a).

Figure 14: Comparison of mean gradient and the inverse of VOA
for the dentin-background local region in Figure 12 (a).

Figure 15: Comparison of mean gradient and VOA for the enamel-
background local region in Figure 12 (b).

Figure 16: Comparison of mean gradient and the inverse of VOA
for the enamel-background local region in Figure 12 (b).
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4. Isosurface Segmentation with Distance-Based Measure

One isosurface may contain different features of the dataset. For
example, if there are three materials M1, M2, and M3 in a dataset,
corresponding to data values σ1, σ2, and σ3, respectively. Assume
σ1 < σ2 < σ3. If isovalue σ′ is in between σ1 and σ2, then it must
be in between σ1 and σ3 as well. Therefore, the isosurface with
isovalue σ′ not only passes through the boundary between M1 and
M2, but also passes through the boundary between M1 and M3. In
another example, for the isosurface with isovalue σ2, it represents
the material M2. However, since it is in between σ1 and σ3, it also
passes through the boundary between M1 and M3. The goal here is
to separate the different features shown in one isosurface.

The isosurface segmentation method works well on isosurfaces
associated with representative isovalues. Its main steps are given as
follows. For an isosurface S with the representative isovalue σ, its
reference isosurface Ŝ is first determined. To choose Ŝ, the associated
isovalue σ̂ of Ŝ needs to be another representative isovalue. Also,
S and Ŝ must have obvious differences in structure. Besides that, S
and Ŝ must both pass a common material boundary so that they are
very close to each other at that material boundary. Since there are
obvious differences in their structures, they must be not very close at
other locations. Next, at each cube that S intersects with, the shortest
distance d from S to Ŝ is computed. A distance threshold ε is applied
to separate S into two parts. One part is the part of S in the cubes
where d < ε, which corresponds to the common material boundary
shared by S and Ŝ. The rest of S is the second part of S that does
not pass that material boundary. The distance threshold dt can be
chosen if the thickness of the boundary is known from prior domain
knowledge, or from a histogram plot of all those local shortness
distances from S to Ŝ where peaks in the plot can be identified. Using
a similar approach, the second part of S can be further segmented if
another reference isosurface can be found.

It has been shown that in a two-dimensional histogram of data
value and gradient magnitude, the boundaries between the materials
are demonstrated as arches [Kin99]. In the upper right corner of
Figure 17, the 2D histogram for the engine dataset is displayed as a
scatterplot. A similar diagram is created to illustrate the data value of
each material and the data value ranges for the materials boundaries.
Such a diagram is shown in Figure 17 for the engine dataset. Here,
this kind of diagrams are called isosurface segmentation diagrams.
They can be used to guide the isosurface segmentation.

Next, the effectiveness of the segmentation method is demon-
strated with the engine dataset. For this dataset, the isosurface with
isovalue 78 is denoted as S′1 and the isosurface with isovalue 184 is
denoted as S′2. Here, isovalues 78 and 184 are the representative iso-
values obtained using the VOA measure. The diagram in Figure 17
shows that S′1 passes through the air and medium value material
boundary and the air and high value material boundary; S′2 crosses
the air and high value material boundary and the medium value
material and high value material boundary. Since S′1 and S′2 both
cross the boundary between the air and high value material, they
must be very close to each other at that boundary. Thus, the portion
of S′1 that passes through that boundary must be much closer to S′2
than the rest of S′1. Here, S′2 is used as a reference isosurface for
segmenting S′1.

To measure the local distance from isosurface S′1 to isosurface S′2,

Figure 17: Isosurface segmentation diagram for the engine dataset.
The scatterplot is adapted from [Kin99].

Figure 18: Histogram of the local distances between the isosurface
with isovalue 78 and the isosurface with isovalue 184 for the engine
dataset.

a distance-based measure is used. It is computed as follows. For a
cube K1 that S′1 passes through, its neighboring region is searched
to find all cubes that intersect S′2. For each intersected cube K2, the
distance between S′1 in K1 and S′2 in K2 is calculated. The smallest
distance of all such distances is used as the distance of S′1 in K1 to
S′2. To compute the distance of S′1 in K1 to S′2 in K2 (K1 and K2 can
be the same cube), first, the Marching Cubes algorithm is applied
to extract the triangular mesh that approximates the isosurface. The
centroid of each triangle in the mesh is used as a sample point of the
isosurface. Then, each sample point of S′1 in K1 is paired up with
each sample point of S′2 in K2, and the Euclidean distance between
each pair of the sample points is computed. The smallest distance of
all pairs is used as the distance of S′1 in K1 to S′2 in K2. In fact, the
mesh can be refined by subdividing the cube and applying Marching
Cubes to subcubes. The more the cube is subdivided, the more
sample points are obtained, thus, the more accurate the measure is.

Figure 18 shows a histogram of such distances of all cubes that
isosurface S′1 intersects with to isosurface S′2. It shows the number
of cubes for each distance interval. In this diagram, there are two
obvious peaks before 2. Here, the side length of a cube is 1. Those
peaks are caused by the portion of S′1 that passes through the air and
high value material boundary. With this kind of distance diagrams, a
distance threshold ε can be chosen to segment the isosurface. Here,
ε is set to 2.7.

When isosurface S′1 is segmented, the distance of S′1 to the refer-
ence isosurface S′2 is checked at each cube that intersects S′1, if it is
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less than ε, then the S′1 mesh in the cube is displayed with red color;
otherwise, it is displayed with gray color. The results are shown in
Figure 19 (a) and (c). Since the isosurface segmentation diagram
in Figure 17 shows that isosurface S′1 is only formed by two types
of boundaries: the air and medium value material boundary and the
air and high value material boundary. Therefore, the gray portion of
S′1 corresponds to the air and medium value material boundary. The
same method is applied to segment isosurface S′2 with S′1 being the
reference isosurface. The results are shown in Figure 19 (b) and (d).
(e) shows a combined rendering with both S′1 and S′2.

A rendering of the engine dataset using the direct volume render-
ing technique based on a 2D opacity function is given in [Kin99]. It
is shown in Figure 19 (f). This rendering shows only the boundary
between the engine’s high value material and air, which helps the
user learn structural information about the dataset. Comparing this
direct volume rendering, the isosurface segmentation renderings of
the dataset are clearer and have less noise. In addition, they can be
used for further modeling since they contain triangular meshes.

The results of testing the segmentation method with the tooth
dataset are shown in Figure 20. The tooth dataset is more complex
than the engine dataset since it has four major materials. Also, as
shown in the isosurface segmentation diagram in (a), the isosur-
face with isovalue 601, S′3, is formed by three different types of
boundaries: the background-dentin, the background-enamel, and
pulp-dentin boundaries. To separate these three types of boundaries,
two reference isosurfaces are used. They are the isosurface with
isovalue 288, S′4, and the isosurface with isovalue 954, S′5. If at a
cube K that interests with S′3, the distance of S′3 to S′4 is smaller
than a given threshold, then S′3 in K belongs to the pulp-dentin
boundary; otherwise, the distance of S′3 to S′5 is checked and if this
distance is smaller than a given threshold, S′3 in K belongs to the
background-enamel boundary, if not, it belongs to the background-
dentin boundary. The results of segmenting S′3 is demonstrated in (e).
If only the isosurface mesh for one type of boundary is displayed,
that boundary can be displayed separately from other features. This
is shown in (f), (g), and (h). This method successfully separates the
three types of boundaries of S′3, which is hard to be achieved by
many other methods. The segmentation of S′5 is shown in (b), (c),
and (d). A combined rendering with both S′3 and S′5 is given in (i).

This method can also be used to separate an isosurface that passes
through the material interior. Figure 21 gives such an example with
the tooth dataset. In this example, isovalue 838, S′6, is in the dentin
data value range. However, 838 is also in between the data values of
the background (at about 390) and the enamel (at about 1200). Thus,
S′6 crosses both the interior of the dentin and the background-enamel
boundary. To separate these two different features, the isosurface
with isovalue 954 is used as the reference isosurface. (a) shows a
regular rendering of isosurface S′6. (b) shows the segmentation of
the isosurface. The separated features are shown in (c) and (d).

For the engine dataset, it takes 0.81 seconds to segment and render
the isosurface with isovalue 184, which is shown in Figure 19 (b);
while without segmentation, rendering itself takes 0.48 seconds.
Segmenting and rendering the isosurface with isovalue 78 shown
in Figure 19 (a) takes 2.75 seconds, while rendering only takes
0.69 seconds. For the tooth dataset, segmenting and rendering the

(a) View 1, isovalue 78 (b) View 1, isovalue 184

(c) View 2, isovalue 78 (d) View 2, isovalue 184

(e) View 2, combined (f) Direct volume rendering

Figure 19: Isosurface segmentation results for the engine dataset,
which are demonstrated in two views. In (a) and (c), the isosur-
face with isovalue 78 is displayed. Here, the high value material’s
boundary with air is shown in red, and the medium value material’s
boundary with air is shown in gray. In (b) and (d), the isosurface
with isovalue 184 is shown with the air and high value material
boundary shown in red, and the medium value material and high
value material boundary shown in cyan. A combined rendering with
both isosurfaces is given in (e). A direct volume rendering of the
dataset that only shows the air and high value material boundary
(adapted from [Kin99]) is given in (f).

isosurface with isovalue 601 shown in Figure 20 (e) takes 1.28
seconds; while rendering without segmentation takes 0.32 seconds.

5. Conclusion and Future Work

This paper proposed two new isosurface measures. One is used
for detecting representative isovalues and one is used for isosur-
face segmentation. Both achieve good results when tested with real
datasets. In the future, research work may be conducted to discover
the relationship between the VOA measure and the thickness of
the material boundary, and utilize the VOA measure in designing
the transfer functions for direct volume rendering. Future research
work may also result in a pure analytical method to compute interval
volumes, which can be both fast and accurate. It can greatly reduce
the execution time of computing the VOA measure.
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(a) Isosurface segmentation diagram. The scatterplot is adapted
from [KKH02].

(b) Isovalue 954 (c) Background-enamel (d) Dentin-enamel

(e) Isovalue 601 (f) Background-dentin (g) Background-enamel

(h) Pulp-dentin (i) Combined

Figure 20: Isosurface segmentation for the tooth dataset. (a) Isosur-
face segmentation diagram. (b) Segmented isosurface with isovalue
954. The two portions of this isosurface that correspond to the
background-enamel and background-dentin boundaries are shown
in (c) and (d), respectively. (e) Segmented isosurface with isovalue
601. This isosurface contains the background-dentin boundary in
(f), the background-enamel boundary in (g), and the pulp-dentin
boundary in (h). A combined rendering using both isosurfaces is
shown in (i).
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