A Unified Cloth Untangling Framework Through Discrete Collision Detection

Juntao Ye1,1, Guanghui Ma12, Liguo Jiang12, Lan Chen12, Jituo Li3, Gang Xiong4, Xiaopeng Zhang1, Min Tang5

1NLPR, Institute of Automation, CAS, 2Univ. of Chinese Academy of Sciences, \\
3Mechanical Eng. Dept. Zhejiang University, 4SKLMCCS, Institute of Automation, CAS, 5Zhejiang University

1. Gradient of the V-F Signed Distance

Here we give the derivation of the gradient of vertex-face signed distance function here. If we write \(\mathbf{d} = \mathbf{x}_0 - \sum_{i=1}^{3} \beta_i \mathbf{X}_i \), then vertex-face signed distance is

\[
D(x) = \hat{n} \cdot \mathbf{d},
\]

where \(\mathbf{x}_1, \mathbf{x}_2 \) and \(\mathbf{x}_3 \) are face vertices, and the face normal is defined as \(\hat{n} = \mathbf{n}/|\mathbf{n}| \), and \(\mathbf{n} = (\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1) \). We first give the expression for \(\frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} \):

\[
\frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} = \begin{pmatrix}
\frac{\partial n_x}{\partial x_1} & \frac{\partial n_y}{\partial x_1} & \frac{\partial n_z}{\partial x_1} \\
\frac{\partial n_x}{\partial y_1} & \frac{\partial n_y}{\partial y_1} & \frac{\partial n_z}{\partial y_1} \\
\frac{\partial n_x}{\partial z_1} & \frac{\partial n_y}{\partial z_1} & \frac{\partial n_z}{\partial z_1}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
0 & (x_2 - x_3)_z & (x_3 - x_2)_y \\
(x_3 - x_2)_z & 0 & (x_2 - x_3)_x \\
(x_2 - x_3)_y & (x_3 - x_2)_x & 0
\end{pmatrix}
\]

This skew-symmetric matrix is associated with vector \(\mathbf{x}_{23} \) in doing the cross product with any vector \(\mathbf{w} \in \mathbb{R}^3 \),

\[
\frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} \cdot \mathbf{w} = \mathbf{x}_{23} \times \mathbf{w}.
\]

Moreover,

\[
\frac{\partial \hat{n}}{\partial \mathbf{x}_1} = \frac{\partial}{\partial \mathbf{x}_1} \left(\frac{\mathbf{n}}{|\mathbf{n}|} \right) = \frac{1}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} - \mathbf{n} \frac{\partial |\mathbf{n}|}{|\mathbf{n}|^2} \frac{\partial |\mathbf{n}|}{\partial \mathbf{x}_1}
\]

\[
= \frac{1}{|\mathbf{n}|} \frac{\partial \mathbf{n}}{\partial \mathbf{x}_1} - \mathbf{n} \mathbf{n}^T \frac{\partial \mathbf{n}}{|\mathbf{n}|^2} |\mathbf{n}| \frac{\partial |\mathbf{n}|}{\partial \mathbf{x}_1}
\]

\[
= \frac{1}{|\mathbf{n}|} [I - \mathbf{n} \mathbf{n}^T] \frac{\partial \mathbf{n}}{|\mathbf{n}|^2} \frac{\partial |\mathbf{n}|}{\partial \mathbf{x}_1}
\]

Writing the \(3 \times 3 \) matrix \(\frac{1}{|\mathbf{n}|} \left(I - \frac{\mathbf{n} \mathbf{n}^T}{|\mathbf{n}|^2} \right) \) as \(\mathbf{N} \), together with Equ. 2 and 3 we have

\[
D_{x_1} = \frac{\partial}{\partial \mathbf{x}_1} (\hat{n}^T \mathbf{d})
\]

\[
= \frac{\partial \hat{n}}{\partial \mathbf{x}_1} \mathbf{d} - \beta_1 \hat{n}
\]

\[
= \mathbf{N} (\mathbf{x}_{23} \times \mathbf{d}) - \beta_1 \hat{n}
\]

Similarly there are

\[
D_{x_2} = \mathbf{N} (\mathbf{x}_{13} \times \mathbf{d}) - \beta_2 \hat{n},
\]

\[
D_{x_3} = \mathbf{N} (\mathbf{x}_{12} \times \mathbf{d}) - \beta_3 \hat{n},
\]

\[
D_{x_0} = \hat{n}
\]

Obviously, there is

\[
\sum_{i=0}^{3} D_{x_i} = 0.
\]

2. Gradient of the E-E Signed Distance

Here we give the derivation of the gradient of edge-edge signed distance function here. The collision normal is defined as \(\mathbf{n} = (\mathbf{x}_1 - \mathbf{x}_0) \times (\mathbf{x}_3 - \mathbf{x}_2) \), and we write \(\mathbf{d} = \beta_0 \mathbf{x}_0 + \beta_1 \mathbf{x}_1 - \beta_2 \mathbf{x}_2 - \beta_3 \mathbf{x}_3 \), then

\[
D(x) = \hat{n} \cdot \mathbf{d}
\]

The expression for \(\frac{\partial \mathbf{n}}{\partial \mathbf{x}_0} \) is

\[
\frac{\partial \mathbf{n}}{\partial \mathbf{x}_0} = \begin{pmatrix}
\frac{\partial n_x}{\partial x_0} & \frac{\partial n_y}{\partial x_0} & \frac{\partial n_z}{\partial x_0} \\
\frac{\partial n_x}{\partial y_0} & \frac{\partial n_y}{\partial y_0} & \frac{\partial n_z}{\partial y_0} \\
\frac{\partial n_x}{\partial z_0} & \frac{\partial n_y}{\partial z_0} & \frac{\partial n_z}{\partial z_0}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
0 & (x_2 - x_3)_z & (x_3 - x_2)_y \\
(x_3 - x_2)_z & 0 & (x_2 - x_3)_x \\
(x_2 - x_3)_y & (x_3 - x_2)_x & 0
\end{pmatrix}
\]

\[
= \frac{1}{|\mathbf{n}|} [I - \mathbf{n} \mathbf{n}^T] \frac{\partial \mathbf{n}}{|\mathbf{n}|^2} \frac{\partial |\mathbf{n}|}{\partial \mathbf{x}_0}
\]
Similarly, there are

\[
\frac{\partial \mathbf{n}}{\partial x_1} = - \frac{\partial \mathbf{n}}{\partial x_0}.
\]

\[
\frac{\partial \mathbf{n}}{\partial x_2} = \begin{pmatrix}
(x_0 - x_1)_z & (x_0 - x_1)_y \\
0 & (x_1 - x_0)_x
\end{pmatrix}.
\]

\[
\frac{\partial \mathbf{n}}{\partial x_3} = - \frac{\partial \mathbf{n}}{\partial x_2}.
\]

(10)

Due to Equ. 3 there is

\[
D_{x_0} = \frac{\partial}{\partial x_0} (\hat{n}^T \mathbf{d}),
\]

\[
= \frac{\partial \hat{n}}{\partial x_0} \mathbf{d} + \beta_0 \hat{n},
\]

\[
= \mathbf{N} \frac{\partial \mathbf{n}}{\partial x_0} \mathbf{d} + \beta_0 \hat{n}
\]

\[
= \mathbf{N}(x_{23} \times \mathbf{d}) + \beta_0 \hat{n}
\]

(11)

Similarly, there are

\[
D_{x_1} = -\mathbf{N}(x_{23} \times \mathbf{d}) + \beta_1 \hat{n}
\]

(12)

\[
D_{x_2} = -\mathbf{N}(x_{01} \times \mathbf{d}) - \beta_2 \hat{n}
\]

(13)

\[
D_{x_3} = \mathbf{N}(x_{01} \times \mathbf{d}) - \beta_3 \hat{n}
\]

(14)

Also, there is

\[
\sum_{i=0}^{3} D_{x_i} = 0.
\]

(15)

3. Conservation of the Momentum

In Eq.(4) of the paper, the diagonal mass matrix \(\mathbf{M} \) is meant to maintain the center of mass, so that the angular momentum is least affected when used in a physical simulation. The linear momentum is naturally conserved within each stencil: letting \(\Delta \mathbf{x}_i \) denote the position change, there is \(\sum (m_i \Delta \mathbf{x}_i) = \lambda \sum D_{x_i} = 0 \) due to Eq. 8 and Eq. 15 in this supplementary material. Further, scale the above equation by \(\frac{1}{\Delta t} \) yields \(\sum (m_i \Delta \mathbf{v}_i) = 0 \), which means the momentum of the stencil does not change.