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Figure 1: The pictures show simulations using higher order finite elements (FE) with our p-multigrid algorithm. From left to
right: Animation of a gargoyle using quadratic FE. A bunny with quadratic FE colliding with obstacles. A toy is animated by
changing boundary conditions (cubic FE). A frog model with twisted deformation (cubic FE).

Abstract
We present a novel p-multigrid method for efficient simulation of co-rotational elasticity with higher-order finite
elements. In contrast to other multigrid methods proposed for volumetric deformation, the resolution hierarchy is
realized by varying polynomial degrees on a tetrahedral mesh. We demonstrate the efficiency of our approach and
compare it to commonly used direct sparse solvers and preconditioned conjugate gradient methods. As the polyno-
mial representation is defined w.r.t. the same mesh, the update of the matrix hierarchy necessary for co-rotational
elasticity can be computed efficiently. We introduce the use of cubic finite elements for volumetric deformation and
investigate different combinations of polynomial degrees for the hierarchy. We analyze the applicability of cubic
finite elements for deformation simulation by comparing analytical results in a static scenario and demonstrate
our algorithm in dynamic simulations with quadratic and cubic elements. Applying our method to quadratic and
cubic finite elements results in speed up of up to a factor of 7 for solving the linear system.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

In the realm of computer graphics several classes of algo-
rithms have been proposed for simulating volumetric de-
formation. These include, among others, position-based dy-

† e-mail: daniel.weber@igd.fraunhofer.de

namics [BMOT13], mass-spring systems and finite element
methods [MG04] (FEM). FEM is a popular choice when in-
tuitive material parameters and accuracy are important, as
these methods are based on continuum mechanics and do
not require parameter tuning to achieve physically plausible
results. Instead of the commonly used linear basis functions,
some authors propose to simulate volumetric deformation on
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tetrahedral meshes using quadratic finite elements, i.e., using
polynomials of degree two (see, e.g., the work of Mezger et
al. [MS06] or recently Bargteil et al. [BC14]). This leads to
improved accuracy as higher polynomial degrees can bet-
ter approximate the solution of the partial differential equa-
tion. Even though the number of degrees of freedom per el-
ement increases, the computational time can be reduced as
the desired deformation can be represented with significantly
fewer elements.

However, simulating deformation with finite elements is
computationally expensive, as for a stable simulation, large,
sparse linear systems must be solved in every time step. Typ-
ically, direct solvers like sparse Cholesky factorization or the
method of conjugate gradients (CG) with preconditioning
are chosen to solve these linear systems. These are usually
the bottleneck of the simulation algorithm and become even
more critical with increasing model sizes. A frequent com-
promise is to use a fixed number of CG iterations, but this
in turn increases the numerical damping of the simulation
and dissipates energy as we will demonstrate. In this paper
we address this issue and propose a geometric p-multigrid
method to efficiently and accurately solve sparse linear sys-
tems arising from higher order finite elements.

In our approach, we construct a hierarchy of varying de-
gree polynomials to represent the field of unknowns. These
are defined on the same tetrahedral discretization to iter-
atively improve the solution of the linear system. In con-
trast to other multigrid approaches for deformation simula-
tion these levels vary in polynomial degree instead of mesh
resolution. Furthermore, we introduce volumetric deforma-
tion simulation using cubic finite elements on tetrahedral
meshes, which have not been proposed so far in the computer
graphics community to the best of our knowledge. We repre-
sent the shape functions as polynomials in Bernstein-Bézier
form (B-form) and show how restriction and prolongation
of shape functions can be incorporated into the polynomial
hierarchy. Our contributions are as follows:

• We introduce a novel multigrid solver for volumetric de-
formation with higher order finite elements

• We present deformation simulations with cubic finite ele-
ments in B-form

• We show how polynomial representations in B-form of
different degrees can be efficiently transformed into each
other

• We demonstrate a speed up for higher order simulations
up to a factor of 7 for solving the linear system in com-
parison to a preconditioned CG method.

2. Related Work

In the realm of computer graphics many methods for volu-
metric deformation simulation have been proposed. Most of
the earlier work is summarized in the survey of Nealen et
al. [NMK∗06]. Besides methods based on solving the partial

differential equations of linear, co-rotational or non-linear
elasticity there are a number of other techniques for physi-
cally plausible volumetric deformation. In the early work of
Baraff and Witkin [BW98] a numerical integrator for mass-
spring systems and constraints was introduced allowing for
arbitrarily large time steps. Although mass-spring systems
have not been the focus of research for a long time, recently
a block coordinate descent method was proposed by Liu et
al. [LBOK13] where a constant stiffness matrix allows for
efficient simulation. In the context of position-based dynam-
ics a good summary of the relevant work is described in
the survey of Bender et al. [BMOT13]. In contrast to these
approaches we rely on continuum mechanical modeling of
elasticity. This has the advantage that the simulation param-
eters such as, e.g., the material parameters have an intuitive
meaning instead of parameters which require tuning depend-
ing on models and time step sizes.

