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Figure 1: The LayoutExOmizer interface allows steering a layout to optimize the positions of data points in 2D. On the left, users can refine
parameters of the layout (here: four parameters in yellow, orange, red, and purple) and explore the parameter space using sampling. The
visual analysis of quality measures supports users in the assessment of layouts (right part of the left view). The matrix visualization on the
left also allows the analysis of correlations between input parameters and output quality measures. Interactive filtering and a history view
(lower right) support the drill-down to layouts that are most meaningful for a given dataset, analysis task, and user preference.

Abstract
Reducing the overlap of data points in 2D visualizations while preserving original positions is a challenging task. Traditionally,
hand-crafted solutions have been proposed while more recently layout algorithms with a high degree of automation have been
introduced. However, with a continuous parameter space, the number of alternative solutions is virtually infinite. So which one
is best? This assessment can depend on many factors, coined by subjective human judgment as well as quantitative quality
measures. Our approach follows the idea to have both humans and algorithms in control, to combine the strengths of both. We
propose LayoutExOmizer, which stands for Layout Explorer and Optimizer. It is a visual analytics approach that guides users in
finding meaningful solutions. LayoutExOmizer supports users in generating a preferred layout by discovering a corresponding
set of input parameters. This parameter search is supported by visual interfaces (1) to directly steer the parameters of the
layout optimization, (2) to assess the quality of layouts using quality measures, (3) to relate input and out space, and (4) to filter
layouts by their quality. We demonstrate the usefulness of our approach in two usage scenarios with different quality measures,
including the full set of Scagnostics measures.

1. Introduction

One of the most common visualization approaches is representing
data in 2D, with position encodings in the x and y dimension of
the screen space. Scatterplots are one prominent chart type, either
used for numerical 2D data directly [Ans73; MF17], or for nD data

in combination with dimensionality reduction (DR) [EMK*21].
For graph and network data, node-link diagrams fall into this
category [VBW17], often accompanied with graph layout algo-
rithms [CPPS20] to optimize local or global positioning. Maps di-
rectly utilize geo or spatio-temporal data [Mac04], e.g., in combina-
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Figure 2: Layouts for 2D data points, the original data distribu-
tion is on the left. From left to right, overplotting is removed by an
increasing point repulsion force. While the layout at the center may
be a meaningful layout optimization, the layout on the right is not
useful as most of the original position information got lost.

tion with projections such as the Mercator projection, mapping 3D
globe data to 2D [Mon10]. Some of these techniques make use of
2D data directly; however, the majority of techniques use layouts,
i.e., automatic methods that assemble data points in 2D. While lay-
outs aim at reflecting structural data characteristics depending on
some criterion, they also do introduce projection errors, mostly be-
cause complex data types need to be represented in only 2D. We
postulate that additional local adaptions to data assemblies in 2D
can be meaningful to further optimize layouts towards some op-
timization goal. Often, such local adaptions form an iterative and
incremental layout optimization process.

One of the prevalent problems of all mentioned visualization
techniques is overplotting, as soon as the number of data points
exceeds the hundreds or even thousands; especially for the lat-
ter case, data points cannot be discerned as individuals anymore
which hampers visualization capabilities. The problem gets worse
if the point marks [Mun14] have visible area sizes: such as nodes in
node-link diagrams [VBW17], marks used to show color-encoded
data [JRHT14], or glyphs for data points representing inherent data
characteristics [BKC*13]. The overplotting problem is aggravated
if data distributions form dense regions, as is often the case when
data have cluster patterns. Layout optimization is one promising
line of approach to reduce local overplotting and thus increase the
readability of charts. Here, the idea is to make as few modifications
to the data assembly as necessary, while trying to achieve as much
positive effect towards some goal (such as readability) as possible.
Figure 2 shows an illustrative example of layouts being more or
less useful. At a glance, a good trade-off between the preservation
of positions and the reduction of overplotting is influenced by at
least three different aspects. First, the involved data and its char-
acteristics, second, the analysis task that adds requirements to lay-
outs, and third, individual users who may deem different variations
of layouts more or less useful.

To the best of our knowledge, there exists no layout method that
automatically finds the optimal trade-off for any combination of
these three aspects. Rather, finding meaningful layout optimiza-
tions is a human-centric approach, requiring the human in the loop.
An interesting research question is what defines a good layout?
At a glance, two different approaches are conceivable. First, in
many research fields subjective human judgment is exploited as
a meaningful source of information to answer this question. The
second approach is using quality measures to assess and com-
pare the output of algorithmic models quantitatively, aiming at
covering characteristics that help to explain the goodness of lay-
outs. From other research areas like visual cluster quality analy-
sis [BvLBS11], class separation [AASB19], or user perception in
scatterplots [WZM*19], one can learn that using (visual) quality
measures or metrics [BTK11] can be useful to quantify, assess, ex-

plain, and compare the output of models. A prominent set of mea-
sures for 2D data is Scagnostics, as coined by John W. Tukey and
Paul A. Tukey and later proposed by Wilkinson, Anand und Groß-
mann [WAG06]. The line of approach pursued in this work is to
incorporate both subjective human judgment and quality measures.
We postulate that, with visual analytics techniques, users may be
enabled to effectively define trade-offs in data layouts, leading to
2D data representations that are particularly useful for a given
dataset, analysis task, and user preference. We put emphasis on
cases where point marks of several hundreds of data objects have
visible area sizes, as it is the case for icons, images, thumbnails, or
glyph designs. Targeted user groups include visualization design-
ers with the goal to present information, as well as experts using
interactive data science tools, both requiring layout optimization in
an interactive and incremental process.

Our primary contribution is LayoutExOmizer, a visual analyt-
ics tool that allows the steering, control, analysis, and assessment
of 2D data layouts. LayoutExOmizer uses a real-time layout op-
timization model based on forces that can be steered by users
through parameters. Visual quality assessment supports the analy-
sis of optimization effects, e.g., by incorporating the nine Scagnos-
tics measures. Visual comparison techniques ease the comparison
of data layouts across hundreds of alternatives, either created man-
ually or by the automatic sampling of layout parameters. Interactive
overview and detail as well as filtering interaction support the effec-
tive identification of layouts that are most useful for a given dataset,
focused analysis task, and user preference. We provide evidence
for the effectiveness and efficiency of LayoutExOmizer through
two usage scenarios, one with five quality measures applied on a
geo dataset showing the positions of countries’ capitals on Earth,
and one with the nine Scagnostics quality measures applied on the
dimensionality-reduced Iris dataset. With the support for quality
measures, this work represents one step towards the design of fully
automatic layout optimization methods that will be able to take data
characteristics, analysis tasks, and user preferences into account.

2. Related Work

We structure related works by algorithmic models that achieve 2D
data layouts, approaches supporting users in the exploration of pa-
rameter spaces, and approaches for visual quality assessment.

2.1. Layout Optimization

Layout optimization is a challenge that many communities face, be
it removing overlaps in geo-referenced data [vGPNB17], creating
direction-preserving layouts [SBMK14], graph-based and node-
link layouts [CPPS20], or optimizing the placement of labels within
scatterplots [MvGBW19]. Also, DR [EMK*21] relates to layout
optimization, mapping high-dimensional data in low-dimensional
spaces. Especially non-linear variants [VPN*10] often utilize lo-
cal layout optimization criteria, such as neighborhood preserva-
tion [VK06], stress minimization [Kru64], or cluster preserva-
tion [vdMH08].

To structure layout optimization algorithms for 2D data, we bor-
row the notion of control [Shn20] in the layout process, which is
either on the human side (human involvement), on the machine
side (automation), or both (mixed initiative, semantic interaction,
and visual analytics). On one side, entirely hand-crafted layouts
exist, such as the London Metro Map, which was created in the
1930s by Henry Beck [GM94]. While this approach yields a lot of
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flexibility, it misses out on the potential of computer-based opti-
mization. On the opposite side of the spectrum, there are fully au-
tomated approaches, designed to return an optimal solution given
a set of constraints. One example class of methods are graph op-
timization algorithms, which can, e.g., be force-directed [FR91]
or based on stress majorization [GKN05]. Layout optimization
problems are known to be NP-Complete [HIMF98], which is why
many heuristics and greedy algorithms were designed [Lyo96].
For example, Micallef et al. proposed a model with a carefully
fine-tuned loss function, which, given some high-level user ob-
jectives, automatically finds optimal parameters for the scatter-
plot [MPOW17]. Those approaches are efficient and deliver rea-
sonable results but lack any form of user input and are thus unable
to support user preferences and iterative refinement. Parameters are
a natural way of how both humans and models can have control in
the layout optimization process, resulting in alternative solutions
depending on the defined parameter values. Example methods are
t-SNE [vdMH08] as a representative for DR or the LinLog energy
model [Noa03] for graph layouts. It is up to the user to identify
and classify changes in the output layout, and how to refine the pa-
rameters to get to better solutions. Our approach follows the visual
analytics principles [SSS*14] where users can steer layout parame-
ters, calculate alternative solutions, analyze the layout quality, and
compare it to other solutions. To the best of our knowledge, no
visual analytics approach exists that supports users in the layout
optimization process including both human control and a strong
degree of automation. Inspiration comes from related approaches
focusing on other application goals, such as multi-criteria decision-
making [PST*17], PCA-based DR [JZF*09], interaction in the DR
context [SZS*17], the interactive generation of 1D layouts [NL20],
or algorithms that automatically generate optimal layouts for a scat-
terplot [MPOW17]. The main differentiator between the latter and
our approach is the native support for different shapes and glyphs,
and the addition of human control and feedback.

2.2. Parameter Space Analysis

Our approach relates to parameter space analysis, as we share sev-
eral common problems and analysis tasks: given a controllable in-
put for a model, which effect will some input have on the output?
In turn, presuming that a preferable output is measurable, which
input parameter values lead to such a desirable output? How does
the space of input parameters relate to the distribution of mea-
sures calculated on the model output? A conceptual framework
for visual parameter space analysis was proposed by Sedlmair et
al. [SHB*14]; we use the framework to describe related work ac-
cording to three conceptual dimensions: data flow model, naviga-
tion strategies, and analysis tasks. First, the data flow model depicts
how data is generated and manipulated in a visual parameter space
analysis setting, which is based on sampling in our case. Exam-
ples include stratified random sampling, systematic random sam-
pling, and uniform sampling [APSN13] (as in our approach). Sec-
ond, navigation strategies describe how data was made available
for navigation. Our approach supports an informed trial-and-error
strategy, as users are enabled to interactively run a layout optimiza-
tion model with a specific parameter setting to create one new sam-
ple, inspect the output, and re-run the model with refined parameter
values. Besides, our approach mainly follows the so-called global-
to-local strategy, which is in line with Shneiderman’s information
seeking mantra: gain an overview of all pre-computed samples and
then drill-down into more details, by using filtering operations in
our case. Related visual analytics approaches include Bruckner
and Möller’s approach to support visual effect designers in finding

desired explosion animations [BM10], the visual parameter space
analysis approach for image segmentation proposed by Torsney-
Weir et al. [TSM*11], the WeightLifter approach in the context
of multi-criteria decision making by Pajer et al. [PST*17], or the
Vismon design study on fisheries management by Mooshehrian et
al. [BMPM12]. The third dimension is understanding the tasks that
users engage in when doing visual parameter space analysis, with
the set of fine-grained tasks optimization, partitioning, fitting, out-
liers, uncertainty, and sensitivity. Our approach aligns well with
optimization, referring to finding the best parameter combination
given some objectives [SHB*14]. Optimization tasks often require
the ability of subjective human judgment [BM10], numerical qual-
ity measures [TSM*11], or both, as in our approach.

2.3. Measures and Metrics

Measures and metrics are used in a wide range of applica-
tions to help to extract meaningful information from complex
and high-dimensional data and to provide decision-making sup-
port [BTK11]. Our research falls into the category of measuring
visualization characteristics and layout quality. An early example
of such metrics is Tufte’s data to ink ratio [TG83]. Other research
aims at quantifying the goodness of DR techniques, e.g., based on
the quantitative assessment of neighborhood preservation [LV10],
or on rank-based quality criteria [LV09]. As for layout optimiza-
tion, multiple criteria exist that can be measured. Recently, work
has been done to understand human judgments in scatterplots, e.g.,
in connection with class separation measures [SA15]. Similarly,
our approach provides a first step in this direction for layouts, as
it brings together layout optimization, quality measures, and visual
interfaces for human judgment. Arguably the most prominent set
of measures specifically for scatterplots are the nine Scagnostics
measures, following the idea to describe visual features in 2D data
distributions formally. Our approach uses Scagnostics as a default
set of measures for the assessment of layout quality.

3. Abstractions and Non-Visual Support

3.1. Data Abstraction

Our approach is applicable to datasets where data points are repre-
sented with two numerical attributes. In turn, these two attributes
form the basis for the visual mapping to the (initial) display to po-
sitions. Different input data and application scenarios are possible:

• 2D numerical data (leading to a scatterplot)
• Multivariate data in combination with some DR method (leading

to a scatterplot or similar)
• Graph or network data in combination with some graph layout

algorithm (leading to a node-link diagram)
• Geo locations attributed with latitude and longitude information,

possibly in combination with a projection such as the Mercator
projection (leading to a map)

According to our design target of showing points with area sizes,
a recommendation is to have a glyph, icon, or image available for
every data point, as, e.g., demonstrated in Usage Scenario 1.

3.2. Task Analysis

The goal of our approach is to enable users to optimize 2D data lay-
outs for up to several hundred data points with area sizes. For the
design of a visual analytics approach, we subdivide this goal into
actionable tasks, following a global-to-local strategy [SHB*14]:
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from the creation, exploration, quality assessment, and filtering of
multiples to the inspection of singles and preserving provenance.

T1: Steer the layout interactively. By steering the input param-
eters of the data layout method interactively, users gain control over
the layout. It may be useful to provide semantically interpretable
parameters, such as pairwise repulsion, or preservation of original
position. This fosters the informed and target-oriented parameter
steering and reduces ill-defined try-and-error operations.

T2: Explore layout parameter space. When layouts contain
several (continuous) steering parameters, the number of different
layouts is infinite. It is necessary to support the exploration of the
parameter space to learn about parameter characteristics and their
interconnections, as well as to form a basis for the identification of
local and global optima. Along these lines, it may also be beneficial
to provide sampling routines to cover the parameter search space.

T3: Assess and compare layout qualities. Users may want to
assess the quality of layouts in different ways. First, it is desirable to
show the current layout in detail, so that users can judge the layout
by subjective criteria. Second, quality measures for data layouts
may be provided, allowing the system to give quantitative feedback
about layout characteristics and layout quality. Finally, given large
numbers of possible layouts (either steered by hand or crafted by
sampling routines), users need a means to compare these layouts
with respect to quality differences. The comparison method also
serves as a component to guide users towards meaningful layouts.

T4: Relate parameter space and quality measures. A classical
task borrowed from (visual) parameter space analysis is to foster
input-output analysis, i.e., to seek relations between the input and
the output space. Depending on the characteristics of input parame-
ters and output measures, these relations are not necessarily linear,
leading to the problem that by using inappropriate correlation anal-
ysis support, some interesting relations may be overlooked.

T5: Filter layouts. To drill-down to few meaningful layouts from
a large set of candidates, users need filtering capabilities. This type
of functionality is inspired by dynamic query approaches. A techni-
cal challenge is to unify filtering across different quality measures
in a joint filter model. A design challenge is to support both the
analysis of all samples and those that are currently filtered in.

T6: Preserve layout analysis history. Users may rely on the
history of layouts that they have created, identified, or analyzed in
detail. Special requirements for this type of provenance information
may be three-fold: the representation of the layout itself, the input
parameter values, and the output quality for every measure.

3.3. Optimization of 2D Layouts

While plotting data points in 2D is a common approach for display-
ing the interrelation between the dimensions, this approach often
leads to overplotting where individual data points obscure others.
To mitigate the dilemma between displaying the true position of a
data point and the introduction of a displacement to reduce over-
plotting, layout optimization methods can help, e.g., based on the
interpretation of a 2D layout as a mass-spring system. The forces
which are applied to the individual data points represent aspects of
the layout and can be weighed for further emphasis.

The LayoutAnalyzer † is a tool allowing the optimization of 2D

† https://github.com/javagl/LayoutAnalyzer

Layouts via the mass-spring approach. It is the layout optimiza-
tion algorithm we choose for the LayoutExOmizer. It introduces 4
distinct forces to represent different aspects of a layout: The Pair-
wise Repulsion Force introduces pairwise repulsion between data
points unaffected by the overlap of their shapes. The Target Po-
sition Force attracts data points to their true position. The Shape
Bounds Repulsion Force introduces pairwise repulsion between
data points if their shapes are overlapping. It addresses the over-
plotting problem directly. The Border Repulsion Force introduces
a force towards the center of the data point cloud proportional to the
distance of a data point to the bounding box of the data point cloud.
This leads to more compact shapes.

3.4. Layout Quality Measures

To quantify the characteristics of 2D layouts quality measures are
needed. A popular choice are the Scagnostics measures. Addition-
ally, we derived quality measures directly from the mass-spring
model itself. The length of the force vectors

for a specific force can be used as a measure of how well a force
can be minimized and thus describe how well the aspect repre-
sented by this force is present in the resulting layout. Using this
principle, four quality measures can directly be derived from the
available forces: Pairwise Repulsion Force Length, Target Po-
sition Force Length, Shape Bounds Repulsion Force Length,
and Border Repulsion Force Length. In addition, we establish an
Overlap measure, defined as the percentage of shapes in the lay-
out that have at least one intersection to other shapes. This measure
allows a simple quantification of overplotting in a layout.

4. LayoutExOmizer Interface

We present LayoutExOmizer, a visual analytics system that enables
users to optimize 2D data layouts interactively. With LayoutEx-
Omizer, users can steer layout parameters, each forming a force in
a mass-spring layout (see Section 3.3). Multiple quality measures
support users in the assessment of layout characteristics and qual-
ities. Finally, users can drill down to meaningful layouts by using
filtering controls and a layout history. The LayoutExOmizer inter-
face is shown in Figure 1. In Section 4.1, we provide an overview
of the system, before we describe how LayoutExOmizer addresses
six abstracted analysis tasks (see Sections 4.2 to 4.7).

4.1. LayoutExOmizer Overview

We designed LayoutExOmizer with a black background so that es-
pecially bright highlight colors stand out. This is particularly use-
ful as we make use of two colormaps, each sharing half of the hue
circle. One colormap is used to encode individual layout parame-
ters, by default using categorical colors (yellow, orange, red, and
purple). These colors are also used to link parameter visualizations
across different views. The second colormap is unipolar with colors
from dark blue to bright yellow and encodes the value domains of
individual quality measures. LayoutExOmizer is a visual analytics
approach with individual layouts being the primary data object: all
interactive selection and filtering capabilities are fed back to a se-
lection and filter model working with layouts; the effects are also
linked across views.

The current layout state is always visualized at the center, with
the option to show color-encoded forces in detail. At the top left,
controls are provided to support individual analysis tasks. Also on
the left are the views to support steering the layout (T1), explore the
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Figure 3: Detailed overview of the visual interfaces supporting T1 to T5. Users can steer parameters T1, explore parameter distributions T2,
assess the quality of layouts T3, related input and output T4, as well as filter layouts by quality T5.

parameter space (T2), assess layout qualities (T3), relate the input
and output (T4) and filter by quality (T5), as shown with task labels
in Figure 3. On the right, additional configuration parameters share
the display space with the history (T6) view at the bottom.

4.2. T1: Steer the Layout Interactively

LayoutExOmizer offers a start button to start the layout optimiza-
tion model and buttons (pause, stop, single step) for further layout
control. Users can steer the layout and observe the converging re-
sult in real-time in the layout view at the center. This forms the
basis for an interactive, iterative, and incremental layout optimiza-
tion process. To steer and analyze layouts, LayoutExOmizer offers
sliders to adjust the four color-coded parameters. In the controls
view on the right, the visualization of force arrows can be enabled
for the large layout view at the center, showing how the four pa-
rameterized forces pull each data point in the layout. The length of
these arrows correlates with the magnitude of the forces, and the
color coding is identical to one of the respective parameters.

4.3. T2: Explore Layout Parameter Space

To populate the parameter space exploration with data, LayoutEx-
Omizer samples values uniformly from the parameter space (trig-
gered by the sampling button), the number of samples is a user
parameter. A high number of samples further supports downstream
tasks, including the layout quality assessment (T3) and the analysis
of input-output relations (T4). Histograms in the same colors as the
parameters support the analysis of parameter value distributions, as
it can, e.g., be seen in Figure 3 in detail for the four parameters.

4.4. T3: Assess and Compare Layout Qualities

The design of LayoutExOmizer provides two complementing solu-
tions for the assessment and comparison of quality measures. Both

Figure 4: The percentile examples view shows the behavior of qual-
ity measures (T3). Representative layouts for different percentiles of
measure values are shown. The number of representatives is a user
parameter. Here, the Clumpy measure is shown for ten layouts, re-
vealing a nice semantically-interpretable order.

share a common colormap with dark blue values for low qualities
and bright yellow values for high qualities. The first interface helps
users to make sense of quality measures and to understand their be-
haviors. This is especially useful if quality measures are unknown
in the beginning, or require some sort of validation and trust-
building. The idea is to show a small but representative number
of layouts to the user, ordered and selected by certain percentiles
of the sampling distribution of quality measure values. By default,
five layouts are shown (min, 25%, 50%, 75%, and max percentile),
as, e.g., shown in Figure 1, forming a semantically interpretable
order of layouts across the value domain of the quality measures.
The number of representatives is a user parameter: in Figure 4 ten
representatives are shown. A click on a percentile preview icon
automatically selects the particular layout by refining the input pa-
rameters, accordingly. In the following, we refer to this interface as
the percentile examples view. The second interface uses histograms
to show the value distributions for every measure. This is useful
when it is unclear if layouts for a given dataset lead to results that
are feasible for a quality measure. Heavily skewed distributions
as shown in Figure 1 (second and third measure) are examples for
measures that are not useful for a given application context.

4.5. T4: Relate Parameter Space and Quality Measures
To understand the interactions between input parameter space and
output quality measures, LayoutExOmizer offers heatmaps for ev-
ery cross-cut between parameter and quality measure, leading to
a grid-based visualization in the notion of an aggregated scatter-
plot matrix. In every heatmap, white stands for a high number
of input-output combinations, whereas black stands for no occur-
rences. With the heatmap, users can identify relations and the type
of relation, such as a positive linear correlation or a negative non-
linear correlation (both can be observed in the two usage scenarios).
The main advantage of heatmaps over standard scatterplots is its vi-
sual scalability, as it does not suffer from overplotting problems for
many samples. Figure 5 shows an example heatmap with a negative
non-linear correlation. The figure also demonstrates how the inter-
face changes with users change the aggregation level from coarse
(left) to fine-grained (right). In general, the awareness for relations
helps users to understand what consequences a change in the pa-
rameter space would presumably have in the quality measures, and
vice versa. As such, the heatmap works as a guidance component
to make informed decisions for parameter steering.

4.6. T5: Filter Layouts
LayoutExOmizer offers filtering capabilities for every quality mea-
sure. This enables users to exclude layouts that do not match given
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Figure 5: The aggregation level in the histograms for input-output
relation seeking (T4) is a user parameter. The third example also
shows how histograms respond to filtering operations.

quality criteria. Filtering is implemented with a range slider, in the
notion of the dynamic queries principle, and is aligned vertically
with the histogram for quality measure values, as provided for T3.
Samples that are filtered out are automatically grayed out in all his-
tograms, both for parameter distribution charts and the quality mea-
sures. The relation-seeking heatmaps for T4 also respond to filter-
ing: a size encoding represents the filter state for every individual
cell (see Figure 5 right).

4.7. T6: Preserve Layout Analysis History

The view at the bottom right is designed to compare recent layouts
in a history (T6) visualization, with the most recent one being at the
bottom. The history elements can be used to undo operations and
to recover a certain parameter setting if the user decides to do so.
An enlarged version of the interface is shown in Figure 6. The left
part shows a preview of the actual layout, the corresponding pa-
rameter settings are visualized in the middle. On the right, a color
coding shows the values of all involved quality measures. If a his-
tory item is filtered out, it will be colored in gray such that users
can distinguish history items with respect to the filter status.

5. Evaluation

5.1. Usage Scenario 1

In this scenario, we optimize a map visualization with capitals of
193 countries‡, the original 2D positions of these capitals are based
on a Mercator projection. From a user’s perspective, we represent
every capital by its country flag with point marks of reasonable area
sizes so that flags are well recognizable, and we form the require-
ment that flags of almost every country should be discernible in
the final layout. Data-centric constraints can be seen in the initial
layout in Figure 7 (left): dense regions on Earth such as Europe
yield massive overplotting problems, whereas other regions remain
empty. From a task perspective, the resulting layout should be able
to separate continents, as well as preserve local neighborhood rela-
tions between countries. We will identify a layout optimization that

‡ http://archive.ics.uci.edu/ml/datasets/Flags

Figure 6: History element showing a layout preview on the left,
the color-coded parameter values at the center, and a fingerprint of
quality measures (here: Scagnostics) on the right.

Figure 7: Four different layouts of the countries dataset. Original
layout (left), too much pairwise repulsion force (second from left),
too much border repulsion force (third), and the final layout (right).

considers the three aspects users, data, and task as shown in Fig-
ure 7 (right). We use the layout optimization model in combination
with the set of five Layout Quality Measures (see Section 3.4).

At start, we steer the layout (T1) manually to better understand
the behavior of the layout optimizer. The second layout in Figure 7
is the result of a very high Pairwise Repulsion Force, leading to an
overplotting-free representation which, however, does not provide
any structural characteristics of the data positions any more; some
point marks even left the visible display space. To encounter the lat-
ter, we use the Border Repulsion Force to push outlying points back
towards the center: an unused area at the display borders emerges
(third layout in Figure 7). What can be inferred from only a few
examples is the existence of numerous layouts with serious short-
comings that can be created with the four-dimensional parameter
space, i.e., there is multiple ways to fail in the layout creation.

