DOLI: 10.1111/cgf. 13907
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo Volume 39 (2020), Number 2
(Guest Editors)

Asynchronous Eulerian Liquid Simulation

T. Koike'! S. Morishima'¥® and R. Ando?®?

'Waseda University, Japan
2National Institute of Informatics, Japan

Figure 1: Pouring rain: transparent view (left) and the sub-domain visualization (right). The peak of the speed-up ratio on this scene was
7.20, while the average was 6.46. 384 x 192 x 384 grid resolutions. One video frame corresponds to 1/450 seconds in the real time scale.
Compute time: 52.26 seconds per frame. Red color indicates the time step computed by the global time-stepping method. Yellow and blue
colors indicate regions with three and nine times longer time step sizes, respectively.

Abstract

We present a novel method for simulating liquid with asynchronous time steps on Eulerian grids. Previous approaches focus
on Smoothed Particle Hydrodynamics (SPH), Material Point Method (MPM) or tetrahedral Finite Element Method (FEM)
but the method for simulating liquid purely on Eulerian grids have not yet been investigated. We address several challenges
specifically arising from the Eulerian asynchronous time integrator such as regional pressure solve, asynchronous advection,
interpolation, regional volume preservation, and dedicated segregation of the simulation domain according to the liquid velocity.
We demonstrate our method on top of staggered grids combined with the level set method and the semi-Lagrangian scheme. We
run several examples and show that our method considerably outperforms the global adaptive time step method with respect to
the computational runtime on scenes where a large variance of velocity is present.

CCS Concepts
o Computing methodologies — Physical simulation;

1. Introduction tempt users to choose large time steps in the aim of reducing the
whole runtime of simulation; however, such attempts can easily
degrade the visual quality of small features such as turbulence and
splashes due to the excessive violation of the Courant-Friedrichs-
Lewy (CFL) condition, which means that a liquid should not travel
more than the size of a cell within a single step [BriO8]. The CFL
condition is often referred to as a stability condition if a finite-
difference scheme is employed. Intuitively, a small bulk of liquid
must collide multiple times with other parts of liquid in a long pe-

To date, Eulerian liquid simulation has become a popular technique
for simulating liquids in computer graphics. One of the advantages
of Eulerian grids over Lagrangian methods such as SPH is the un-
conditional stability regardless of time step sizes. Such nature may

T mail: wassan2356 @moegi.waseda.jp
' mail: shigeo@waseda.jp
§ mail: rand @nii.ac.jp

®© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0001-8859-6539
https://orcid.org/0000-0002-7899-9091

Figure 2: Noisy perturbations on a static pool. A very large time-
step (At =0.1 on 1283 resolutions) displays objectionable artifacts
on the calm surfaces.

riod of time but such a phenomenon is neglected when one chooses
to advance time with a large time step.

We point out that using the method of Lentine et al. [LCPF12]
may make large time steps doable, but issues explained above re-
main the same. Time steps with CFL numbers smaller than one
would be ideal in this respect, but unfortunately, they introduce sig-
nificant numerical diffusion. A similar issue is also reported by Se-
taluri et al. [SABS14] in their supplemental video. Empirically, we
find that time steps around CFL = 2 are the sweet spot which pro-
vides qualitatively satisfactory results in practical scenarios when
the semi-Lagrangian method is used for advection. Furthermore,
our findings show that time steps with high CFL numbers induce
noisy artifacts on calm surfaces as shown in Figure 2 when the
operator splitting is employed for time integration. In this sense,
feasible time step sizes for Eulerian methods are limited. This kind
of problem is not discussed in previous work and we see that it is
crucial for choosing adequate time step sizes without artifacts.

The state-of-the-art Eulerian liquid simulation employs the
adaptive time step approach to determine the global time step
size [Bri08]. The approach measures the maximal magnitude of
velocity as a safe criterion to make sure that the CFL number at
any location in space falls less than the target CFL number. This
adaptive time-stepping works without excessive diffusion when the
variance of velocity magnitude is small. However, when the vari-
ance is large such as a case where vibrant splashes are present, the
CFL number of the majority part of liquid would undergo smaller
than desired [FHHJ 18], making the large portion of simulation un-
wantedly diffusive and inefficient.

In this paper, we propose a novel asynchronous time integrator
for Eulerian liquid simulation. To the best of our knowledge, our
work is the first to realize asynchronous liquid simulation on Eu-
lerian grids in the context of computer graphics. The goal of our
approach is to decompose the simulation domain into a few clus-
ters and advance time with different time step sizes such that each
next level of the cluster would have three times higher time step
size, thereby achieving high efficiency in performance and mini-
mizing excessive numerical diffusion due to the low CFL number.

T. Koike, S. Morishima & R. Ando / Asynchronous Eulerian Liquid Simulation

The overview of our method is illustrated in Figure 3. Overall, our
contributions are summarized as follows.

e Domain decomposition: we propose a new domain decomposi-
tion technique that ensures that all the local CFL numbers fall
within the specified range.

e Both temporal and spatial interpolation of Eulerian materials: we
present a new temporal-spatial interpolation scheme specifically
tailored for our asynchronous integrator for level set, pressure,
and velocity that is used to assign boundary values.

e Asynchronous advection scheme: we propose an accurate tem-
poral advection scheme that is absent of visible seams on bound-
aries of regions of different time steps.

e Regional pressure solve: we solve for pressure supported by
boundary pressure values interpolated from a region of differ-
ent time steps. We also devise a new regional volume correction
for our asynchronous method.

We compare with the reference solutions using the global adaptive
time step algorithm [FFO1; DG96] and show that our method does
not introduce apparent visual compromise. Finally, we run several
examples to demonstrate that our method can shorten the overall
runtime.

2. Related Work

Advancing simulation with different time steps in part can be inter-
preted as "one-way" coupling in some specific scenario. Stomakhin
et al. [SS17] proposed a flux animated boundary method where the
analytical solution of a larger motion of liquid is used to spec-
ify the velocity flux on the boundary and is seamlessly blended
with numerical simulations of liquid. Lentine et al. [LZF10] pro-
posed a new multi-scale fluid simulation method where the pres-
sure projection is performed in a coarse-to-fine fashion. Bojsen-
Hansen and Wojtan [BW16] extended the Perfectly Matched Layer
(PML) [SKM10] to allow a user to partially swap liquid simula-
tions with new ones without artifacts on boundaries. Our method
diverges from these methods in that we asynchronously integrate
time.

Asynchronous methods have been applied to a wide variety of
physical animations, including cloths [TPS08], contacts [HVS*12],
liquids [OK12; GB14; RHEW17], and solids [GCO1; SKZF11;
Z1.B16b; FHHJ18]. One of the challenges of asynchronous meth-
ods is retaining stability while minimizing artificial damping from
large time steps; thereby combing explicit and implicit integra-
tors [SKZF11]. We highlight that our method is not only uncon-
ditionally stable since we build our method on top of Fedkiw et
al. [FFO1] but also improves the artificial damping because we in-
tegrate time with adequate CFL numbers for each sub-domain. An-
other challenge is to optimize the decomposition of the simulation
domain into sub-domains of different time steps. This is done by
the use of velocity and force criterion [RHEW17] and block-wise
criteria [GB14; FHHJ18]. Similar to the work of Goswami and
Batty [GB14], our method only depends on velocity to determine
the region of the time step. We show that our method is simple yet
yields well-clustered sub-domains in practice.

Simulating fluid with large time steps can be an alternative
way for speeding up the total simulation run-time. Lentine et

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Koike, S. Morishima & R. Ando / Asynchronous Eulerian Liquid Simulation

Vs

Boundary Conditions

with AtQ N

/\{, Boundary Conditions

Figure 3: Our method overview. We first partition the domain and assign different time step sizes for each of these. Next we advance the
region Vo UV UV, (left). We use the results on the boundary between V| and V, as boundary conditions and re-simulate the region Vo UV
using smaller time steps (middle). Similarly, we use the results on the boundary between Vi) and V| as boundary conditions to re-simulate V.

al. [LCPF12] introduced a method that can take significant large
time steps for liquid simulation through the use of a new advection
scheme. We note that the purpose of their method is orthogonal
to ours since they aim at enabling high CFL numbers while our
method aims at eliminating extremely low CFL numbers that arise
from global time steps where the largest velocity is used to deter-
mine the entire CFL; thereby, minimizing numerical dissipation.
Hence, our method may be combined with the work of Lentine et
al. [LCPF12] if this is desired.

We use a purely Eulerian method for simulating liquids, but
FLIP(Fluid-Implicit-Particles) [ZB05] is in practice combined for
production-quality visual simulation [BriO8]. In doing so, Nielsen
and Bridson [NB11] proposed a two-pass simulation method where
the first-pass simulation on a coarse grid is used to assign bound-
ary conditions and re-simulate part of liquid with higher resolutions
to enrich the motion near the surfaces without changing the over-
all motion. Zhang et al. [ZLB16a] proposed a one-way coupled
adaptive pressure solver to resolve small-scale details for smoke
simulation. Both methods utilize FLIP to express turbulence near
solid boundaries or particulate splashes. While we believe that our
method can be also combined with FLIP since our method can be
regarded as an extension to Nielsen and Bridson [NB11], we leave
such an extension for future work.

3. Method Overview

We base our method on Bridson [Bri08] to perform a liquid simu-
lation. To do so, we solve for the Euler equations:

%’: +u-Vu= f%Verg,
where u,t,p,p and g denote velocity, time, density, pressure and
gravity, respectively. We enforce the Dirichlet boundary condition
for free surfaces: p = 0 and the Neumann boundary condition on
static solid interfaces: n- Vp = 0 where n denotes a solid normal.
We discretize Eq.(1) over the staggered grid and apply the ghost
fluid method on free surfaces [ENGFO03]. To track the moving free
surfaces, we use the level set method [OF01]. We integrate time us-

V-u=0, (1)

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

ing the operator splitting and the Euler method. Fortunately, unlike
FEM, SPH or MPM, our explicit-time integration is uncondition-
ally stable regardless of a time step size [BriO8] and as such stability
is not a concern. Nevertheless, taking a large time step can degrade
the visual quality as mentioned above.

3.1. Domain Decomposition and Time Step Estimation

We partition the simulation domain € into several clusters and as-
sign adequate time step sizes such that all the local CFL numbers
approach a desired target. Note that we refer "level" as a partitioned
cluster hereafter. Here, time step sizes in each level k are denoted
as At. Specifically, we assign At where k > 0 as follows:

Aty = NAt_q, ()

where N denotes an interval coefficient which we used N = 3 in
our examples. We compute Azy according to the maximal velocity
Umax in the whole domain such that:

Ato — A’ (3)
|[4max ||

where ¢ and Ax denote a target CFL number coefficient and the grid
cell size, respectively. We use ¢ = 2 in our examples. However, we
find that a very large time step induces instability as in Figure 2.
To prevent the issue, we set the maximal time step Afmax to 1 / 60
in our examples. Note that we used the same Az as the time step
size for the global time stepping method in the comparisons. The
maximal velocity umax is then assigned as a representative velocity
for the domain level zero as ug = umax. Accordingly, the rest of the
representative velocity for the domain level k > 0 is given as:

uy_
uk:—ljvl. 4)

Along the way, we partition the domain Q according to the formula:

Vi ={x € Q| (||| < [fu(x)[| < [Jaag][},)

where V; denotes a sub-domain of level k. We point out that our
decomposition ensures that the local CFL number in every domain

4 T. Koike, S. Morishima & R. Ando / Asynchronous Eulerian Liquid Simulation

t t t

t t

N - — - N I S [—— — N N I I — — — N S I —— — — N S S - — — —
I — on | OO R ———— I ———
a I —— — — b N uE En N u] I I — — — N —— — — N
il irdl
I — on | OO I . I .
+t o0t
N I S - —— S —— — — — N — — — — — I — — — — [I — — — —

Figure 4: 1D example of our time integration overview with N being set to 2. Cell represents discretized variables (e.g., level set and
velocity). Color refers to the level of regions (red: 0, yellow: 1, blue: 2). First, we advance the entire region with the largest time step Aty, (D).
Next, we advance a smaller time step At,,_1. The boundary values between the regions level m and m — 1 are interpolated from the level m
as illustrated with horizontal arrows (c). Subsequently, we advance smaller steps (d). Once we reach the smallest time step Aty, we advance
the small time step again and overwrite variables of level 1 (e). We recursively apply these procedures to update/overwrite all the remaining

variables.

falls in the range:
¢/N < Ati||lu(x)||/Ax < ¢ YV x € V. (6)

In practice, this can generate numerous clusters if the minimal ve-
locity is very small. To circumvent such issue, we set the maximal
number of level m and set u,,, 1 = 0. In our examples, we set m = 2.
Note that m is at the same time the total count of levels minus one.

In addition to this, we apply the following extrapolation strate-
gies to better minimize loss of visual features such as the sudden
emergence of splashes. First, we place virtual particles p at the
center of fluid cells. These particles are advected forward by ve-
locity such that: p; = p(+ Atimuc where uc denotes a cell velocity.
Next, we rasterize all the cells between p, and p; and overwrite
the level if the level on the cell is larger than the originating cell
at p,. Finally, we extrapolate levels on every cell 6 cells wide to-
wards larger levels. An overview of our extrapolation procedures is
provided in the supplemental material.

3.2. Asynchronous Time Integration

Once the domain partition is complete, we advance simulation in
the following order: from the largest level k, we concatenate all
the sub-domains from the finest level to the level k such that V" =
VoUV, U--- UV, and advance the domain V;" using the time step
Aty In this way, a preliminary simulation state Oy (x € V,*,7+Ary.)
is known. Next, we decrement k and repeat the same procedure
above. When computing pressure and advection on domain bound-
aries, we interpolate values (level set, velocity, and pressure) from
a set of Oy and specify as the Dirichlet boundary condition. The
overview of our asynchronous time integration is illustrated in Fig-
ure 4.

Note that we do not impose Neumann boundary conditions on
the pressure at domain boundaries like Nielsen et al. [NB11], but
fixed boundary conditions (this is somewhat analogous to the free
surface boundary conditions) which means that if the boundary
pressure values are accurate, the solution is also accurate. Hence,
even in the worst case that some (union) region does not touch air
cells at all, our solver converges and gives some approximation.
However, our boundary conditions come with slight divergence er-
ror as we discuss in more depth in Section 5.

Figure 5: Discrepancy issue on a free-falling sphere with a level
transition at the center. Left: a naive asynchronous advection.
Right: our modified scheme.

As we detail in Section 3.4, a simple linear interpolation does
not suffice and requires careful treatments. Finally, all Qy are com-
bined to compute the global physics state at the time # + At Our
asynchronous time step algorithm is inspired by the work of Fang
et al. [FHHJ18] in the sense that we solve for the larger time steps
first and use it as the boundary conditions to progressively solve for
the remaining smaller time steps.

3.3. Asynchronous Advection

Naively advecting velocity and level set using different time steps
can introduce visible discrepancy on the domain boundaries. Fig-
ure 5 left illustrates an example on a free-falling droplet across a do-
main transition. We clarify this issue with a simple example. Sup-
pose that there is a single particle at a position p with zero velocity
and let it freely fall by gravity. If we advance the particle state using
the Euler method, the particle velocity at the next time step ¢ + AT
can be computed as AT g while the particle position remains at p. In
contrast, if we use the half time step Ar = AT /2 and advance twice,
the particle velocity at r + AT will be the same as 2Arg = ATg
but the particle position diverges: p + At2g. A similar mechanism
is also present in the semi-Lagrangian advection scheme and this
difference accumulates over time to develop objectionable seams.

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Koike, S. Morishima & R. Ando / Asynchronous Eulerian Liquid Simulation 5

We circumvent this issue by the following algorithm: before we
advance a step, we extrapolate @ = g— 1 Vp using pressure com-
puted from (multiple) larger levels. The extrapolation bandwidth
depends on the target CFL number. Next, we perform a devised
semi-Lagrangian advection:

At
" (.t + Af) = g(x— Atu— /0 ta(x)dr,1) 7

zq(x—Atu—E,TL:InAt,%a(x),t), 8)

where ¢ denotes a quantity to advect such as velocity or level
set, ¢* denotes an intermediate quantity after the advection, and
T = At/At, assuming that we solve for the level k. Note that in
Eq.(8) we use a discrete approximation instead of the analytical
integration because in this way advection on the level zero will
not need our modification. Figure 5 right shows an example of our
method applied to the same setup of Figure 5 left, which success-
fully eliminates the discrepancy issue.

3.4. Interpolation

When interpolating a value between time ¢ and 7 4 At;, we use dif-
ferent strategies depending on what kind of quantity and what kind
of attribute (space or time) to interpolate. First, we only consider
the time attribute. Pressure computed on the state Oy (r + Af) is
interpreted as py (¢ + Afy) such that:

1 t+Aty
Pt 8= 2 [plo) dr. ©)
Ik Ji

which means that unlike velocity, our discrete pressure represents
the average of pressure between two time steps, not exactly a quan-
tity at a specific time. Therefore, we select Oy (¢ + Az;) for pressure
interpolation for time between ¢ and ¢ 4 At;. For velocity and level
set, we select O () as follows.

We first extrapolate velocity at time ¢ depending on the target
CFL number c. For level set interpolation, we use the extrapolated
velocity to back-trace the position using Eq.(8) and a target time
interval At*. The back-traced position is used to fetch the level set
and pressure. Velocity is also similarly interpolated, but in the case
of velocity, we add Ar*a to consider the change of velocity due
to the acceleration during the time integration. This interpolation
scheme can be also used to interpolate fluid geometry at any tim-
ings we wish. For example, in Figure 1, level set of the blue region
was interpolated twice (or sometimes three times) per (regional)
time step (Ar,) to generate multiple video frames.

3.5. Pressure Projection and Volume Correction

We perform pressure projection supported by the Dirichlet bound-
ary conditions interpolated from the larger levels as described in
Section 3.2. In this way, the pressure on the region boundaries
is always given explicitly. Along the way, we correct the volume
change (mostly the volume loss) introduced by the level set ad-
vection within this projection step extending the work of Kim et
al. [KLL*07]. Let V be the current entire volume of a liquid, and
Viarget the target liquid volume. We first compute the volume change
ratio: o = Varget/V . Next, when performing pressure projection, we
compute the union of sub-domains V;" as in Section 3.2 and define

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

the target volume on this level as Vtﬁrget = aVol(V{"), where Vol(-)
denotes a function to compute the volume. The remaining proce-
dures for the volume correction are the same as the method of Kim
et al. [KLL*07].

4. Results
Scene Sec/Frame Sec/Atm | Avg/Max Speed-up
Sync Async
Fig.6 | 180.25 | 87.98 50.11 2.05/3.55
Fig.7 | 138.89 | 48.70 51.85 2.85/3.05
Fig.1 | 337.36 | 52.26 94.51 6.46/7.20

Table 1: Timings and performance gain of our method. Sec/Aty
denotes compute time to advance Aty,.

Table 1 illustrates the overview of timings and the performance
gain of our method. Figure 8 shows a performance breakdown of
our examples. Throughout the examples, we set the width of the
domain one meter wide and gravity 9.8m/ 5. All of our video ex-
amples run at 60FPS. We parallelized all of our examples where
applicable using OpenMP. We used the semi-Lagrangian advec-
tion and the Incomplete Cholesky Preconditioned Conjugate Gra-
dient method with the L, norm of 10™* for pressure solve pro-
vided by Eigen library [GJ*10]. Instead of synchronizing time steps
with the video frame rate [LCPF12], we chose to interpolate level
set when the time exceeds the next video frame (as mentioned in
Section 3.4). The supplemental video provides comparisons to all
the corresponding reference solutions computed by the global time
stepping method.

