• Login
    View Item 
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2006
    • View Item
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2006
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effective Retrieval and Visual Analysis in Multimedia Databases

    Thumbnail
    View/Open
    schreck.pdf (10.32Mb)
    Date
    April 2007
    Author
    Schreck, Tobias
    Item/paper (currently) not available via TIB Hannover.
    Metadata
    Show full item record
    Abstract
    Based on advances in acquisition, storage, and dissemination technology, increasing amounts of multimedia content such as images, audio, video, or 3D models, become available. The Feature Vector (FV) paradigm is one of the most popular approaches for managing multimedia content due to its simplicity and generality. It maps multimedia elements from object space to metric space, allowing to infer object similarity relationships from distances in metric space. The distances in turn are used to implement similarity-based multimedia applications. For a given multimedia data type, many different FV mappings are possible, and the effectiveness of a FV mapping can be understood as the degree of resemblance of object space similarity relationships by distances in metric space. The effectiveness of the FV mapping is essential for any application based on it. Two main ideas motivate this thesis. We first recognize that the FV approach is promising, but needs attention of FV selection and engineering in order to serve as a basis for building effective multimedia applications. Secondly, we believe that visualization can contribute to building powerful user interfaces for analysis of the FV as well as the object space. This thesis focuses on supporting a number of important user tasks in FV-based multimedia databases. Specifically, we propose innovative methods for (a) effective processing of content-based similarity queries, (b) FV space visualization for discrimination analysis, and (c) visualization layout generation for content presentation. The methods are applied and evaluated on a number of specific multimedia data types such as 3D models, images, and time series data, and are expected to be useful in many other multimedia domains.
    URI
    http://diglib.eg.org/handle/10.2312/8183
    Collections
    • 2006

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA