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Figure 1: Our algorithm learns combinations of geometric features that predict the spatial arrangement of details on surfaces. Left: Input
(target) mesh without details. Center/Right: Details from each source mesh (blue) are synthesized on the target mesh (pink).

Abstract
The visual richness of computer graphics applications is frequently limited by the difficulty of obtaining high-quality, detailed
3D models. This paper proposes a method for realistically transferring details (specifically, displacement maps) from existing
high-quality 3D models to simple shapes that may be created with easy-to-learn modeling tools. Our key insight is to use metric
learning to find a combination of geometric features that successfully predicts detail-map similarities on the source mesh; we
use the learned feature combination to drive the detail transfer. The latter uses a variant of multi-resolution non-parametric
texture synthesis, augmented by a high-frequency detail transfer step in texture space. We demonstrate that our technique can
successfully transfer details among a variety of shapes including furniture and clothing.

1. Introduction

Increasingly customizable characters in video games, massive multi-
user immersive virtual environments, and advances in 3D printing
have all driven the demand for high-quality 3D models. It is time-
consuming and expensive, however, to hand-model or scan 3D
surfaces with realistic fine details. Furthermore, the number of high-
quality 3D models freely available online or elsewhere is severely
limited, forcing designers to generate models by hand or obtain
them from repositories of low-resolution shapes. Even if a detailed
shape is available in a desired class, edits that preserve fine-scale
details are tedious at best. For this reason, most high-quality models

continue to be generated by highly-trained 3D artists who sculpt all
the details manually using modeling tools such as ZBrush [Pix15].

In this paper, we propose that the effort to create a single high-
quality model may be amortized by transferring its details to a
wide variety of easily-produced and widely-available low-resolution
meshes. Specifically, we consider details that may be represented
as displacement maps (so that their geometric extent is limited) and
whose statistics are distinctive over different parts of the surface
(so that they may be treated within the framework of texture
analysis and synthesis). This encompasses surface features such
as wrinkles, fabric patterns, wood grain, scratches, and cloth seams,
which are critical to realism yet most typically missing in the low-
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resolution meshes created by amateurs. However, while there is a
rich literature on texture analysis, the chief difficulty lies in the fact
that realistic surfaces contain many different kinds of details. We
must therefore learn which parts of the source model to draw from
when synthesizing details on every point of a target model.

The key novelty of our work is to use metric learning to find a
combination of geometric features that best predicts which regions
of the source mesh have similar details. The learned metric is then
used to evaluate source-target similarity, which guides the texture
synthesis. This builds upon the insight (also exploited in the work of
Mertens et al. [MKC∗06] and Lu et al. [LGG∗07]) that the details
on a surface are usually correlated with large-scale geometry.

It is important to note that our method does not attempt to
find a one-to-one correspondence, or even a fuzzy correspon-
dence [KLM∗12], between the source and target meshes. Instead, we
perform an analysis entirely within the source mesh to learn which
geometric features are most important for predicting the similarity of
local detail-texture statistics. One way of thinking about our system
is to imagine that it solves an analogy problem (Figure 2): we learn
predictive relationships M between a low-resolution source mesh
S and its detail map D, and apply them to the target mesh S′ to
synthesize a detail map D′.

This approach lets us transfer details between models of sig-
nificantly different size, complexity, and topology. For example,
the center column in Figure 1 demonstrates that our algorithm can
transfer details between similar shapes such as armchairs, while
the right column illustrates that we can also successfully transfer
the diamond pattern from a pillow to a chair. Moreover, notice that
the diamond pattern occurs only on the front side of the pillow,
and accordingly is transferred to only the front side of the chair.
This is because our method learns that the presence of the diamond
pattern is correlated with surface orientation. We demonstrate that
the learned relationship between coarse geometry and texture detail
is highly dependent on shape class and context, highlighting our
method’s contributions beyond existing surface correspondence and
texture synthesis algorithms.

Contributions. The major new contributions of our work presented
in this paper include:

• Learning the relationships between a wide range of geometric
features and the statistics of a detail map expressed as a texture,
via metric learning;
• Transferring surface details between different 3D shapes in a

non-parametric texture synthesis framework;
• Combining coarse- and mid-scale synthesis over the surface with

fine-scale synthesis in texture space, yielding an algorithm with
the stability of the former and the quality and efficiency of the
latter; and

• Releasing a database† of high-quality 3D models generated by
artists, augmenting the currently-limited number of high-quality
models available for research purpose.

† http://surfacedetails.cs.princeton.edu
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Figure 2: Our algorithm learns a mapping M between a coarse
source shape S and its detail map D, and uses the same mapping
to synthesize a detail map D′ for a target mesh S′. Left: the source
and target models without details. Right: source and target meshes
are rendered with their corresponding detail maps.

2. Related Work

Texture Synthesis. Texture synthesis is a long-standing topic in
the computer graphics literature; Wei et al. [WLKT09] present a
comprehensive survey. The original study of texture synthesis was in
the 2D image domain [HB95, EL99, WL00] and was later extended
to synthesis of color patterns [Tur01, WL01] as well as synthesis of
transparency and displacements over surfaces [YHBZ01]. More
recent works in texture synthesis consider volumetric surface
details [BIT04], transferring a geometric texture patch by using geo-
metric images [LHGM05], mesh quilting [ZHW∗06], using terrain
as a height field [ZSTR07], feature-aligned texturing [XCOJ∗09],
material interpolation for appearance synthesis [DBP∗15], and self-
tuning optimization [KNL∗15].

While most of the existing techniques are based on a Markov
random field (MRF) assumption, i.e., that the texture pattern is
both local and stationary, several methods have been proposed
to handle non-stationary textures. Lu et al. [LGG∗07] correlate
the distributions of texture appearance to some simple context
parameters, such as ambient occlusion and principal directions.
Rosenberger et al. [RCOL09] automatically generate control maps
for layered textures. More recently, Chen et al. [CFG∗12] adapt
the PatchMatch algorithm to 3D and transfers textures from one
geometry to another with the help of some geometric features.

The previous work most relevant to our approach is that of
Mertens et al. [MKC∗06]. It uses canonical correlation analysis
(CCA) to find correlations between RGB colors and geometric
features, attempting to explain texture variations caused by processes
such as dust accumulation and weathering. In contrast, our work
employs a wider set of recently-developed geometric features
along with the framework of metric learning, allowing meaningful
correlations to be learned for coarser models and more complex
geometry/texture relationships — see Figure 16 for a comparison.
In addition, our method better handles structured textures such as
wrinkles and sewing stitches, as compared to the highly-stochastic
textures for which the work of Mertens et al. [MKC∗06] is best
suited.
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Shape Correspondence. A key goal of our system is to establish
which points on the source shape should be considered when
synthesizing detail at each point on the target. The simplest version
of this problem would be to compute a one-to-one correspondence
between the source and target meshes, and a long line of research has
been devoted to this problem [VKZHCO11]. Kim et al. [KLM∗12]
extend this line of work to consider fuzzy correspondences among
a set of 3D models, with the goal of facilitating the exploration
of shape collections. Solomon et al. [SPKS16] compute a fuzzy
map from the source surface into the target by minimizing the
distortion between their distance fields. However, most of existing
techniques for shape correspondence require the shapes to have
the same or similar global structure, which severely restricts their
applicability to detail synthesis. Instead, our learned metric can be
used to effectively compute a similarity score between every pair of
points on the source and target shapes. This retains some notion of
correspondence if the shapes are similar, while smoothly degrading
if the shapes are dissimilar in overall structure.

Geometry Synthesis. One application we consider is the synthesis
of wrinkle and crease patterns on cloth, furniture, and other shapes.
Golovinskiy et al. [GMP∗06] synthesize facial wrinkles assuming
both input and training 3D face models are perfectly aligned. They
segment these aligned faces into regions and calculate statistics on
each of them to synthesize new wrinkles for each region separately.
Wang et al. [WHRO10] synthesize wrinkles for cloth which closely
fits the body, based on analysis of simulated examples. Rohmer et
al. [RPC∗10] generate dynamic wrinkles by using the stretch tensor
of the coarse cloth animation as the guidance.

The broader problem of shape synthesis by example has received
considerable attention in other forms. One line of research focuses
on part-based synthesis of new models from shape reposito-
ries [KCKK12, XZCOC12, ALX∗14]. Other methods leverage
symmetry information to generate complex shapes from small ex-
amples [PMW∗08,BWS10,HGM14]. Recently Ma et al. [MHS∗14]
use an analogy-driven framework to transfer style from an exemplar
to a target model. In their framework, the source and the exemplar
models need to have the same structure to build dense point-to-point
correspondences. Furthermore, the input source and target shapes
in their cases have to be of the same style to allow the computation
of source-to-target analogy assembly. In our framework, instead of
computing full correspondences, we transfer details from the source
shape to the target shape via learning from geometric features, which
works for more general input shapes.

3. Algorithm

In order to guide our texture synthesis algorithm, we need to know
which areas on the source mesh should be considered for each
point on the target. As hinted above, we dare not compute a full
correspondence between source and target: that would leave our
method fragile in the face of changes to gross shape, size, and
topology. Instead, we argue that points on the target should draw
from geometrically similar areas of the source. We can evaluate
this similarity on the basis of a variety of geometric features, but
this prompts another question: which features are most important?
Our insight is that feature importance is not universal — in some
situations the details might vary with curvature (such as the wrinkles

on the armrest of the armchair at center in Figure 1), in others with
normals (such as the diamond pattern on one side of the pillow at
right in Figure 1), and in still other situations the variation might
be well-predicted by one of the more recent feature descriptors
such as the wave kernel signature (WKS) [ASC11]. So, we must
learn feature importance for each particular source mesh and every
particular detail texture.

This motivation gives rise to the pipeline in Figure 3. We begin
with a source triangle mesh S and its detail map D : S→ R, where
values in D represent displacements from the base mesh S along
surface normals — see Figure 4. For both S and the target mesh S′,
we use repeated remeshing to create lower-resolution versions.