Physically-based simulation of deformation with FEM
was first adopted by O’Brien and Hodgins [OH99]. They
modeled and simulated brittle fracture using an explicit time
stepping method. Mueller and Gross [MG04] used implicit
time integration together with a co-rotational formulation.
This allowed for stable simulations and avoided the arti-
facts of linear elasticity by recomputing the reference co-
ordinate system. Irving et al. [ITF04] presented a method
to cope with inverted tetrahedral elements that occur when
large forces are present. Parker and O’Brien [PO09] demon-
strated how the co-rotational formulation for simulating de-
formation and fracture can be applied with strict computa-
tion time constraints in a gaming environment. Kaufmann
et al. [KMBG08] used a discontinuous Galerkin method to
simulate volumetric deformation. An extension of the co-
rotational method that takes the rotational derivatives into
account has been presented by Chao et al. [CPSS10], achiev-
ing energy conservation. In order to allow for larger time
steps without numerical damping Michels at al. [MSW14]
introduced exponential integrators for long-term stability
due to energy conservation.

Simulation with higher-order finite elements is wide-
spread in engineering applications (see e.g. [ZT00]) where
linear shape functions do not provide sufficient accuracy. In
the computer graphics community quadratic finite elements
were used for deformation simulation [MS06] and interac-
tive shape editing [MTPS08]. In a previous work [WKS∗11]
we used quadratic finite elements in B-form for the sim-
ulation of volumetric deformation. Later we developed a
GPU implementation for linear and quadratic finite elements
[WBS∗13]. Recently, Bargteil and Cohen [BC14] presented
a framework for adaptive finite elements with linear and
quadratic B-form polynomials. Our method builds upon the
work of Bargteil and Cohen and extends it by additionally
introducing cubic finite elements and employing an efficient
method for solving the governing linear systems.

Multigrid methods in general have been the subject of
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extensive research. Standard textbooks like [TS01] and
[BHM00] provide a good overview of the basic method
and its theory. Geometric multigrid methods are especially
suited for discretizations on regular grids. In the context
of deformation simulation Zhu et al. [ZSTB10] propose a
multigrid framework based on finite differences. Dick et
al. [DGW11b] use hexahedral finite elements discretization
on a regular grid and solve the linear systems using a GPU-
based multigrid method. In [DGW11a] they extend this ap-
proach for simulating cuts. In contrast, our method employs
a discretization on tetrahedral meshes, which allow for an
adaptive approximation of the simulated geometry poten-
tially requiring less elements.

Based on tetrahedral meshes Georgii et al. [GW05] pro-
posed a geometric multigrid algorithm based on linear finite
elements using nested and non-nested mesh hierarchies. In
general this geometric concept cannot be easily adapted for
higher order finite elements. In their work the computational
bottleneck is the matrix update, where sparse matrix-matrix
products (SpMM) are required on every level to update the
multigrid hierarchy. Later in [GW08] they specifically de-
veloped an optimized SpMM to address this bottleneck and
report a speed-up of one order of magnitude. However, the
matrix update is still as expensive as the time for applying
the multigrid algorithm itself. In contrast, our p-multigrid
method employs polynomial hierarchies on a common tetra-
hedral mesh. As the problem is directly discretized the ex-
pensive SpMM operations are avoided.

For two-dimensional analysis of elliptic boundary value
problems, Shu et al. [SSX06] introduced a p-multigrid for
finite elements using a higher-order Lagrangian basis. To the
best of our knowledge we are the first to introduce this con-
cept in three dimensions, to employ polynomials in B-form
and to solve equations of elasticity with this algorithm.

3. Higher-Order Finite Element Discretization of
Elasticity

In this section we briefly outline the general approach for
simulating volumetric deformation using higher order finite
elements. First, we describe the general process of higher
order discretization and then outline the steps necessary for
co-rotational elasticity.

3.1. Finite Element Discretization

Given a tetrahedral mesh 4 := (T ,F ,E ,V) with a set of
tetrahedra T , faces F , edges E and vertices V approxi-
mating the simulation domain Ω, we employ a finite ele-
ment discretization by constructing a piecewise polynomial
representation. A degree p polynomial w.r.t. a tetrahedron
T= [v0,v1,v2,v3] with vertices vi is defined by a fixed num-
ber of values at nodes. Depending on the order p there are(p+3

3
)

degrees of freedom associated with one tetrahedral el-
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Figure 2: Node numbering for a quadratic Bézier tetrahe-
dron. The nodes at the corners of the element are associated
with the vertices, e.g., ξ3000 corresponds to v0.

ement at the nodes:

ξI = ξ
T
i jkl =

iv0 + jv1 + kv2 + lv3
p

, |I|= i+ j+k+ l = p.

Here, we use capital letters for a multi-index to simplify the
notation, e.g., I represents the set of non-negative indices
i, j,k, l. Figure 2 shows an example for the node numbering
of one tetrahedral element.

We represent the field of unknowns as polynomial in B-
form, i.e., the degree p basis functions are the

(p+3
3
)

Bern-
stein polynomials

Bp
I (x) = Bp

i jkl(x) =
p!

i! j!k!l!
λ

i
0(x)λ

j
1(x)λ

k
2(x)λ

l
3(x)

where λi(x) are the barycentric coordinates. Just as for the
nodes, the indices sum up to the polynomial degree |I|= i+
j+ k+ l = p reflecting that one basis function is associated
to the node with the same index. A polynomial in B-form
per element T is then defined by

q(x) = ∑
|I|=p

bIB
p
I (x)

where in the general form the unknowns bI can be scalars,
vectors or tensors. A general advantage of modeling the field
of displacements with this type of shape function is that the
computation of integrals reduces to a sum of coefficients
with binomial weights [WKS∗11]. For finite element sim-
ulations, typically integrals of products of basis functions
need to be computed. As polynomials in B-form are defined
w.r.t. barycentric coordinates the chain rule applies when dif-
ferentiating:

∂Bp
I

∂xa
=

3

∑
i=0

∂Bp

∂λi

∂λi

∂xa
(1)

More details regarding polynomials in B-form and their
properties regarding differentiation, multiplication and
integration can be found in Lai and Schumaker’s text-
book [Sch07].

In contrast to discontinuous Galerkin methods
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[KMBG08], finite elements are C0-continuous across el-
ement boundaries. There, fewer degrees of freedom are
required, as adjacent elements share the nodes. Therefore,
the number of nodes n not only depends on the number of
tetrahedra and the polynomial order but also on the topology
of the mesh. The number of degrees of freedom can be
computed by [Sch07]

n = |V|+(p−1)|E|+

(
p−1

2

)
|F|+

(
p−1

3

)
|T |, (2)

which is |V| for p = 1, |V|+ |E| for p = 2, |V|+2|E|+ |F|
for p = 3.

3.2. Co-rotational elasticity with higher order FEM

For linear and co-rotational elasticity we model the field of
displacements u(x) as polynomials in B-form. By differen-
tiating u(x) w.r.t. to space the spatially varying deformation
gradient F is obtained. For co-rotational elasticity a polar
decomposition F = RS of the deformation gradient must
be computed to obtain the rotation R of each element. For
isotropic materials the Youngs modulus E and the poisson
ratio ν or the Lamé coefficients λL and µL are required to
set up the stiffness matrix. For more details on discretizing
co-rotational elasticity on tetrahedral meshes we refer to the
course notes of Sifakis and Barbic [SB12].

For a degree-p discretization the initial element stiffness
matrices 0Kp

T must be computed for each element T. A total
of
(p+3

3
)

3× 3 block matrices are computed, one for each
of the elements

(p+3
3
)

node pairs. As described by Weber et
al. [WKS∗11] one block of the stiffness matrix for a pair of
nodes I,J is computed by[

Kp
T(I,J)

]
ab

=
∫
T
λL

∂Bp
I

∂xa

∂Bp
J

∂xb
+µL

∂Bp
I

∂xb

∂Bp
J

∂xa
+

µL(
2

∑
c=0

∂Bp
I

∂xc

∂Bp
J

∂xc
)δab dV. (3)

Here, λL and µL are the Lamé coefficients. For example,
differentiation of cubic Bernstein polynomials B3

I and B3
J re-

sults in quadratic polynomials B2. Therefore, following We-
ber et al. one entry without considering the chain rule of
Eq.(1) is∫

T

∂B3
I

∂λc

∂B3
J

∂λd
dV= 9G(I,J)

∫
T
B4 dV =

1
35

G(I,J)VT.

Here, G(I,J) are binomial coefficients that are computed as

G(I,J) =

(i+α

i
)( j+β

j
)(k+γ

k

)(l+δ

l
)(2p

p
)

where I and J are multi-indices for i, j,k, l and α,β,γ,δ, re-
spectively and p = 3 for cubic polynomials.

The element matrices Kp
T then need to be assembled into

the global stiffness matrix Kp, where a 3× 3 entry is non-
zero if the corresponding two degrees of freedom share a
tetrahedron. In case of co-rotational elasticity the global and
element stiffness matrices must be updated using

Kp
T = R 0Kp

T RT (4)

in every time step by determining per element rotations R.
Similar to Bargteil et al. [BC14] we only use the linear part
of the deformation gradient to compute the polar decomposi-
tion. For the polynomial hierarchy, we only have to compute
the rotation matrix once per element and can reuse the rota-
tion matrices on the other levels.

For a dynamic simulation the lumped mass matrix Mp

is required. Omitting damping terms, a system of ordinary
equations

Mpüp +Kpup = fp, (5)

is set up. Here, fp are the forces and the dots are deriva-
tives w.r.t. time, i.e., üp is the acceleration of the dis-
placements or equivalently the acceleration of positions. We
added the superscript p to denote that this system is addi-
tionally parametrized by the polynomial degree. The matri-
ces depend on the degree p and the vectors üp, up and fp are
the combined degrees of freedom and therefore represent the
time dependent fields in polynomial B-form. Employing im-
plicit time-integration [BW98], a sparse linear system

(Mp +∆
2Kp)∆vp = ∆t(f+∆tKv) (6)

is set up. Solving this, the change of u̇p, ∆vp is computed.
Then the new velocities are determined by vp

n+1 = vp
n +∆vp

and the new positions pp
n+1 = pp

n +∆tvp at all finite element
nodes are updated. For brevity we rewrite Eq. (6) as

Apxp = bp. (7)

Solving this system is computationally expensive and takes
a large part of the time required for a simulation step. How-
ever, it is important to solve this accurately as otherwise ad-
ditional numerical damping is generated (see Section 6).

In Section 4 we explain how to efficiently solve this equa-
tion by making use of a polynomial hierarchy with varying
degree p on the same tetrahedral mesh. In our approach the
matrices in Eq. (7) are computed independently by simply
discretizing with a different polynomial degree.

4. Multigrid method

The basic, non-recursive multigrid V-cycle given in Listing 1
consists of five operations: restriction (Il+1

l ), prolongation
(Il

l+1), sparse matrix-vector multiplication (Alxl), smooth-
ing and the exact solution on the lowest level (A−1

L xL).

Typically, level 0 corresponds to the finest grid and level L
to the coarsest grid. However, in the p-multigrid method on
constant grids presented here, the levels correspond to vary-
ing polynomial degrees. The algorithm for computing the
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def mgvcycle(x0,b0):
for l in [0 . . .L):

xl := smooth(Al ,xl ,bl)
rl := bl−Alxl

bl+1 := Il+1
l rl ; xl+1 := 0

xL := A−1
L bL

for l in (L . . .0]:
xl := xl + Il

l+1xl+1
xl := smooth(Al ,xl ,bl)

return x0

Listing 1: Multigrid V-cycle

restriction and prolongation between the levels is outlined in
section 4.1 and is a central part of our p-multigrid algorithm
that is distinct to other multigrid approaches. The other pro-
cedures are similar to standard multigrid implementations
and are briefly described here. Further details of standard
multigrid theory can be found in standard textbooks (see,
e.g., [TS01, BHM00]).

Intergrid Transfer: The intergrid transfer operators Il+1
l

and Il
l+1 perform the mapping between different multigrid

levels. In the case of p-multigrid on constant grids they cor-
respond to transformations between the respective polyno-
mial representations, as described in Section 4.1.

Multigrid algorithms require the computation of matrices
on all levels. In algorithmic multigrid procedures one deter-
mines the intergrid transfer operators and then computes the
matrices using the Galerkin coarse grid operator, i.e., the ma-
trix for level l + 1 is computed as Al+1 = Il+1

l AlIl
l+1. This

requires multiple expensive SpMM operations. In contrast,
we discretize different resolutions directly, i.e., with differ-
ent polynomial degrees, which significantly accelerates the
overall solution process.