Figure 1 shows an example of our method on a pouring rain sce-
nario. In this scene, small spherical liquids are injected from the
top at a fast constant speed. In this specific scenario, the global
time step method would compute a time step according to the ve-
locity of fast-falling raindrops, making the time step size very small
despite the majority part of liquid being rather calm. By using our
asynchronous solver, the time step sizes are segregated according
to the velocity magnitude, which resulted in up to 7.20x perfor-
mance speed-up, and 6.46x on average. This example was ran on
an Intel(R) Core(TM) 19-9980XE CPU @ 3.00GHz, 18 cores, 36
threads 128GB RAM machine. Regarding the volume correction,
we set the target volume constant on this example to keep the water
level static in the course of the simulation. The video was slowed
down to 0.13x compared to the actual time speed and we used
384 x 192 x 384 grid resolutions. We could not simulate thin sheets
and particulate splashes on this example since we use a purely Eule-
rian level set method. Using FLIP may help reproduce such effects.

Figure 6 shows an example of a dam breaking demonstrating the
general applicability of our method. Although the variance of ve-
locity magnitude was comparably not large on this example, we
were able to speed-up the simulation up to 3.55x, and 2.05X on
average. This result indicates that our method would noticeably
speed-up the average simulation time on many practical scenarios.
This example was ran on an Intel(R) Core(TM) 17-6950X CPU @
3.00GHz, 10 cores, 20 threads 128GB RAM machine. Volume fluc-
tuation was less than 3%. The video plays at the speed of the actual

6 T. Koike, S. Morishima & R. Ando / Asynchronous Eulerian Liquid Simulation

Figure 6: Dam breaking. 2563 resolutions. One video frame corresponds to 1/60 seconds in the real time scale. Red, yellow, and blue colors
represent level 0, level 1, and level 2, respectively. Compute time: 87.98 seconds per frame. Speed-up gain was up to 3.55 and 2.05 on
average. When the number of levels is only 2, yellow represents level 0 and blue 1.

Figure 7: Water spray. 256° resolutions. One video frame corresponds to 1/90 seconds in the real time scale. The color scheme is the same
as the one in Figure 6. Compute time: 48.70 seconds per frame. Speed-up gain was up to 3.05 and 2.85 on average.

time. We used the grid resolutions 256°. The kinetic energy plot is
shown in Figure 9, which indicates a reduced numerical diffusion.

Figure 7 shows an example of two columns of water spray in-
jected from the left and right walls, colliding at the center. In this
setup, the injected sprays are simulated with the smallest time step,
and the remaining parts were simulated at larger time steps, result-
ing in up to 3.05x faster performance gain and 2.85X on average.
We used the grid resolutions 256° and the video was slowed down
to 2/3x compared to the actual time speed. This example was ran
on an Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz, 12 cores, 24
threads 128GB machine.

5. Discussion and Limitations

Our domain decomposition does not consider temporal coherence.
Nonetheless, we did not observe any severe temporal flickering on
many of our examples. However, this does not guarantee that our

method is flicker-free. We used the semi-Lagrangian method for
level set advection because it is simple, fast and unconditionally
stable; however, the semi-Lagrangian method may be too diffusive
in practice [FFO1]. As an alternative, one may extend our asyn-
chronous scheme with higher-order methods such as a spline inter-
polation [FFO1] and a MacCormack method [SFK*07]. We believe
that this is possible; for example, a MacCormack method [SFK*07]
can be seen as a two-pass semi-Lagrangian method in which each
backward/forward tracing along the velocity field can be performed
as in Section 3.3. We also tested a solid obstacle scene and it works
without artifacts. No modification is needed except for velocity ex-
trapolation into the solid, which is common for Eulerian liquids.
More details are available in the supplemental material.

Throughout our examples, we used Fast Marching
method [BriO8] due to its simplicity. Alternatively, a PDE-
based approach [RSO0] can be also employed, which we find
provides smooth surfaces with reduced grid aligned artifacts. An