Our key new step is to analyze which regions of D are self-similar
and learn a metric M that predicts these similarities on the basis
of geometric features G. The learned metric M is applied to target
features G′, allowing us to evaluate the similarity of points on the
source and target. This, in turn, is used to guide a multi-resolution
texture synthesis algorithm, which yields the target detail map D′.
In a refinement step, we transfer the highest-frequency details from
D directly to D′, operating in texture space rather than on the mesh.

3.1. Input Preprocessing

Canonical Scale and Orientation. Our first preprocessing step is
to scale each mesh consistently with the others, and orient it such
that its semantically-meaningful “up” direction points along the
positive y axis. While we perform this manually, we believe that
automatic algorithms could perform nearly as well [FCODS08].

Mesh Hierarchy. We create a multi-scale mesh hierarchy for both
the source and target meshes. We use an isometric remeshing
algorithm proposed by Botsch and Kobbelt [BK04] to create multi-
resolution mesh hierarchies for both the source and the target meshes.
Specifically, we use the implementation provided by Möbius and
Kobbelt [MK12] and create four-scale hierarchies in which the
average edge length of each level is equal to half the average edge
length in the previous level.

Tangent Frame. Our texture synthesis algorithm operates one
patch at a time, and so we need to define the orientations of patches
that will be used for search and synthesis (see Figure 5a-b). The first
step is to define the orientation of a tangent frame at each vertex on
the surface. We experimented with a variety of strategies to obtain
tangent frames including using the gradient of an artist-provided
uv map of texture coordinates, principal curvature directions, user-
specified vector fields [Tur01], stripe pattern synthesis [KCPS15],
and integrable PolyVector fields [DVPSH15]. However, all of these
strategies in practice lead to inconsistent orientations between
similar patches on the source and target meshes and led to poor
results in our application. Exploring the problem of defining
consistent tangent frames between meshes is an interesting avenue
for future work, but for the purposes of this work we adopt a simple
strategy that appears to work in most cases: we assume that the
source and target models are consistently oriented and we project the
constant vector (1,0,0) onto the plane perpendicular to the surface
normal n, using that as the first tangent vector u. The other vector
v is defined as n×u. While this results in some discontinuities, we
have not found this to be a problem in practice.
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Figure 3: Algorithm overview.

Source Low-poly Mesh Displacement map

Figure 4: A source mesh represented by a low-polygonal mesh and a
displacement map — see supplemental material for more examples.

3.2. Analysis

Our first step is to analyze how features in the detail map D correlate
with the geometry of the source surface S. This proceeds in three
steps: (1) determining which regions of D have similar textures; (2)
computing a vector of geometric features G at each point on the
surface; and (3) applying a metric learning algorithm to determine
a linear transform of G that best matches the texture similarities.
In the detail transfer stage (Section 3.3), this metric will be used
to select patches on S whose details can be transferred to different
points on S′.

3.2.1. Detail Features

In order to determine which regions of the surface have similar detail
texture, we compute a “detail feature” for each vertex on the surface,
characterizing the statistics of the texture in its neighborhood. We
begin by mapping a 2D square patch on the tangent space around
each vertex v onto the surface S via an approximate exponential map,
as shown in Figure 5. We use a technique similar to that proposed
by Melvaer and Reimers [MR12]. We choose this parameterization
at each v ∈ S because in the smooth case it maps the tangent plane
at v into S with minimal distortion about the center point [Hel78].

We then compute the texture statistics of each unfolded 2D patch.

(a) (b) (c) (d) (e)

Figure 5: Exponential mapping used to sample around vertex v. (a)
Tangent space of a surface S around vertex v with the tangent vector
u and the relative location vector r of a pixel; (b) corresponding u
and r vectors on the 3D surface S; (c) example 3D model with detail
map visualized as vertex colors; (d) exponential mapping around
the corner of the seat; (e) corresponding 2D patches: a synthetic
color mapping and actual sampled patch around the selected vertex.

We use the low-dimensional feature vector proposed by Golovinskiy
et al. [GMP∗06], which consists of standard deviations of the
histograms of steerable-pyramid filter bank outputs [HB95] at four
orientations and four scales, along with a high-pass filter. Hence, the
detail map around each vertex vi is identified with a 17-dimensional
feature ti. Figure 6 shows the steerable pyramid outputs for the
patch around the selected vertex marked in Figure 6b, along with
the detail similarity between the selected point and all other points
on the mesh. Histograms of the steerable pyramid are overlaid to
demonstrate the varying standard deviation over different scales and
orientations.

3.2.2. Geometric Features

We compute the following geometric features at each vertex of the
source mesh:

• Curvature (C): The two principal curvatures, along with the
mean curvature, Gaussian curvature, and L2 norm of the two
principal curvatures.

• Height (H): The y-coordinate of each vertex.
• Normals (N): The surface normal at each vertex. We smooth
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Figure 6: Computation of detail features. (a) The steerable pyramid
of a patch around the vertex highlighted in b for 4 scales (rows)
and 4 orientations (columns), overlaid with their histograms; (b) a
detail map with one point highlighted, together with its similarity
(blue = similar, red = dissimilar) to all other vertices on the shape.

them with a Gaussian kernel with standard deviation of four times
the average edge length to get rid off noise in surface normals .

• Shape diameter function (SDF): A measurement of local object
diameter, useful for separating thin and thick parts of the
object [SSCO08].

• Distance to segmentation boundary (Seg): The geodesic dis-
tance from each vertex to the closest segmentation boundary
obtained using SDF [SSCO08], normalized by the maximum
distance within the each segment as described by Chen et
al. [CSPF12].

• Statistics on geodesic distances (Geo): The mean, median,
maximum, standard deviation, tenth percentile, and ninetieth
percentile of geodesic distances from each vertex to all oth-
ers [CSPF12].

• Relative xyz coordinates (Box): Each vertex’s coordinates with
respect to the center of the bounding box, normalized by the size
of the corresponding dimension of the bounding box.

• Heat kernel signature (HKS): Measurements of the dissipation
of heat from a point onto the rest of the shape over time [SOG09],
sampled at 20 points in time.

• Wave kernel signature (WKS): The average probability to find
a particle of a given energy at a given point [ASC11], sampled at
20 points on the frequency range.

Concatenating all of these features, we obtain a 60-dimensional
geometric feature vector gi at each vertex vi. Figure 7 visualizes each
geometric feature for an armchair. A diverging color map [Mor09]
is used, with blue mapped to the minimum value and red mapped to
the maximum.

3.2.3. Metric Learning

Measuring distances or similarities between data is ubiquitous in
machine learning, pattern recognition, and data mining, but it is
generally difficult to tailor metrics for specific problems. This has
led to the emergence of metric learning, which automatically adjusts
a distance or similarity function using training data [Kul13, BHS15].

Figure 7: Geometric features for an armchair. Each image visualizes
one of the 60 geometric features, with minimum and maximum
values of each feature mapped to blue and red, respectively.

In this work, we use a supervised global distance metric learning
method to find a transform to be applied to our geometric features,
such that distances between transformed features are predictive
of distances between statistics of surface details. Although the
expressive power of a global metric is limited relative to localized
alternatives, the resulting convex objective is easier to optimize and
suffices for our application. Furthermore, computation of a single
global metric is more resistant to over-fitting relative to nonlinear
and local methods [BHS15].

We define G to be a geometric feature matrix, with entry Gi j
corresponding to the i-th feature of the j-th vertex on the source
mesh. Additionally, we define the detail similarity matrix T to have
entries Ti j = 〈ti, t j〉, where ti is the texture feature vector of the i-th
vertex. Intuitively, assuming we subtract the mean texture features
ahead of this step, we can think of Ti j as measuring the similarity of
vertices i and j with respect to the texture features.

We wish to learn a metric on geometric features that mimics the
metric on ti. Formally, we can think of this problem as learning
a distance function d(·, ·) between columns of G that imitates the
distances encapsulated in T . For simplicity, we restrict ourselves to
Mahalanobis metrics of the form

d(gi,g j) = (gi−g j)
>M (gi−g j), (1)

for some matrix M � 0; the positive-definite constraint is needed for
our metric to satisfy the triangle inequality. Since we create a mesh
hierarchy on both target (on the low-resolution shape component)
and source meshes with the same resolutions, meshes at the same
levels will have similar geometric complexity (level-of-detail) and
therefore are comparable by the Mahalanobis metric.

We propose learning M via the following optimization problem:

minM ‖T −G>MG‖2
Fro + λ‖M‖1

s.t. M � 0.
(2)

We solve this convex problem using CVX [GB08]. The first objective
term encourages the inner products of geometric features with
respect to M to look similar to dot products of the texture features.
The second objective term, modulated by a regularization parameter
λ ≥ 0, promotes sparsity of M [BHS15], in this case reflecting
the intuition that most features are uncorrelated and hence should
have entry Mi j = 0. The examples in this paper use λ = 0.1, which
worked effectively for all of our experiments. This formulation looks
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for a global metric as opposed to a localized one. In this setting of
transferring the details for objects of the same class, the use of a
global metric enables us to find a correlation between general, global
shape and high frequency details. For example, the wrinkle patterns
are expected to be different on a seat of a chair and its back, while
we would expect these areas to be locally similar, especially when
represented as simplified shape S.

We experimented with a variety of metric learning alternatives,
most notably a formulation minimizing differences of L2 distances
instead of inner products. While still convex, the resulting optimiza-
tion problem is considerably more difficult to solve because the
quadratic terms become dense in the optimization variables. Our
formulation yielded similar results in far less computation time.

Comparison to Context-Aware Textures. Lu et al. [LGG∗07]
propose a method for capturing time-varying textures and context
parameters (a few geometric features) to control texture transfer.
They first compute a diffusion map to represent the time-varying
texture with a set of orthogonal functions on vertices. They
then compute a correlation by taking the inner product of the
diffusion map and context parameters (defined by ambient occlusion,
signed mean curvature, principle curvature directions, normals in
optimal and non-optimal surface directions). They only use these
correlations to select the most important context parameter, since
the numerical values of these correlations are not meaningful. To
transfer time-varying textures, they provide a user interface in which
the user can control the transfer by selecting a context parameter.
We found that this approach is limited to mostly stochastic textures
resulting from phenomena such as rusting, weathering, or chemical
agents, for which the color variation can be simply explained with a
single geometric feature such as ambient occlusion. We provide an
empirical comparison later in the paper (Figure 16b).

Comparison to CCA. Mertens et al. [MKC∗06] propose guiding
geometric texture synthesis using canonical correlation analysis
(CCA). Their work projects geometric features onto three directions
that are predictive of RGB triplets, computed using a greedy
sequence of eigenvector computations [HSST04]. We found that
this low-dimensional projection and use of color rather than texture
descriptors is not as good as metric learning at taking advantage
of the rich relationships between shape and texture. Furthermore,
our formulation (2) is globally optimal, allows for sparsity-based
regularization, and is specifically tuned to the specific task of
computing distances between features. We provide an empirical
comparison to CCA later in the paper (Figure 16c).

3.3. Detail Transfer

Transferring details from one surface to another can be thought of as
a texture synthesis problem. In the literature, there are various works
on texture synthesis in both 2D and 3D. Although 2D domains have
regular grid structures that enable fast processing, projecting back
into 3D introduces distortion. On the other hand, achieving high
resolution in 3D requires higher computational complexity than
in 2D. To leverage the advantages of both methods, we propose a
hybrid approach: first transferring details between 3D surfaces, then
post-processing the synthesized detail maps, in texture space, to
enhance fine details.

First, all the geometric features described in the previous section
are computed for the full multi-resolution hierarchy of the target
mesh S′. At this point, we have a new Mahalanobis distance function
to compute geometric similarity between points on the source and
target meshes, as follows:

d(gi,g
′
j) = (gi−g′j)

>M(gi−g′j) (3)

= ‖Agi−Ag′j‖2
2, (4)

where the positive semidefinite matrix M is factored as M = A>A
using Cholesky decomposition. We apply the transformation matrix
A to all geometric feature vectors of both the source and the target
meshes to simplify subsequent processing.

Algorithm 1 Detail transfer from source to target.

function TRANSFER-TEXTURE(Hsrc, Htgt , n)
Hsrc: mesh hierarchy for the source shape
Htgt : mesh hierarchy for the target shape
n: patch size

compute sweep order on Htgt
for each level in Htgt , coarsest to finest:

up-sample vertex colors
SYNTHESIZE-LEVEL(Hsrc, Htgt , n)
reverse sweep order
SYNTHESIZE-LEVEL(Hsrc, Htgt , n)
n← 2∗n+1

Algorithm 2 Detail transfer in a single level.

function SYNTHESIZE-LEVEL(Hsrc, Htgt , n)
sample patches around evenly-distributed source vertices
for each target vertex, in sweep order:

if displacement weight wdisp > 0.5 then
skip the vertex

sample a patch around the vertex
match features to find candidate source patches
match patches to find best candidate
blend best patch into target mesh

3.3.1. Detail Transfer over Surfaces

We adapt a variant of non-parametric texture synthesis (which has
been explored for both images [EL99] and 3D surfaces [Tur01]) to
transfer details from one surface to another. We use a hierarchical
method in which the synthesis progresses from the coarsest to finest
level in a mesh hierarchy. We also propose using a sweep order based
on the number of good candidates per vertex. In other words, vertices
with fewer good candidate source patches should be synthesized
first, because they have fewer degrees of freedom. The synthesis is
guided by a two-step matching phase where both geometric features
and already-synthesized details are considered. We also choose to
synthesize a patch at a time, in preference to per-vertex synthesis, to
both accelerate the process and preserve local coherency.

Our detail transfer algorithm is presented as Algorithms 1 and 2,
above. The main blocks of the algorithm are as follows:
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• Sweep order: The number of good correspondences per target
vertex is computed by thresholding the (transformed) distances
d(gi,g j) from that vertex to all vertices on the source mesh. A
few vertices with the fewest good correspondences are selected
as initial seed vertices. Those seed vertices are then used to
determine the sweep order, based on the geodesic distance from
the seed vertices to others. However, to reduce order dependence,
we reverse the sweep order at each iteration.
• Sampling: At each level in the hierarchy, the source mesh is

sampled evenly and exponential surface patches around those
samples are stored along with their embedded geometric features,
as explained in Section 3.2.1.

• Matching: A two-step matching algorithm is used to find the
best-fitting patch from the source mesh to the target mesh. First,
a set of candidate patches are found from the source mesh based
on geometric feature similarity. Second, among those candidates
the one which is the most similar to the already-synthesized part
of the detail map on the target mesh is selected. In both steps, a
translational refinement is applied when searching for the most
similar feature or displacement patch.

• Blending: The best candidate patch is copied onto the target
mesh and blended seamlessly by using a weighted average
controlled by two weights, wloc and wval , inversely proportional
to: (i) the distance from the center of the patch, xc, to the pixel
location, xi, and (ii) the difference between the new, dnew, and
already synthesized, dcurr, displacement values, respectively. In
particular, the per-vertex displacement weights wdisp are updated
as follows:

wdisp← wdisp +wloc wval (5)

wloc = f
(
‖xc− xi‖/(n/

√
2)
)

(6)

wval = f
(
‖dcurr−dnew‖/dmax

)
, (7)

where n is the patch size, f (x) = 2x3−3x2 +1 as in [Tur01], and
dmax = 1, assuming the displacement values are in [0,1].

3.3.2. Texture-space High-frequency Detail Transfer

Detail transfer over surfaces is limited by the finest mesh resolution
in the mesh hierarchy. In order to transfer details with higher
frequency than the mesh sampling, we propose a hybrid synthesis
approach: detail transfer over surfaces (Section 3.3.1) followed by a
refinement step in texture space (below).

The texture-space refinement begins by rasterizing the per-vertex
displacements synthesized on the target mesh into a target texture
map. We then consider small patches pi from the source texture,
centered at each vertex, along with their corresponding locations
in the target texture. We warp each pi to match the uv texture
parameterization of the target, and further refine its translation to
match the target texture as well as possible. Finally, we transfer
only the high frequencies from pi to the target, where the cutoff
frequency is set according to the median edge length in uv texture
space. The results before and after this refinement step are shown in
Figure 8.

4. Results

Wrinkles on Clothing. In Figure 9, we demonstrate that our
framework can be used to add a realistic appearance of fabric to

(a) Source (b) Before (c) After

(d) Source (e) Before (f) After

Figure 8: High-frequency refinement of transferred texture. (a)
Close-up image from a source detail map. (b) Before the refinement
step, the transferred texture is blurrier than the original. (c) After
texture-space refinement, high-frequency details are restored. (d)
Source model with details, (e), (f) target model with details before
and after the refinement step.

clothing models. We not only transfer details between shapes in
the same category, such as pants, but also transfer details from
a full-body scan to a single piece of clothing. In this case, the
automatically-learned metric is able to restrict the textures that
are selected to ones appropriate to the target. We believe that this
framework has a wide variety of applications, perhaps extending to
synthesizing details in areas with poor visibility on a 3D scanned
model.

In all, we generated a significant number of high-quality 3D
clothing models from 6 source models and 11 target models. See
the supplementary materials for more results.

Style Transfer on Furniture. Figure 1 and 16e show some of the
results of transferring details including wrinkles, seams, and fabric
patterns among models of upholstered furniture. In each case, the
source mesh is shown in blue, with subsequent pink models being
the targets.

The results show that we are able to capture the semantically-
meaningful distribution of details on the surface. For example,
similar kinds of wrinkles and seams tend to appear in corresponding
places on the surface, even in the presence of large differences in
overall shape. Note also that our non-parametric texture synthesis
algorithm is able to handle patterns ranging from structured to
completely stochastic.

We also demonstrate in Figure 10 that our algorithm can be used
on low-polygonal shape collections to convert them into high-quality
models from little data (i.e. from a single armchair to four sofas with
different sizes as shown in the figure) and produce similar-looking
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Figure 9: Detail transfer for clothing models. For each source mesh (left column), we transfer details to three different target meshes.

but not identical details which is important for a realistic appearance
of details like wrinkles.

In the furniture category, 17 artist-designed source models were
used to create a number of high-quality target models. More results
are presented in the supplementary materials.

Other Transfer Results. We also demonstrate a few results on
shapes from other classes. In Figure 11, we use the armadillo as a
source mesh and transfer the details to a bunny and a pair of pants.
Our algorithm transfers the square pattern from the armadillo’s shell
to the bunny’s back, and the bumpy pattern on the armadillo’s legs
to the pants. Additionally, we apply our algorithm on few faces from
the Merl face database [GMP∗06], as shown in Figure 12 – see the
supplemental material for further examples.

5. Experiments and Comparisons

Comparison to Other Algorithms. We compare our algorithm to
several alternatives:

1. No Metric Learning: We disable the metric learning part of

our algorithm, giving equal weight to each geometric feature.
Specifically, we subtract the mean of each feature, and then divide
by its standard deviation across the shape. This method can also
be understood as a version of MeshMatch, proposed by Chen et
al. [CFG∗12], where the geometric features are equally weighted.
As shown in Figure 16a, when the algorithm relies on all the
geometric features equally and the source and target meshes
have dissimilar local geometry, it fails to transfer meaningful
details. For example, as shown in the middle column, it transfers
wrinkles from the corner of the source armchair to the middle of
the couch.

2. Lu et al. [LGG∗07]: Although the method proposed by Lu
et al. [LGG∗07] focuses on time-varying textures, we adapt
their idea of context-aware textures to compare to our method.
Specifically, we compute the eigenvalue decomposition of the
learned metric M and use the geometric feature (their “context
parameter”) corresponding to the highest eigenvalue. In other
words, we transfer details using guidance from a single geometric
feature to explain the correlation between geometry and details of
the source mesh. In Figure 16b, the rightmost column shows that
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Figure 10: Details from the source meshes shown in blue are transferred to multiple target models to demonstrate that our algorithm produces
similar but not identical details.

Figure 11: Detail transfer from Armadillo to Bunny and pants.

Figure 12: Detail transfer on faces from Merl Database from the
source models in blue to the target models in pink.

Source Targets

Figure 13: Full correspondences produced by using Solomon et
al. [SPKS16]. Red points are set manually as constraints. False
coloring is used to visualize correspondences between the source
and target meshes. The same correspondences are used in Figure
16d for comparison.

this technique works if the details are highly correlated with a
single geometric feature. In this example, the highest eigenvalue
corresponds to mean curvature, which explains the distribution of
the wrinkles on the surface very well. On the other hand, the first
and second columns show that this method is not sophisticated
enough to discover details whose relationship with the underlying
geometry is not captured by a single descriptor.

3. Canonical Correlation Analysis (CCA): Previous work by
Mertens et al. [MKC∗06] uses CCA to find correlations between
RGB and geometric features (a smaller set than is used in
this paper). To provide fair comparison to metric learning, we
use CCA to find the relationship between the detail-texture
descriptors described in Section 3.2.1 and the geometric features
listed in Section 3.2.2. We then use this correlation, instead of
metric learning, to guide detail transfer. As shown in Figure 16c,
CCA fails to capture a meaningful relationship between the
details and the geometric features and results in poor guidance
while our results in Figure 16e significantly differs from and
outperforms CCA. For example, CCA cannot capture the locality
of the details on the concavity between the couch’s seat and
backrest shown in the middle close-up of Figure 16c, while our
method clearly does.

4. Mesh correspondence: One could also imagine using a mesh
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correspondence algorithm as guidance for texture transfer.
Figure 16d illustrates the advantages of metric learning over this
more restrictive pipeline. In this experiment, we use the method
of Solomon et al. [SPKS16] to compute a probabilistic map from
the source surface into the target while minimizing geodesic
distortion (regularizer α = 0.005); we mark a single point as a
constraint. We then use the 10 highest-ranking matches for each
target point to guide texture synthesis. Algorithms like [SPKS16]
minimize distortion while seeking bijective maps. As illustrated
in the results of this test, these properties can be problematic for
texture synthesis. Textures may be better aligned with features
captured by our metric, even if this induces stretch of the source
onto the target. Furthermore, the search for a bijective mapping
is subject to local minima. Figure 13 shows some instances in
which our one-point constraint led to smooth but counterintuitive
maps; these maps fail to capture critical semantic relationships
thanks to the geometric variability of the models.

We also experimented with turning off the geometric feature
matching altogether. However, with no constraint on which regions
of the source mesh should be used at different locations on the target,
the texture synthesis algorithm quickly “got stuck” by gravitating
towards a single texture, most typically the one with lowest variation.
This is because the matching part of the algorithm tries to minimize
the difference between adjacent detail patches, and completely flat
patches minimize this cost function most effectively.

Significance of Geometric Features. To demonstrate the signifi-
cance of different geometric features used for the detail transfer,
we learn the relationships between the surface details and the
geometric features, as explained in Section 3.2.3, for models in two
different categories: (i) clothing, with six models, and (ii) furniture,
with 17 models. We plot the average of the first eigenvectors
(i.e., corresponding to the largest eigenvalues) of matrices M for
both categories in Figure 14. To make the graphs more compact,
related geometric features are grouped into one; for instance, the
“curvature” data point (C) represents the total significance of all the
features derived from surface curvatures, as listed in Section 3.2.2.
The only exceptions are the Heat Kernel Signatures (HKS) and
Wave Kernel Signatures (WKS), which are partitioned into low-
frequency (HKS1 and WKS1) and high-frequency (HKS2 and
WKS2) components. The error bars on each data point represent
variance of the corresponding class of features across models within
a category.

We observe that the variation in the surface details for clothing
is highly dependent on the height and SDF, while curvatures and
surface normals are more important for furniture. On the other hand,
the metric learning finds HKS features to be the least important
for both categories. This can be explained by the presence of WKS
features, since WKS is known to be more robust and distinctive
compared to HKS.

Because meshes can vary in which geometric features are most
strongly expressed, we also experimented with including the target
mesh geometry into the metric learning — essentially, ensuring that
the learned metric on the source mesh only includes features that
are present and important on the target. To do this, we first find the
principal components of the 60-dimensional geometric features of
the target mesh, then project the source geometric features onto the
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(a) Clothing (b) Furniture

Figure 14: Significance of different geometric features, for (a)
clothing and (b) furniture models. The y axis shows the average
values of the first eigenvectors of learned matrices M, with the error
bars in red representing variation of feature significance among the
models in a shape category. Categories of geometric features are
grouped along the x axis.

(a) (b) (c)

Figure 15: Experiment evaluating the stability of detail transfer. (a)
Source mesh; (b) target mesh, with details synthesized from the
source mesh; (c) source mesh, with details transferred back from
the mesh in (b).

first k of those principal components; we experimented with using
k = {5,15,30,45,60}. We use these projected geometric features,
instead of the original ones, in the metric learning and the detail
transfer. While we believe that there may be situations in which this
yields a benefit, we did not observe significant improvements by
adding this step. A more thorough exploration of using target feature
distribution to guide the metric learning would be an interesting
avenue for future work.

Stability of Detail Transfer. Figure 15 shows the result of an
experiment intended to evaluate how well our learning step can
match the distribution of textures across a model. Specifically, we
first transfer details from the model in a to the one in b. Then, we
use the synthesized model in b as the source mesh and transfer
details from b back to the model in a (ignoring its original detail
map), yielding the result in c. We observe that our framework is
stable enough to produce a plausible result (although, as with any
texture-synthesis result, we would not expect perfect agreement).

Performance and Statistics. The processing time of our unopti-
mized implementation of the algorithm varies depending on the size
of the source and target meshes. We observe that smaller meshes
such as the pants example (with the lowest resolution of 1.1k faces
and the highest resolution of 70k faces in the mesh hierarchy) take
a few minutes while larger meshes such as long couches (with the
lowest resolution of 6k faces and the highest resolution of 400k
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(a) No Metric Learning

(b) Lu et al. [LGG∗07]

(c) CCA, Mertens et al. [MKC∗06]

(d) Surface correspondence, Solomon et al. [SPKS16]

(e) Our results

Figure 16: Comparisons to several algorithms. Source meshes are shown at the top row in blue and the results are shown in pink.

faces in the mesh hierarchy) may take around 30 minutes on a 16
GB DDR 2.5GHz Quad-core Intel Core i7 machine.

6. Conclusions

This work presents an algorithm to transfer surface details from one
shape to another in a non-parametric texture synthesis framework,

guided by learned relationships between the surface details and
the geometric features of the source shape. We showed that there
is no one global set of geometric features to guide the surface
detail transfer across different shape categories so a metric learning
algorithm is needed to compute the appropriate weightings of
different geometric features for each source shape and detail map.
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Discussion. The success of our method depends on finding a mean-
ingful correlation between geometric features and the distribution
of details across a surface. This is most easily accomplished when
the source and targets are in the same class, and indeed this was the
case for which our algorithm was designed. When the source and
target differ more drastically, we make the following observations:

• If the source has no regions closely matching the target, our
algorithm will still find the closest match. As with all data-driven
methods, a lack of training data can lead to suboptimal results.

• Because we use a rich feature set, including global features, even
points with identical local geometry, such as the two armrests of
an armchair, will have distinct features. This allows our algorithm
to learn whether these regions should have similar or different
textures.

• If two points have similar texture but different geometry, our
algorithm will learn that similar geometric features are not
predictive of texture (though, as mentioned above, “global”
features may differ).

• If two objects come from completely different classes, our method
may still produce intuitive results, such as in Figure 1, right,
or Figure 11, bottom. In other situations, such as armadillo-
to-armchair detail transfer, however, the result will not be
meaningful.

Limitations and Future Work. One of the limitations of the detail
transfer is the dependence on the tangent frame. Since (to our
knowledge) there is no prior work that creates consistent tangent
fields between two different 3D shapes, we rely on their initial
alignment and the projection of a single global direction. Although
we could search over different orientations during synthesis, this
would result in higher computational complexity and inconsistently
(and unnaturally) oriented details such as wrinkles. As future work,
we would like to explore how to generate consistent tangent frames
between shapes for texture synthesis over surfaces.

As with all MRF-based texture synthesis techniques, our al-
gorithm performs less than ideally for highly-structured patterns.
Specifically, neither the self-similarity of the detail map nor the
geometric features that are used to transfer detail are precise enough
to represent highly-structured repetitive patterns and exactly where
they should appear on the surface. Exploring more sophisticated
texture descriptors and geometric features tailored to structured
patterns would be an interesting future direction.

In this work, we focus on transferring details from a single source
mesh (to arbitrary targets), because of the limited number of high-
quality 3D models available as input. Even though our framework
can be used to extend the available collections of high-quality
meshes, the resulting styles will still be limited to those present
in the original source collection. An interesting avenue would be to
explore interactive tools for novice users to create high-quality mesh
detail maps quickly, possibly exploiting inputs such as photographs.
Once there are more high-quality models available, we would like
to explore transferring details from collections of shapes, instead
of being limited to a single source mesh. Furthermore, while we
believe that a deep learning approach to our problem is an interesting
research direction, the need for large amounts of training data and
memory has steered us away from such endeavor. Although it is

possible to use pre-trained weights to fine tune a specific 2D problem
with limited data, such architectures do not exist for 3D shapes yet.

While in this work we focus on small surface details, which are
conveniently represented by displacement maps, recent work in 3D
shape analysis has begun to focus on the understanding and transfer
of larger-scale mesh “style” [MHS∗14, LKS15, LHLF15, WSH∗16].
We believe that our work may form part of a toolbox for analyzing
the expression of style across different frequencies in 3D models,
and it would be an interesting direction to explore unified solutions
for transferring geometric elements of all scales between meshes.
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