To explore the parameter space further (T2), we apply sampling
and create 200 additional layout optimizations, the value distribu-
tions of the four parameters can be seen in Figure 8. Along these
lines, we also analyze the five quality measures (T3) and make
some interesting findings: by looking at the value distributions in
the quality measure histograms, we infer that the PairwiseRepul-
sion and the BorderRepulsion measures are descriptive across the
200 layouts, whereas the distributions of the TargetPositionForce
and the ShapeBoundsRepulsion do not seem to be useful to char-
acterize or discriminate layouts for the given dataset. The input-
output analysis (T4) reveals strong correlations of the Pairwise Re-
pulsion Force with most quality measures. Interestingly, three of
these relations appear to be non-linear. The interpretation of these
correlations reveals that, e.g., high Pairwise Repulsion Force re-
duces the overlap of points significantly, which is to be expected
from a semantic point of view. However, too much pairwise repul-
sion leads to layouts with low preservation of original point co-
ordinates as, e.g., the second example in Figure 7 shows. We use
the filtering (T5) controls to exclude layouts suffering from the dis-
cussed drawbacks. We filter out layouts with particularly high data
point overlap but also layouts with particularly high pairwise re-
pulsion. The result can be seen in Figure 1. For the Pairwise Re-
pulsion Force (yellow input parameter) layouts with extreme pa-
rameter values have been removed thanks to the filtering operation,
which gives the advice to avoid particularly low and high parameter
values to receive useful layouts.

Informed by these findings, we further refine the parameter val-
ues. We also consider a semantic criterion for the strength of the
Target Position Force: we increase the parameter in a way that gaps
between continents remain visible. The history of manually steered
layouts (T6) can be seen at the bottom right of Figure 1, including
our final layout candidate that is also shown in Figure 7 (right). We
have arrived at a meaningful trade-off between overplotting mitiga-
tion, preservation of original coordinates, and readability of flags.
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Figure 8: Sampling of 200 layouts with various parameter val-
ues and value combinations. The parameter space analysis (T2),
assessment of quality measures (T3), identification of input-output
correlations (T4), and filtering of layouts with meaningful qualities
(T5) can be facilitated with the combination of shown views.

5.2. Usage Scenario 2

We use the frequently applied Iris§ flower dataset to demonstrate
the usefulness of LayoutExOmizer in the context of DR. Data
with more than two dimensions can be mapped into 2D in an up-
stream process, followed by a layout optimization step with Lay-
outExOmizer. The 4D iris dataset contains three classes of iris
plants (50 data points each), all mapped into 2D using non-linear
MDS [Kru64]. From the user’s perspective, we want to represent
each data point with a point mark of a considerable size, so that
color can be used to differentiate flowers by their three classes. The
data characteristics reveal strong overplotting in the center regions
of all three classes, as can be seen in the left view in Figure 2. From
a task-based perspective, it is our goal to enable the analysis of
class separation of every individual data point. To account for these
three aspects, we use the layout optimization model as introduced
in Section 3.3. In contrast to Usage Scenario 1, we demonstrate the
approach with the Scagnostics quality measures (see Section 3.4).
The supplemental material shows a system overview screenshot at
large, showing the four forces (left), nine Scagnostics measures
(left), the current layout with forces (center), and five history points
(bottom right) at a glance. A cutout version is shown in Figure 9,
with interfaces for T1 to T5.

We start with steering the layout (T1) manually, to better un-
derstand the effect of forces on the dataset. One example of weak
layout quality can be seen on the right of Figure 2, where a high
Pairwise Repulsion Force, a high Shape Bounds Repulsion Force,
and a high Border Repulsion Force led to a layout with weak neigh-
borship preservation (judged visually) and large empty image bor-
der spaces (a figure with visible forces of the layout is included
in the supplemental material). To start the parameter space explo-
ration (T2), we apply sampling and yield 100 alternative layouts,
the result can be seen in Figure 9. We are interested in the Scagnos-
tics measures and focus on the interface for the visual quality as-
sessment (T3): the interpretation of the nine measures reveals quite

§ https://archive.ics.uci.edu/ml/datasets/iris

Figure 9: Visual analysis of 100 layouts of the iris dataset. Cutout
version of a system screenshot showing the interfaces for T1 to T5.
At a glance, we identify different behaviors of the nine Scagnostics
quality measures (histograms) as well as intersting correlations be-
tween parameters and qualities (heatmaps in the grid).

different findings. By looking at the quality histograms, we identify
that the Clumpy measure is not useful for this dataset: most layouts
yield very high values, thus, the measure hardly helps to discrim-
inate layouts. In contrast, the measures Skewed, Striated, Skinny,
and Stringy are particularly able to discriminate layouts, as the in-
dividual layout quality values almost form normal distributions. As
a next step, we want to analyze these measures in detail to gain a
better understanding of their behavior. We use the percentile exam-
ples view to assess the behavior of quality measures, as shown in
Figure 4. Clumpy shows a nice ordered distribution from compact
data points (left) to distorted data points (right). We do the same for
other measures and observe that Convex seems to measure an in-
verse behavior of Clumpy. The next step includes relation-seeking
between input parameters and output qualities (T4), again facili-
tated with Figure 9. Some of the observations include: The yel-
low Pairwise Repulsion Force has the strongest relations to quality
measures across all forces. In particular, we identify a positive cor-
relation with the Skinny measure and a negative correlation to the
Convex measure. From an output perspective, we identify measures
that hardly show any correlations with input parameters such as the
Stringy measure. Such measures may still be useful for layout fil-
tering, but do not provide direct guidance for parameter steering.