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

T. Koike, S. Morishima & R. Ando / Asynchronous Eulerian Liquid Simulation

Cell Count

4000000

4 Time (sec) 0 05 1

—level2 level1l level0 —level2

Second
250 %
80
70
60
50
40

30
Hr\»«LJLI\J\-n"L/‘LLW- *

10

0
Time (sec) o 05 1

—level2

2 3 4

level1l - level0

—level2

3500000 /

15

level1

levell

Cell Count

12000000

400

2000000

0
2 25 Time (sec) 0 0.2 0.4 0.6 08 Time (sec)

~~~~~~~~ levelO —level2 levell ---level0

Second
120

100
. W
60

40

20

0
Time (sec) o 0.2 0.4 06

—1level2 level1

2 25 08 Time (sec)

»»»»»»»» level0 - level0

Figure 8: From left to right, Fig.6, Fig.7, Fig.1. Top row: cell count. Bottom row: accumulated simulation time per level to advance Aty,.
Cell count indicates the total fluid cells in V; as in Section 3.2. The compute time per level is inclusive: e.g., the blue line (level 2) includes
timings for level 1 and 0. When the number of levels is only 2 (e.g., towards the end of Fig.6), yellow represents level 0 and blue 1.

example is shown in the supplemental material and the video. In
the specific setting of Figure 5, the motion of spherical liquid is
simply ballistic, so that the contribution of pressure force does not
exist. The only driving force is gravity, and the time integration
error results in this discrepancy. Our new asynchronous advection
in Section 3.3 fixes the issue.

We also explored a larger number on the maximal sub-domain
level m, but we observed noisy perturbation artifacts as in Figure 2
on at least more than one of our examples (even though we set the
maximal time step size Afmax). Extending the number m further re-
quires research on perturbation condition and therefore is left for
future work. We also observed that some sub-domains are topo-
logically disconnected, which suggests that we can simulate them
completely in parallel and gain further speed-up.

Our Dirichlet boundary conditions on pressure solve introduce
some (slight) divergence near domain boundaries, which accumu-
lates over time. For example, if we turn off the volume correction
for Figure 6, we observed that the synchronous method loses 25.5%
volume while ours 52.8% (2.07 x volume loss). Note that if we use
the Neumann boundary conditions as in the work of [NB11], we
need to check if any (union) region is completely surrounded by
Neumann boundaries by a flood-fill-like algorithm and modify the
divergence, which would make the algorithm (overly) complex and
slower on large-scales. We have tested a challenging case (water
drop on a vertically long cubical tank with region horizontally split)
and found that it works in practice, which is shown both in the sup-
plemental material and the video. In this paper, we chose to focus
on liquid first because the variance of velocity magnitude would be
higher than smoke, and such a more speed-up gain was expected;
however, we believe that our method can be also applied to smoke.

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Time(sec)

Sync = = -Async

Figure 9: Kinetic energy plot on Fig.6. The energy gradually
settles both on asynchronous and synchronous methods, but our
method better retains the energy bounce, indicating an improved
numerical diffusion of velocity.

6. Conclusion

We have presented an asynchronous time integrator for Eulerian
liquid simulation. Our approach guarantees that the local CFL
falls in the specified range, which results in considerable perfor-
mance gain and the improved kinetic energy curve. Our method
is straightforward to implement and can be expected to excel in
performance on many practical scenarios. In the future, we would
like to combine our method with Affine Particle in Cell (APIC)
method [JSS*15] to enrich the detail such as splashes. We also
would like to extend our method to smoke and handle two-way
coupled rigid bodies.

Acknowledgements

This research is supported by the JST ACCEL Grant Number
JPMJAC1602, JST-Mirai Program Grant Number JPMJMI19B2,
JSPS KAKENHI Grant Number JP17H06101, JP19H01129 and
18K18060. We thank Kenshi Takayama for discussions regarding
mathematical examination and proofreading the paper.



8 T. Koike, S. Morishima & R. Ando / Asynchronous Eulerian Liquid Simulation

References

[Bri08] BRIDSON, ROBERT. Fluid Simulation for Computer Graphics. A
K Peters/CRC Press, Sept. 2008. ISBN: 1568813260 1-3, 6.

[BW16] BOJSEN-HANSEN, MORTEN and WOJTAN, CHRIS. “General-
ized Non-reflecting Boundaries for Fluid Re-simulation”. ACM Trans.
Graph. 35.4 (July 2016), 96:1-96:7. 1SSN: 0730-0301. DOI: 10.1145/
2897824.2925963 2.

[DG96] DESBRUN, MATHIEU and GASCUEL, MARIE-PAULE.
“Smoothed Particles: A new paradigm for animating highly de-
formable bodies”. Computer Animation and Simulation '96. Ed. by
BouLIC, RONAN and HEGRON, GERARD. Vienna: Springer Vienna,
1996, 61-76. ISBN: 978-3-7091-7486-9 2.

[ENGFO03] Using the Particle Level Set Method and a Second Order Ac-
curate Pressure Boundary Condition for Free Surface Flows. Vol. Vol-
ume 2: Symposia, Parts A, B, and C. Fluids Engineering Division Sum-
mer Meeting. July 2003, 337-342. po1: 10 . 1115/ FEDSM2003 —
45144 3.

[FFO1] FOSTER, NICK and FEDKIW, RONALD. “Practical Animation of
Liquids”. Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. New York, NY,
USA: ACM, 2001, 23-30. 1SBN: 1-58113-374-X. DOI: 10 . 1145/
383259.383261. URL: http://doi.acm.org/10.1145/
383259.383261 2,6.

[FHHJ18] FANG, YU, HU, YUANMING, HU, SHI-MIN, and JIANG,
CHENFANFU. “A Temporally Adaptive Material Point Method with Re-
gional Time Stepping”. Computer Graphics Forum 37.8 (2018), 195—
204.DOI: 10.1111/cgf.13524 2, 4.

[GB14] GoswAMI, PRASHANT and BATTY, CHRISTOPHER. “Regional
Time Stepping for SPH”. Eurographics 2014. Ed. by GALIN, ERIC and
WAND, MICHAEL. Short Papers. Strasbourg, France: Eurographics As-
sociation, Apr. 2014, 45-48. DOI: 10.2312/egsh.20141011. URL:
https://hal.inria.fr/hal-00980592 2.

[GCO1] GRAVOUIL, ANTHONY and COMBESCURE, ALAIN. “Multi-
time-step explicit-implicit method for non-linear structural dynamics”.
International Journal for Numerical Methods in Engineering 50.1
(2001), 199-225. por: 10 .1002/1097-0207(20010110) 50 :
1<199::AID-NME132>3.0.C0;2-A2.

[GJ*10] GUENNEBAUD, GAEL, JACOB, BENOIT, et al. Eigen v3.
http://eigen.tuxfamily.org. 2010 5.

[HVS*12] HARMON, DAVID, VOUGA, ETIENNE, SMITH, BREANNAN,
et al. “Asynchronous Contact Mechanics”. Commun. ACM 55.4 (Apr.
2012), 102-109. 1SSN: 0001-0782. por: 10 . 1145 / 2133806 .
2133828 2.

[JSS*15] JIANG, CHENFANFU, SCHROEDER, CRAIG, SELLE, ANDREW,
et al. “The Affine Particle-in-cell Method”. ACM Trans. Graph. 34.4
(July 2015), 51:1-51:10. 1sSN: 0730-0301. DO1: 10.1145/2766996.
URL: http://doi.acm.org/10.1145/2766996 7.

[KLL*07] KiM, BYUNGMOON, L1U, YINGIJIE, LLAMAS, IGNACIO, et al.
“Simulation of Bubbles in Foam with the Volume Control Method”.
ACM Trans. Graph. 26.3 (July 2007). 1SSN: 0730-0301. por: 10 .
1145/1276377.1276500. URL: http://doi.acm.org/10.
1145/1276377.1276500 5.

[LCPF12] LENTINE, MICHAEL, CONG, MATTHEW, PATKAR, SAKET,
and FEDKIW, RONALD. “Simulating Free Surface Flow with Very Large
Time Steps”. Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation. SCA ’12. Lausanne, Switzerland: Eu-
rographics Association, 2012, 107-116. ISBN: 978-3-905674-37-8. URL:
http://dl.acm.org/citation.cfm?id=2422356.
24223732,3,5.

[LZF10] LENTINE, MICHAEL, ZHENG, WEN, and FEDKIW, RONALD. “A
Novel Algorithm for Incompressible Flow Using Only a Coarse Grid
Projection”. ACM Trans. Graph. 29.4 (July 2010). 1SSN: 0730-0301.
DOI: 10.1145/1778765.1778851. URL: https://doi.org/
10.1145/1778765.1778851 2.

[NB11] NIELSEN, MICHAEL B. and BRIDSON, ROBERT. “Guide Shapes
for High Resolution Naturalistic Liquid Simulation”. ACM Trans.
Graph. 30.4 (July 2011), 83:1-83:8. I1SSN: 0730-0301. DOI: 10.1145/
2010324.19649783,7.

[OFO1] OSHER, STANLEY and FEDKIW, RONALD P. “Level Set Meth-
ods: An Overview and Some Recent Results”. Journal of Computational
Physics 169.2 (2001), 463-502. 1SSN: 0021-9991. pOIL: https : / /
doi.org/10.1006/jcph.2000.6636 3.

[OK12] ORTHMANN, JENS and KOLB, ANDREAS. “Temporal Blending
for Adaptive SPH”. Comput. Graph. Forum 31.8 (Dec. 2012), 2436—
2449. 1SSN: 0167-7055. po1: 10 . 1111/ 5.1467-8659.2012.
03186.x 2.

[RHEW17] REINHARDT, STEFAN, HUBER, MARKUS, EBERHARDT,
BERNHARD, and WEISKOPF, DANIEL. “Fully Asynchronous SPH Sim-
ulation”. Proceedings of the ACM SIGGRAPH / Eurographics Sympo-
sium on Computer Animation. SCA *17. Los Angeles, California: ACM,
2017,2:1-2:10. 1SBN: 978-1-4503-5091-4. DOI1: 10.1145/3099564.
3099571 2.

[RSO0] RUSsO, GIOVANNI and SMEREKA, PETER. “A Remark on
Computing Distance Functions”. Journal of Computational Physics
163.1 (2000), 51-67. 1SSN: 0021-9991. DOI: https : / / doi .
org / 10 . 1006 / jcph . 2000 . 6553. URL: http : / /
www . sciencedirect . com / science / article / pii /
50021999100965537 6.

[SABS14] SETALURI, RAJSEKHAR, AANJANEYA, MRIDUL, BAUER,
SEAN, and SIFAKIS, EFTYCHIOS. “SPGrid: A Sparse Paged Grid Struc-
ture Applied to Adaptive Smoke Simulation”. ACM Trans. Graph.
33.6 (Nov. 2014), 205:1-205:12. 1SSN: 0730-0301. DOI: 10 . 1145/
2661229.2661269. URL: http://doi.acm.org/10.1145/
2661229.2661269 2.

[SFK*07] SELLE, ANDREW, FEDKIW, RONALD, KiM, BYUNGMOON,
et al. “An Unconditionally Stable MacCormack Method”. Journal of
Scientific Computing 35.2-3 (Nov. 2007), 350-371. por: 10 . 1007/
$10915-007-9166-4. URL: https://doi.org/10.1007/
s10915-007-9166-4 6.

[SKM10] SODERSTROM, ANDREAS, KARLSSON, MATTS, and MUSETH,
KEN. “A PML-based Nonreflective Boundary for Free Surface Fluid An-
imation”. ACM Trans. Graph. 29.5 (Nov. 2010), 136:1-136:17. 1SSN:
0730-0301. DOI: 10.1145/1857907.1857912 2.

[SKZF11] SCHROEDER, CRAIG, KWATRA, NIPUN, ZHENG, WEN,
and FEDKIW, RON. “Asynchronous Evolution for Fully-Implicit and
Semi-Implicit Time Integration”. Computer Graphics Forum 30.7
(2011), 1983-1992.pO1: 10.1111/3.1467-8659.2011.02046.
x 2.

[SS17] STOMAKHIN, ALEXEY and SELLE, ANDREW. “Fluxed Animated
Boundary Method”. ACM Trans. Graph. 36.4 (July 2017), 68:1-68:8.
ISSN: 0730-0301. DOI1: 10.1145/3072959.3073597 2.

[TPSO8] THOMASZEWSKI, BERNHARD, PABST, SIMON, and STRASSER,
WOLFGANG. “Asynchronous Cloth Simulation”. 2008 2.

[ZB05] ZHU, YONGNING and BRIDSON, ROBERT. “Animating Sand As
a Fluid”. ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05. Los Ange-
les, California: ACM, 2005, 965-972. DOI: 10 .1145/1186822 .
1073298. URL: http://doi.acm.org/10.1145/1186822.
1073298 3.

[ZLB16a] ZHANG, XINXIN, LI, MINCHEN, and BRIDSON, ROBERT. “Re-
solving Fluid Boundary Layers with Particle Strength Exchange and
Weak Adaptivity”. ACM Trans. Graph. 35.4 (July 2016). 1SSN: 0730-
0301.DOI: 10.1145/2897824.2925910. URL: https://doi.
org/10.1145/2897824.2925910 3.

[ZLB16b] ZHAO, DANYONG, LI, YUUING, and BARBIC, JERNEJ. “Asyn-
chronous Implicit Backward Euler Integration”. Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. SCA
’16. Zurich, Switzerland: Eurographics Association, 2016, 1-9. ISBN:
978-3-905674-61-3 2.

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.


https://doi.org/10.1145/2897824.2925963
https://doi.org/10.1145/2897824.2925963
https://doi.org/10.1115/FEDSM2003-45144
https://doi.org/10.1115/FEDSM2003-45144
https://doi.org/10.1145/383259.383261
https://doi.org/10.1145/383259.383261
http://doi.acm.org/10.1145/383259.383261
http://doi.acm.org/10.1145/383259.383261
https://doi.org/10.1111/cgf.13524
https://doi.org/10.2312/egsh.20141011
https://hal.inria.fr/hal-00980592
https://doi.org/10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A
https://doi.org/10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A
https://doi.org/10.1145/2133806.2133828
https://doi.org/10.1145/2133806.2133828
https://doi.org/10.1145/2766996
http://doi.acm.org/10.1145/2766996
https://doi.org/10.1145/1276377.1276500
https://doi.org/10.1145/1276377.1276500
http://doi.acm.org/10.1145/1276377.1276500
http://doi.acm.org/10.1145/1276377.1276500
http://dl.acm.org/citation.cfm?id=2422356.2422373
http://dl.acm.org/citation.cfm?id=2422356.2422373
https://doi.org/10.1145/1778765.1778851
https://doi.org/10.1145/1778765.1778851
https://doi.org/10.1145/1778765.1778851
https://doi.org/10.1145/2010324.1964978
https://doi.org/10.1145/2010324.1964978
https://doi.org/https://doi.org/10.1006/jcph.2000.6636
https://doi.org/https://doi.org/10.1006/jcph.2000.6636
https://doi.org/10.1111/j.1467-8659.2012.03186.x
https://doi.org/10.1111/j.1467-8659.2012.03186.x
https://doi.org/10.1145/3099564.3099571
https://doi.org/10.1145/3099564.3099571
https://doi.org/https://doi.org/10.1006/jcph.2000.6553
https://doi.org/https://doi.org/10.1006/jcph.2000.6553
http://www.sciencedirect.com/science/article/pii/S0021999100965537
http://www.sciencedirect.com/science/article/pii/S0021999100965537
http://www.sciencedirect.com/science/article/pii/S0021999100965537
https://doi.org/10.1145/2661229.2661269
https://doi.org/10.1145/2661229.2661269
http://doi.acm.org/10.1145/2661229.2661269
http://doi.acm.org/10.1145/2661229.2661269
https://doi.org/10.1007/s10915-007-9166-4
https://doi.org/10.1007/s10915-007-9166-4
https://doi.org/10.1007/s10915-007-9166-4
https://doi.org/10.1007/s10915-007-9166-4
https://doi.org/10.1145/1857907.1857912
https://doi.org/10.1111/j.1467-8659.2011.02046.x
https://doi.org/10.1111/j.1467-8659.2011.02046.x
https://doi.org/10.1145/3072959.3073597
https://doi.org/10.1145/1186822.1073298
https://doi.org/10.1145/1186822.1073298
http://doi.acm.org/10.1145/1186822.1073298
http://doi.acm.org/10.1145/1186822.1073298
https://doi.org/10.1145/2897824.2925910
https://doi.org/10.1145/2897824.2925910
https://doi.org/10.1145/2897824.2925910

