• Login
    View Item 
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2018
    • View Item
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2018
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scalable exploration of 3D massive models

    Thumbnail
    View/Open
    PhD Thesis (12.35Mb)
    Date
    2018-11-26
    Author
    Jaspe Villanueva, Alberto
    Item/paper (currently) not available via TIB Hannover.
    Metadata
    Show full item record
    Abstract
    This thesis introduces scalable techniques that advance the state-of-the-art in massive model creation and exploration. Concerning model creation, we present methods for improving reality-based scene acquisition and processing, introducing an efficient implementation of scalable out-of-core point clouds and a data-fusion approach for creating detailed colored models from cluttered scene acquisitions. The core of this thesis concerns enabling technology for the exploration of general large datasets. Two novel solutions are introduced. The first is an adaptive out-of-core technique exploiting the GPU rasterization pipeline and hardware occlusion queries in order to create coherent batches of work for localized shader-based ray tracing kernels, opening the door to out-of-core ray tracing with shadowing and global illumination. The second is an aggressive compression method that exploits redundancy in large models to compress data so that it fits, in fully renderable format, in GPU memory. The method is targeted to voxelized representations of 3D scenes, which are widely used to accelerate visibility queries on the GPU. Compression is achieved by merging subtrees that are identical through a similarity transform and by exploiting the skewed distribution of references to shared nodes to store child pointers using a variable bit-rate encoding The capability and performance of all methods are evaluated on many very massive real-world scenes from several domains, including cultural heritage, engineering, and gaming.
    URI
    https://diglib.eg.org:443/handle/10.2312/2632715
    Collections
    • 2018

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA