The user tunes the size T of local spectra. The larger T the more information is filtered into N, and possibly the more blur in P and the more artifacts in the synthesis. The smaller T the more information is preserved in P, the more faithful the synthesis, but the less variety is introduced. The tactics is to choose the largest possible T leading to acceptable results.
animal_print_paper_7567:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
blue_rust:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
brick:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
bumpy_hard_concrete_texture_9261475:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
completely_rusted:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
concrete_170793:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
cracked_asphalt_160796:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
cracked_paint_240037:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
cracked_wooden_plank_7090594:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
creased_fabric_7458:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
dotted_cracked_concrete_9290255:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
flaked_plaster_wall_4602:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
lichen_on_stone_5140209:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
lined_woolen_material_2020103:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input. From left to right: increasing sizes T for local spectra used in the analysis.
mosaicstones2:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
natural_noise_recrop:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
noise_04_02_08_16:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
noise_04_02_16_04:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
noise_16_08_32_16:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
noise_recrop:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
painted_flaked_concrete_222733:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
parched_cracked_mud_rainspots_2260562:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
peeling_paint_4060460:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
peeling_paint_4843:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
rust_aniso:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
sahara_sand_patterns_220512:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
sandy_footprints_4573:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
stippled_concrete_7070209:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.
worn_moroccan_rug_with_sand_220523:
From top to bottom: bi-layered synthesis, structure layer extracted from input, noise layer extracted from input.
From left to right: increasing sizes T for local spectra used in the analysis.