Smoothing: The result of the prolongated solution on the
lower level is a correction term Il

l+1xl+1 which is added to
the current level. Although this correction term improves the
solution for the low-frequency part of the solution, a high-
frequency error term remains which is removed by smooth-
ing. Analogously high-frequency components of the resid-
ual must be removed before restriction by a similar smooth-
ing operator. In our case low-frequency components corre-
spond to lower-order polynomial terms and high-frequency
components to higher-order polynomial terms. The simplest
form of smoothing is so-called point smoothing using a fixed
number of Gauss-Seidel or weighted Jacobi iterations. We
used 5 Gauss-Seidel iterations as a smoothing operator in
our experiments.

Exact Solution: For the exact solution on the coarsest level
L with the smallest polynomial degree, we use a standard

preconditioned conjugate gradient solver (PCG) with an rel-
ative residual threshold of 10−3.

4.1. Polynomial intergrid transfer

As described above, our restriction and prolongation oper-
ators perform transformations between different polynomial
representations. Therefore, each level l in our multigrid hier-
archy corresponds to a polynomial of degree pl . On the low-
est level pL = 1 which corresponds to linear finite elements.
On the highest level p0 = ps, where ps is the polynomial
degree of the simulation. In our examples ps is either 2 or 3.

To apply the prolongation operator, we note that a polyno-
mial of degree p can be exactly represented by a polynomial
of degree p+ 1. As we model the degrees of freedom using
polynomials in B-form (see Section 3), a standard degree el-
evation algorithm can be used. The polynomial transforma-
tion can be computed by constructing values at each of the((p+1)+3

3

)
nodes [Sch07]:

bp+1
i jkl =

ibp
i−1 jkl + jbp

i j−1kl + kbp
i jk−1l + lbp

i jkl−1

p+1
(8)

Here, the superscripts denote the polynomial degree of the
respective discretization.

For restriction, we perform a degree reduction which is
lossy by definition. We follow the approach given by Farin
[Far02] for univariate Bézier curves and extend it to the tetra-
hedral case. Equation (8) can be rewritten as a system of lin-
ear equations

bp+1 = Pbp. (9)

The resulting matrix P is rectangular with
((p+1)+3

3

)
rows

and
(p+3

3
)

columns. The rows corresponding to bp+1
i jkl where

one of the indices equals p+ 1 (i.e, rows associated to ver-
tices) contain only a single non-zero unit entry at the column
corresponding to bp

i jkl where the same index equals p. As the
system has more equations than unknowns it must be solved
in the least squares sense as given by

bp = (PT P)−1PT bp+1 = P+bp+1 (10)

However, this introduces dependencies of the vertex values
on the other control points. Due to the C0 continuity require-
ment in the finite element method, vertices, edges and trian-
gles of neighboring elements must share degrees of freedom.
One option would be to combine the matrices P for each
tetrahedron into a large matrix and computing the pseudoin-
verse of that matrix. Although this matrix is only dependent
on the topology and can therefore be precomputed, doing so
would adversely affect memory consumption and process-
ing power requirements as sparse but large matrices for the
restriction operation need to be stored. Therefore we choose
local, mesh-based scheme, i.e., we process subsimplices in
order, i.e., first the vertices which are transferred directly,
then the edges, the triangles and finally the tetrahedra (the
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def precompute():
for all T:

∂λ
T
i

∂x := calculate_derivatives(T)
for p in [1, ps]:

0Kp
T = calculate_stiffness_matrix(T)

for p in [1, ps]:
Mp := calculate_mass_matrix()

def simulation_step():
R, S := decompose(F)
for p in [1, ps]:

Kp
T := R 0Kp

T RT

Kp := assemble_matrix(Kp
T for all T)

Ap := Mp +∆
2Kp

fps := compute_forces()
bps := ∆t(fps +∆tKps vps)

∆vps := (Aps)−1bps # p−multigrid
vps := vps + ∆vps

xps = xps +∆tvp

Listing 2: Simulation algorithm for ps levels. Solving the
linear system with the p-multigrid algorithm launches sev-
eral v-cycles (see Listing 1) of depth ps.

latter two are only relevant for simulation degrees higher
than 3 which we did not evaluate). After computing the ver-
tices, the rows and columns associated with these elements
are removed and their contributions are added to the right
hand side of the equation resulting in a modified system

b′p+1
= P′b′p. (11)

In the cubic to quadratic and the quadratic to linear cases,
an analytical solution can easily be found and is used as de-
scribed in Section 5.

5. Algorithm

Co-rotational elasticity: In this section, we outline the
general algorithm for computing co-rotational elasticity with
higher-order finite elements and provide implementation and
optimization details. Listing 2 outlines the algorithm for a
degree ps finite element simulation using our p-multigrid ap-
proach. In the precomputation phase the initial stiffness ma-
trices 0Kp

T are determined for all polynomial degrees p (see
Section 3). This requires the derivatives of the barycentric

coordinates ∂λ
T
i

∂x that carry the geometric information of each
tetrahedron. These can be reused for all polynomial levels as
the discretization is performed on the same tetrahedral mesh.
Additionally, the global mass matrix is set up for all polyno-
mial degrees during precomputation, as it remains constant
throughout the simulation.

To set up the linear system all stiffness matrices on the hi-

erarchy must be updated. Therefore, each element’s rotation
is determined by polar decomposition, the element stiffness
matrices are updated and the global stiffness matrix is as-
sembled. Similar to Bargteil et al. [BC14], we only use the
linear part of the deformation gradient to compute an ele-
ment’s rotation. Therefore, the rotation matrices are indepen-
dent of the polynomial degree and can be used on all levels
of the hierarchy. In comparison to other approaches that di-
rectly solve the system on the highest level, our p-multigrid
method additionally requires an update of the system and
stiffness matrices on all lower levels of the hierarchy. We di-
rectly discretize the governing partial differential equations
with the corresponding polynomial degrees for the respec-
tive level. This avoids the computation of expensive SpMM
operations in every time step, which would be required for
computing the Galerkin coarse grid operator. The system
matrix is then constructed using the precomputed mass ma-
trix and the assembled stiffness matrix. To complete the set
up for the linear system, external forces must be determined
to compute the right hand side. Note that this is only required
for the highest level of the multigrid hierarchy.

Efficient prolongation: The prolongation operator Il
l+1 for

transforming polynomials from degree p to p + 1 can be
computed per tetrahedral element using the degree elevation
algorithm in Eq. (8). However, one can do this more effi-
ciently by taking the C0-continuity of finite elements into
account, i.e., some degrees of freedom are shared with adja-
cent elements. We illustrate this using an example of a pro-
longation operator applied to a 2D quadratic finite element
as depicted in Fig. 3, where the values bp

i jk of the polynomial
are associated to the nodes ξi jk. Additionally, we make use
of the fact that the polynomials in B-form on a subsimplex,
e.g., a vertex, an edge or triangle, can be considered in isola-
tion. In this configuration some barycentric coordinates are
zero and the others vary on the subsimplex and sum to one.
For our case the degree elevation can be computed locally
on one subsimplex and we can ignore the other values on the
finite element. Specifically for cubic elements, we first com-
pute the values at the vertices, then at the edges and finally
on the triangles.

In the example shown in Fig. 3 we first transfer the values
associated with the vertices of the tetrahedral mesh directly,
e.g., b3

300 = b2
200, and only once per vertex. Note that the su-

perscripts denote polynomial degrees instead of an exponent
in this context. We then locally perform a degree elevation
for every edge in the mesh over a 1-dimensional paramet-
ric space. In the example the values along the edge (v0,v2),
i.e., b2

200,b
2
101,b

2
002 can be interpreted as an one-dimensional

quadratic Bézier polynomial by simply omitting the second
index: q = b2

20B2
20(λ) + b2

11B11(λ) + b2
02B2

02(λ). Then the
standard degree elevation for Bézier curves [Far02] can be
applied

b3
12 =

1
3
(b2

20 +2b2
11), b3

21 =
1
3
(2b2

11 +b2
02), (12)
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b020

b011

I2
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Figure 3: Prolongation operator transferring a field from a
quadratic finite element to to a cubic finite element by degree
elevation. Note that the degree elevation for edge (v0,v2)
can be reused for both adjacent triangles.
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Figure 4: Restriction from cubic to quadratic form uses a cu-
bic polynomial which interpolates the value of the quadratic
polynomial at t = 0.5.

where we explicitly omit the computation of b3
30 and b3

03.
Finally, the remaining value b3

111 at the triangle center is ob-
tained by applying the degree elevation algorithm for Bézier
triangles:

b3
111 =

1
3
(b2

110 +b2
101 +b2

011)

For volumetric meshes, the degree-elevated values on the
edges and the triangles, respectively, can be reused for ad-
jacent tetrahedra.

Efficient restriction: In the case of quadratic and linear
polynomials the restriction operator is rather simple. One
can simply omit the additional degrees of freedom on the
edges, as the vertices are specified directly and no other de-
grees of freedom exist. For cubic and quadratic polynomials,
vertices and edges can be treated separately as done for pro-
longation. Taking Eq.(12) and substituting the vertex values
b2

20 and b2
02 by b3

30 and b3
03 respectively, one obtains two

equations for b2
11. Taking the average of these values results

in

b2
11 =

b3
30 +3b3

21 +3b3
12 +b3

03
4

and is equivalent to computing P′b′p+1 and also to comput-
ing a quadratic form interpolating the cubic form at λ0 =
λ1 = 0.5 as shown in Fig. 4.

6. Results

We now show some examples and analyze our p-multigrid
method in terms of performance and accuracy. We used an
Intel Core i7 with 3.4 Ghz for our tests and implemented all
building blocks utilizing only one of the processor’s cores.
Table 1 lists the models for our tests together with the char-
acteristic numbers, i.e., the polynomial degree, the number
of degrees of freedom and number of non-zero entries of the
sparse matrix.

Examples: The accompanying video and the snapshots in
Fig. 1 show different scenarios with quadratic and cubic fi-
nite elements using our p-multigrid algorithm to solve the
linear system. In all cases the simulation mesh is coupled
with a high-resolution surface mesh for rendering. Note that
we have not implemented self collision which may be appar-
ent in the videos.

Validation: To validate our cubic finite elements we per-
formed a static analysis of a beam fixed on one side deform-
ing under an applied load. We chose a beam with dimensions
(l×w×h) = (1.0m×0.2m×0.2m) and an elastic modulus
of E = 500 kPa. By applying a force of F = 10 N at the po-
sition in the middle of the free end of the beam, it deforms
and we measure the vertical displacement. For the numerical
computation a model consisting of five cubes subdivided in
24 tetrahedra each was constructed that simulated with lin-
ear, quadratic and cubic finite elements. With a deflection
of approximately 0.03 m for linear, 0.048 m for quadratic
and 0.05 m for cubic finite elements one can observe con-
vergence when raising the polynomial degree. We compared
the computed deflections with an analytical result from beam
theory according to the textbook [GHSW07], which is only
valid for small deformations. For this model the moment of
inertia for the cross-sectional area is I = 1

7500 m4. The ana-
lytical maximum deflection in vertical direction is then de-
termined by wmax = Fl3

3EI = 0.05 m, which is very close to
our computation and only varies at the fifth decimal place.
This shows that cubic finite elements can better approximate
the solution of the partial differential equation. However, we
expect that a further degree raising of the basis functions will
not pay off in terms of accuracy.

Effect of approximate solve: In order to speed up the sim-
ulation and achieve constant computation times, many au-
thors (see, e.g., [NPF05, ACF11, WBS∗13]) propose using
a small, fixed number of 20 CG iterations to solve the lin-
ear system. This choice leads to artificial damping, as some
residual forces remain that are not converted into momen-
tum. The following experiment demonstrates this effect. A
bar is fixed on one side and initialized to a deflected state. As
the deflected side is not fixed, the simulation then causes the
bar to oscillate. As no explicit damping terms are applied, the
bar should oscillate without energy loss and the amplitude of
the oscillation should remain constant. Fig. 7 shows the am-
plitude over time for a CG algorithm with a fixed number
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Model degree # tets # vertices # nodes # dofs # non-zeros acceleration
Bunny 2 1691 471 2957 8871 652527 1.72
Gargoyle 2 17040 4490 29218 87654 6544566 2.48
Homer 3 5151 1513 28945 86835 11005101 3.15
Frog 3 7746 2099 42199 126597 16359903 2.74

Table 1: Name, number of tetrahedral elements, number of vertices, number of finite element nodes of the models used for the
deformation simulation.

of 20 iterations in comparison to a p-multigrid solver with
a prescribed residual reduction of 10−3. One can clearly see
that the simulation with accurate solves exhibits significantly
reduced damping. The remaining damping is caused by the
implicit integration scheme used and can be reduced by de-
creasing the time or further increasing the iterations. How-
ever, a future extension of our work could adopt an energy-
preserving variational integrator [KYT∗06] to further reduce
damping. Much like Mullen et al. [MCP∗09] argument for
numerical dissipation in fluid simulations, reducing artificial
numerical damping to a minimum is very important to put
desired damping under artist control.

Performance: In order to analyze the performance of our p-
multigrid solver we monitor the convergence, i.e., the resid-
uals ri = b−Axi for the i-th iteration. The relative resid-
ual reduction (‖ri‖2/‖r0‖2) w.r.t. time of our p-multigrid
method is then compared with a preconditioned CG algo-
rithm and a direct sparse solver (a Cholesky factorization
method [GJ∗10]). For the tests the models in Table 1 are
compressed along the y-axis and released afterwards. The
diagrams in Figure 5 show the relative residual reduction for
the model Gargoyle. As the direct method finishes without
any intermediate results, the graph shows a vertical line. In
contrast to the CG algorithm, the residuals of the multigrid
algorithm are smooth in the logarithmic plot making it more
predictive. The last column in Table 1 denotes acceleration
when using our p-multigrid instead of a CG solver. We ad-
ditionally performed the tests for even larger model sizes.
Fig. 6 shows a plot of the acceleration over the of number
of nodes for quadratic finite elements. This is the expected
behavior as for large models the multigrid algorithm starts
to pay off.

The frog scenario in Fig. 1 with cubic finite elements (see
Table 1 for the mesh complexity) needs two to three V-cycles
to reduce the residuum by three order of magnitude. A sin-
gle V-cycle in the p-multigrid algorithm takes approximately
235ms on a single core implementation for this example.
This splits in approximately 130ms and 72ms for smooth-
ing (each with five Gauss-Seidel iterations) on the cubic and
quadratic level, respectively, where the remaining time is
needed for restriction, prolongation and the exact solve. Note
that the exact solution takes only 3ms.

In addition to the computation for solving the linear sys-
tem, the hierarchy of matrices must be updated. However,

Figure 5: The diagrams shows a logarithmic plot of the
residual over time for our multigrid approach, a precondi-
tioned conjugate gradient solver and a direct solver with
Cholesky factorization. In the right diagram the Cholesky
factorization is omitted to better see the convergence behav-
ior. The multigrid solver reaches a residual of 10−3 after 7
iterations. The CG solver requires 135 iterations.

Figure 6: This diagram shows the acceleration of using our
p-multigrid solver instead of a CG method with precondi-
tioning for quadratic finite elements . The x-axis denotes the
number of nodes of the simulation. This demonstrates that
multigrid algorithms pay off at large matrix sizes.
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Figure 7: Comparison of the deflection over time of an os-
cillating bar using 20 CG iterations or solving accurately
using our method.

this additional overhead compared to non-multigrid methods
is compensated due to the improved convergence rate. A fun-
damental difference besides our polynomial hierarchy and
an algorithmic multigrid computing the matrices on linear
shape functions (e.g., Georgii et al. [GW05]) is the update
of the matrix hierarchy. Whereas their approach requires re-
computation of the matrices on each level by two expensive
sparse matrix products mutliplying the restriction and pro-
longation operators with the system matrix, our approach
can directly use the matrices for different polynomial de-
grees. Even in an optimized version, Georgii et al. [GW08]
report that the matrix update takes more time than the multi-
grid algorithm itself. In our case the matrix construction only
takes approximately 1% for quadratic finite elements and up
to 15% for cubic finite elements of the time required for the
solve. The higher percentage for cubic elements is due to the
fact that additionally a linear system for quadratic finite ele-
ments must be set up. Furthermore, it is worth to note that a
geometric multigrid approach as proposed by Georgii et al.
has not yet been developed for higher order finite elements.

7. Conclusion

In this paper we have presented a p-multigrid approach for
efficiently solving sparse linear systems arising from higher-
order finite element discretizations. Due to the direct dis-
cretization of the problem with different polynomial degrees
on the same tetrahedral mesh, updates of the matrix hierar-
chy do not have to be computed by expensive SpMM oper-
ations. Furthermore, we demonstrated the use of cubic finite
elements for simulating volumetric deformation.

As future work it would be very interesting to investigate
the exact co-rotational method for quadratic and cubic fi-
nite elements. In this approach the dependency of the rota-
tion matrix on the vertex positions is considered when de-
riving the stiffness matrix from the elastic forces. Together

with a variational integrator, we would expect a better energy
conservation as reported by Chao et al. [CPSS10]. Further-
more, for large models it would be interesting to investigate
if a geometric multigrid approach on our lowest level would
be beneficial for even higher convergence. Parallelizing all
of the building blocks of our multigrid algorithm on GPUs
and comparing the speedup to the one achieved in our pre-
vious work [WBS∗13] could make our algorithm viable for
interactive use. We also expect GPU performance benefits
comparable to the multigrid work by Dick et al. [DGW11a]
and [DGW11b].
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