We drill down the number of layout candidates to arrive at a final
layout. We filter (T5) lowest Sparse values, as these layouts turn out
to be too distorted (visual judgment using the percentile examples
view T3). Similarly, we filter out high Clumpy and high Skinny
layouts. The result can be seen in Figure 3, where we only focus
on the Skinny quality measure (for illustration purposes). With the
current filter status, the yellow Pairwise Repulsion Force on the left
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significantly got skewed towards the left: this is a clear indication
to use this steering parameter with care and assign a rather low
value, as too much pairwise repulsion leads to distorted layouts.
Along these lines, we refine all four parameters, and arrive at a
final layout, as can be seen at the center of Figure 2.

6. Discussion and Future Work

6.1. Alternative Quality Measures

The Scagnostics measures and our Layout Diagnostics measures
are beneficial to quantify and assess characteristics of 2D data dis-
tributions as well as of the layout. Other measures may also be use-
ful, depending on the dataset, analysis goal, and user preference.
An alternative is the size of the (glyph) mark, in cases when users
aim at maximizing this visible size. A final example points towards
classification tasks with labeled (colored) data points. Here class
separation measures may be particularly beneficial.

6.2. Generalization of ”Goodness“ of Layouts

Layout optimization encompasses different, sometimes even con-
tradicting optimization goals. We argue that finding trade-offs can
be done effectively with human-in-the-loop approaches. To sup-
port users further, we use quality measures to quantify optimization
goals formally. By doing this, our work constitutes one step towards
the design of fully automatic layout optimization methods, taking
complex and human-centered optimization goals into account. Fu-
ture work should include empirical user studies to formalize favor-
able and unfavorable layout characteristics in scatterplots.

6.3. Scalability

The scalability of the layout optimization depends on the number
of forces and their complexity as well as the amount of data points.
If there are n data points, k forces and it is presumed that every
force has a time complexity of O(n2) in the worst case, the total
time complexity of one simulation step is in O(kn2).

The frame rate on an Intel Core i5-9400F powered workstation
was evaluated using artificial data points sampled form a 2D normal
distribution. For data set sizes of n = 100,300,600,900 the aver-
age frame rates are 79.74,10.73,2.64 and 1.02 respectively Visual
scalability is limited by the two factors parameter count and quality
measure count, both of which should not exceed ten to preserve all
data analysis capability at one screen without the need for scrolling
interaction.

6.4. Layout Convergence

We have observed layouts that do not converge, which is a known
problem for various classes of layout algorithms. Influencing fac-
tors are the step size, and the initialized forces in particular. If the
latter are too extreme, the mass-spring model is not able to ap-
proach the local optimum position for a data point due to the step
size of the simulation. We approached this problem by introducing
a damping factor, which monotonically decreases the simulation
step size over time leading to less movement and better converg-
ing towards optimal positions. A future work approach would be to
learn a machine learning model that predicts layout convergence,
which in turn, can be used as a guidance component for parameter
setting and tuning. Additionally, a future approach would benefit
from instigating how sensitive the layout is for changes in the pa-
rameter space, this would provide the user with additional guiding
towards stable layouts.

7. Conclusions

We have presented LayoutExOmizer, a visual analytics approach
that enables users to steer, analyze, and compare multiple layouts
for 2D data points to identify data layouts most useful for a given
dataset, task, and user preference. LayoutExOmizer offers a high
degree of human control for parameter steering and quality as-
sessment, as well as high levels of computer automation, leading
to reliable and trustworthy layouts. With LayoutExOmizer, users
can, e.g., face the trade-off between the preservation of positions
of data points and the reduction of overplotting interactively and
iteratively. In two usage scenarios, we validated the applicability
of our approach for different datasets. Future work includes more
empirical experiments with user involvement a) to further validate
the applicability of the visual interface for different application ar-
eas and b) to acquire preference data submitted with user feedback.
With the latter, we want to continue the path towards finding a lay-
out method that automatically finds optimal trade-offs for complex
data, task, and human-centered optimization goals.
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