Part 1 Introduction

1 Tensor has three intrinsic properties, i.e., scale + shape + orientation
2 Glyph visualization:

(a) Spherical tensor with varying scale alone

(b) Tensors with gradually varying shape alone

(c) Tensors with gradually varying orientation alone

Fig 1 Tensor three intrinsic properties
3 The task is to analyze a group of diffusion tensors.
There are two types of analysis \&visualization (demo) approaches.

- Euclidean Mean + 4th-order Covariance Tensor/Eigen-tensor + Invariant Gradients and Rotation Tangents decomposition

Figure 2 Screenshot of Covariance-based Visualization

- Our mean tensor glyph (encode each tensor property separately) and mean dODF glyph (directly model the diffusion PDF)

Figure 3 Our tensor variation glyph and dODF glyph

Part 2 Ensemble Exploration

Name:
Task:
Visualization:
(1) What tensor shapes do you think are present in the ensemble? Mark them on the triangle.

(2) Is scale varying in this ensemble?
\square No
\square Don't know
(3) Describe the orientation variations.
\square No variationYes, there is Don't know

Could you also tell the major direction(s) that has/have large diffusion variations?
(4) Is there a correlation between
\square No correlation
\square scale-orientation
\square scale-shape
\square shape-orientation
\square scale-shape-orientation
\square Don't know

Part 3 Open Questions

(1) How useful do you think is way to analyze a group of tensors in scale, shape, and orientation separately (i.e., derive the mean and quantify the variations)?
\square Very $\quad \square$Moderately
\square Slightly
\square Not at all
(2) How intuitive is our glyph design? Is
\square Very $\quad \square$ Moderately $\quad \square$ Slightly $\quad \square$ Not at all
(3) How useful do you think the information provided by dODF?
\square Very $\quad \square$ Moderately $\quad \square$ Slightly $\quad \square$ Not at all
(4) Which visualization do you prefer for analyzing the tensor ensemble?

Could you shortly state why?
\square Neither
\square Covariance Tensor
\square Our Method
Both

The comparison of visualization for three synthetic ensembles:

